首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The importance of circadian clocks in the regulation of adult physiology in mammals is well established. In contrast, the ontogenesis of the circadian system and its role in embryonic development are still poorly understood. Although there is experimental evidence that the clock machinery is present prior to birth, data on gestational clock functionality are inconsistent. Moreover, little is known about the dependence of embryonic rhythms on maternal and environmental time cues and the role of circadian oscillations for embryonic development. The aim of this study was to test if fetal mouse tissues from early embryonic stages are capable of expressing endogenous, self-sustained circadian rhythms and their contribution to embryogenesis. Starting on embryonic day 13, we collected precursor tissues for suprachiasmatic nucleus (SCN), liver and kidney from embryos carrying the circadian reporter gene Per2::Luc and investigated rhythmicity and circadian traits of these tissues ex vivo. We found that even before the respective organs were fully developed, embryonic tissues were capable of expressing circadian rhythms. Period and amplitude of which were determined very early during development and phases of liver and kidney explants are not influenced by tissue preparation, whereas SCN explants phasing is strongly dependent on preparation time. Embryonic circadian rhythms also developed in the absence of maternal and environmental time signals. Morphological and histological comparison of offspring from matings of Clock-Δ19 mutant and wild-type mice revealed that both fetal and maternal clocks have distinct roles in embryogenesis. While genetic disruptions of maternal and embryonic clock function leads to increased fetal fat depots, abnormal ossification and organ development, Clock gene mutant newborns from mothers with a functional clock showed a larger body size compared to wild-type littermates. These data may contribute to the understanding of the ontogenesis of circadian clocks and the risk of disturbed maternal or embryonic circadian rhythms for embryonic development.  相似文献   

2.
In aquaculture, feeding is essential for the maintenance of metabolic processes and homoeostasis of fish. However, fasting acts as a stressor. In this study, we investigated the effect of circadian rhythm under various LED wavelengths [blue (460 nm), green (520 nm) and red (630 nm)] and two light intensities (0.3 and 0.6 W m?2) over a 9-days period in the olive flounder (Paralichthys olivaceus). We analysed clock genes like period 2 (Per 2) and cryptochrome 1 (Cry 1), and serotonin and arylalkylamine-N-acetyltransferase 2 (AANAT 2), which control circadian rhythms. Per 2, Cry 1, serotonin and AANAT 2 were significantly decreased during the starvation period compared to the normal feeding group. Nevertheless, their levels increased in the groups exposed to green- and blue LED light during the experimental period. These results confirmed that green and blue wavelengths are effective in maintaining the circadian rhythm in olive flounder.  相似文献   

3.
Wang  Ling  Tan  Xungang  Zou  Congcong  Wang  Lijuan  Wu  Zhihao  Zou  Yuxia  Song  Zongcheng  You  Feng 《Molecular biology reports》2021,48(4):3529-3540

Dynein axonemal light intermediate chain 1 (dnali1) is an important part of axonemal dyneins and plays an important role in the growth and development of animals. However, there is little information about dnali1 in fish. Herein, we cloned dnali1 gene from the genome of olive flounder (Paralichthys olivaceus), a commercially important maricultured fish in China, Japan, and Korea, and analyzed its expression patterns in different gender fish. The flounder dnali1 DNA sequence contained a 771 bp open reading frame (ORF), two different sizes of 5′ untranslated region (5′UTR), and a 1499 bp 3′ untranslated region (3′UTR). Two duplicated 922 nt fragments were found in dnali1 mRNA. The first fragment contained the downstream coding region and the front portion of 3′UTR, and the second fragment was entirely located in 3′UTR. Multiple alignments indicated that the flounder Dnali1 protein contained the putative conserved coiled-coil domain. Its expression showed sexually dimorphic with predominant expression in the flounder testis, and lower expression in other tissues. The gene with the longer 5′UTR was specifically expressed in the testis. The highest expression level in the testis was detected at stages IV and V. Transient expression analysis showed that the 922 bp repeated sequence 3′UTR of dnali1 down-regulated the expression of GFP at the early stage in zebrafish. The flounder dnali1 might play an important role in the testis, especially in the period of spermatogenesis, and the 5′UTR and the repetitive sequences in 3′UTR might contain some regulatory elements for the cilia.

  相似文献   

4.
One key challenge for the field of chronobiology is to identify how circadian clock function emerges during early embryonic development. Teleosts such as the zebrafish are ideal models for studying circadian clock ontogeny since the entire process of development occurs ex utero in an optically transparent chorion. Medaka (Oryzias latipes) represents another powerful fish model for exploring early clock function with, like the zebrafish, many tools available for detailed genetic analysis. However, to date there have been no reports documenting circadian clock gene expression during medaka development. Here we have characterized the expression of key clock genes in various developmental stages and in adult tissues of medaka. As previously reported for other fish, light dark cycles are required for the emergence of clock gene expression rhythms in this species. While rhythmic expression of per and cry genes is detected very early during development and seems to be light driven, rhythmic clock and bmal expression appears much later around hatching time. Furthermore, the maturation of clock function seems to correlate with the appearance of rhythmic expression of these positive elements of the clock feedback loop. By accelerating development through elevated temperatures or by artificially removing the chorion, we show an earlier onset of rhythmicity in clock and bmal expression. Thus, differential maturation of key elements of the medaka clock mechanism depends on the developmental stage and the presence of the chorion.  相似文献   

5.
6.
7.
The circadian rhythm is a 24-h cycle in which cells control metabolic and physiological processes throughout the day. In this study, we compared the expression patterns of major circadian rhythm-related genes: from blood of Bmal1, Ror-α, Cry1, Per2, Per1, and Nr1d1. In addition, changes in patterns of melatonin levels were observed in 16 subjects, eight males rugby players and eight males who did not exercise regularly. Blood was collected at 6:00, 10:00, 18:00, and 22:00. Bmal1, Ror-α, Cry1, Per2 (p < 0.001), Per1 (p < 0.01), and Nr1d1 (p < 0.05) genes related to circadian rhythm was higher in rugby players than in sedentary males. However, melatonin levels were higher in sedentary males than in rugby players (p < 0.05). These results indicate that long-term exercise in athletes can increase the expression of genes related to circadian rhythm and these may have an effect on daily melatonin levels as well.  相似文献   

8.
We investigated the effect of copper (Cu) on circadian rhythms in red seabream, Pagrus major, under various concentrations of Cu (10, 20, 30 and 40 μg/L). To examine variability in circadian rhythms, we measured changes in the period 2 (Per2), cryptochrome 1 (Cry1), serotonin and arylalkylamine N-acetyltransferase (AANAT2) proteins. We found that circadian rhythm-related plasma proteins were significantly lower in a high-Cu environment (30–40 μg/L) than in low-Cu concentration (0, 10, or 20 μg/L). Our results indicate that environmental Cu at concentrations greater than 30 μg/L can have deleterious effects on fish circadian rhythms.  相似文献   

9.
Glucocorticoids are considered to synchronize the rhythmicity of clock genes in peripheral tissues; however, the role of circadian variations of endogenous glucocorticoids is not well defined. In the present study, we examined whether peripheral circadian clocks were impaired by adrenalectomy. To achieve this, we tested the circadian rhythmicity of core clock genes (Bmal1, Per1-3, Cry1, RevErbα, Rora), clock-output genes (Dbp, E4bp4) and a glucocorticoid- and clock-controlled gene (Gilz) in liver, jejunum, kidney cortex, splenocytes and visceral adipose tissue (VAT). Adrenalectomy did not affect the phase of clock gene rhythms but distinctly modulated clock gene mRNA levels, and this effect was partially tissue-dependent. Adrenalectomy had a significant inhibitory effect on the level of Per1 mRNA in VAT, liver and jejunum, but not in kidney and splenocytes. Similarly, adrenalectomy down-regulated mRNA levels of Per2 in splenocytes and VAT, Per3 in jejunum, RevErbα in VAT and Dbp in VAT, kidney and splenocytes, whereas the mRNA amounts of Per1 and Per2 in kidney and Per3 in VAT and splenocytes were up-regulated. On the other hand, adrenalectomy had minimal effects on Rora and E4bp4 mRNAs. Adrenalectomy also resulted in decreased level of Gilz mRNA but did not alter the phase of its diurnal rhythm. Collectively, these findings suggest that adrenalectomy alters the mRNA levels of core clock genes and clock-output genes in peripheral organs and may cause tissue-specific modulations of their circadian profiles, which are reflected in changes of the amplitudes but not phases. Thus, the circulating corticosteroids are necessary for maintaining the high-amplitude rhythmicity of the peripheral clocks in a tissue-specific manner.  相似文献   

10.
《Chronobiology international》2013,30(9):1195-1205
Circadian rhythms are established very early during vertebrate development. In fish, environmental cues can influence the initiation and synchronization of different rhythmic processes. Previous studies in zebrafish and rainbow trout have shown that circadian oscillation of clock genes represents one of the earliest detectable rhythms in the developing embryo, suggesting their significance in regulating the coordination of developmental processes. In this study, we analyzed the daily expression of the core clock components Per1, Per2, Per3, and Clock during the first several days of Senegalese sole development (0–4 d post fertilization or dpf) under different lighting regimes, with the aim of addressing when the molecular clock first emerges in this species and how it is affected by different photoperiods. Rhythmic expression of the above genes was detected from 0 to 1 dpf, being markedly affected in the next few days by both constant light (LL) and dark (DD) conditions. A gradual entrainment of the clock machinery was observed only under light-dark (LD) cycles, and robust rhythms with increased amplitudes were established by 4 dpf for all clock genes currently studied. Our results show the existence of an embryonic molecular clock from the 1st d of development in Senegalese sole and emphasize the significance of cycling LD conditions when raising embryos and early larvae. (Author correspondence: ; )  相似文献   

11.
Several reports support the existence of multiple peripheral oscillators in fish, which may be able to modulate the rhythmic functions developed by those tissues hosting them. Thus, a circadian oscillator has been proposed to be located within fish liver. In this vertebrate group, the role played by the circadian system in regulating metabolic processes in liver is mostly unknown. We, therefore investigated the liver of rainbow trout (Oncorhynchus mykiss) as a potential element participating in the regulation of circadian rhythms in fish by hosting a functional circadian oscillator. The presence and expression pattern of main components of the circadian molecular machinery (clock1a, bmal1, per1 and rev-erbβ-like) were assessed. Furthermore, the role of environmental cues such as light and food, and their interaction in order to modulate the circadian oscillator was also assessed by exposing animals to constant conditions (absence of light for 48 h, and/or a 4 days fasting period). Our results demonstrate the existence of a functional circadian oscillator within trout liver, as demonstrated by significant rhythms of all clock genes assessed, independently of the environmental conditions studied. In addition, the daily profile of mRNA abundance of clock genes is influenced by both light (mainly clock1a and per1) and food (rev-erbβ-like), which is indicative of an interaction between both synchronizers. Our results point to rev-erbβ-like as possible mediator between the influence of light and food on the circadian oscillator within trout liver, since its daily profile is influenced by both light and food, thus affecting that of bmal1.  相似文献   

12.
Animals fed daily at the same time exhibit circadian food‐anticipatory activity (FAA), which has been suggested to be driven by one or several food‐entrainable oscillators (FEOs). FAA is altered in mice lacking some circadian genes essential for timekeeping in the main suprachiasmatic clock (SCN). Here, we confirmed that single mutations of clock genes Per1?/? and Per2Brdm1 alter FAA expression in constant darkness (DD) or under a light–dark cycle (LD). Furthermore, we found that Per1?/?;Per2Brdm1 and Per2Brdm1;Cry1?/? double mutant animals did not display a stable and significant FAA either in DD or LD. Interestingly, rescued behavioural rhythms in Per2Brdm1;Cry2?/? mice in DD were totally entrained to feeding time and re‐synchronized after phase‐shifts of mealtime, indicating a higher SCN sensitivity to feeding cues. However, under an LD cycle and restricted feeding at midday, FAA in double Per2Brdm1;Cry2?/? mutant mice was absent. These results indicate that shutting down one or two clock genes results in altered circadian meal anticipation. Moreover, we show that in a genetically rescued SCN clock (Per2Brdm1;Cry2?/?), food is a powerful zeitgeber to entrain behavioural rhythms, leading the SCN to be more sensitive to feeding cues than in wild‐type littermates.  相似文献   

13.
14.
15.
《Chronobiology international》2013,30(8):1021-1035
In the laboratory rat, a number of physiological parameters display seasonal changes even under constant conditions of temperature, lighting, and food availability. Since there is evidence that prolactin (PRL) is, among the endocrine signals, a major mediator of seasonal adaptations, the authors aimed to examine whether melatonin administration in drinking water resembling in length the exposure to a winter photoperiod could affect accordingly the 24-h pattern of PRL synthesis and release and some of their anterior pituitary redox state and circadian clock modulatory mechanisms. Melatonin (3?µg/mL drinking water) or vehicle was given for 1 mo, and rats were euthanized at six time intervals during a 24-h cycle. High concentrations of melatonin (>2000 pg/mL) were detected in melatonin-treated rats from beginning of scotophase (at 21:00?h) to early photophase (at 09:00?h) as compared with a considerably narrower high-melatonin phase observed in controls. By cosinor analysis, melatonin-treated rats had significantly decreased MESOR (24-h time-series average) values of anterior pituitary PRL gene expression and circulating PRL, with acrophases (peak time) located in the middle of the scotophase, as in the control group. Melatonin treatment disrupted the 24-h pattern of anterior pituitary gene expression of nitric oxide synthase (NOS)-1 and -2, heme oxygenase-1 and -2, glutathione peroxidase, glutathione reductase, Cu/Zn- and Mn-superoxide dismutase, and catalase by shifting their acrophases to early/middle scotophase or amplifying the maxima. Only the inhibitory effect of melatonin on pituitary NOS-2 gene expression correlated temporally with inhibition of PRL production. Gene expression of metallothionein-1 and -3 showed maxima at early/middle photophase after melatonin treatment. The 24-h pattern of anterior pituitary lipid peroxidation did not vary after treatment. In vehicle-treated rats, Clock and Bmal1 expression peaked in the anterior pituitary at middle scotophase, whereas that of Per1 and Per2 and of Cry1 and Cry2 peaked at the middle and late photophase, respectively. Treatment with melatonin raised mean expression of anterior pituitary Per2, Cry1, and Cry2. In the case of Per1, decreased MESOR was observed, although the single significant difference found between the experimental groups when analyzed at individual time intervals was increase at early scotophase in the anterior pituitary of melatonin-treated rats. Melatonin significantly phase-delayed expression of Per1, Per2, and Cry1, also phase-delayed the plasma corticosterone circadian rhythm, and increased the amplitude of plasma corticosterone and thyrotropin rhythms. The results indicate that under prolonged duration of a daily melatonin signal, rat anterior pituitary PRL synthesis and release are depressed, together with significant changes in the redox and circadian mechanisms controlling them. (Author correspondence: ; )  相似文献   

16.
Triclad flatworms are well studied for their regenerative properties, yet little is known about their embryonic development. We here describe the embryonic development of the triclad Schmidtea polychroa, using histological and immunocytochemical analysis of whole-mount preparations and sections. During early cleavage (stage 1), yolk cells fuse and enclose the zygote into a syncytium. The zygote divides into blastomeres that dissociate and migrate into the syncytium. During stage 2, a subset of blastomeres differentiate into a transient embryonic epidermis that surrounds the yolk syncytium, and an embryonic pharynx. Other blastomeres divide as a scattered population of cells in the syncytium. During stage 3, the embryonic pharynx imbibes external yolk cells and a gastric cavity is formed in the center of the syncytium. The syncytial yolk and the blastomeres contained within it are compressed into a thin peripheral rind. From a location close to the embryonic pharynx, which defines the posterior pole, bilaterally symmetric ventral nerve cord pioneers extend forward. Stage 4 is characterized by massive proliferation of embryonic cells. Large yolk-filled cells lining the syncytium form the gastrodermis. During stage 5 the external syncytial yolk mantle is resorbed and the embryonic cells contained within differentiate into an irregular scaffold of muscle and nerve cells. Epidermal cells differentiate and replace the transient embryonic epidermis. Through stages 6–8, the embryo adopts its worm-like shape, and loosely scattered populations of differentiating cells consolidate into structurally defined organs. Our analysis reveals a picture of S. polychroa embryogenesis that resembles the morphogenetic events underlying regeneration.Edited by D. Tautz  相似文献   

17.
The full‐length complementary DNA of two genes related to vertebrate albinism, the tyrosinase gene tyr and tyrosinase‐related protein 1 gene tyrp1, were cloned and analysed from normal and albino yellow catfish Tachysurus fulvidraco. The open reading frames (ORF) of tyr and tyrp1 encode putative peptides of 533 and 526 amino acids (amino‐acid), both of which possess two conserved copper binding sites. The homologous identities of deduced amino‐acid sequences showed that both Tyr and Tyrp1 of T. fulvidraco share considerable similarity with that of channel catfish Ictalurus punctatus. Both tyr and tyrp1 were expressed in a wide range of adult tissues. Tyr gene had the highest expression level in the brain of both normal and albino T. fulvidraco. Tyrp1 had the highest expression level in the skin of normal groups, and the fin of albino groups. The messenger (m)RNA expressions of tyr and tyrp1 were detectable at different early developmental stages and varied with embryonic and larval growth. Tyr and tyrp1 mRNA have obvious tissue specificity both in normal and albino T. fulvidraco and higher expression levels were detected in the normal group revealing that tyr and tyrp1 may have an important role in pigmentation. These results will provide useful data for understanding the molecular mechanism of melanin formation and the occurrence of albinism in T. fulvidraco.  相似文献   

18.
19.
20.
Daily light and feeding cycles act as powerful synchronizers of circadian rhythmicity. Ultimately, these external cues entrain the expression of clock genes, which generate daily rhythmic behavioral and physiological responses in vertebrates. In the present study, we investigated clock genes in a marine teleost (gilthead sea bream). Partial cDNA sequences of key elements from both positive (Bmal1, Clock) and negative (Per2, Cry1) regulatory loops were cloned before studying how feeding time affects the daily rhythms of locomotor activity and clock gene expression in the central (brain) and peripheral (liver) oscillators. To this end, all fish were kept under a light-dark (LD) cycle and were divided into three experimental groups, depending on the time of their daily meal: mid-light (ML), mid-darkness (MD), or at random (RD) times. Finally, the existence of circadian control on gene expression was investigated in the absence of external cues (DD?+?RD). The behavioral results showed that seabream fed at ML or RD displayed a diurnal activity pattern (>91% of activity during the day), whereas fish fed at MD were nocturnal (89% of activity during the night). Moreover, seabream subjected to regular feeding cycles (ML and MD groups) showed food-anticipatory activity (FAA). Regardless of the mealtime, the daily rhythm of clock gene expression in the brain peaked close to the light-dark transition in the case of Bmal1 and Clock, and at the beginning of the light phase in the case of Per2 and Cry1, showing the existence of phase delay between the positive and negative elements of the molecular clock. In the liver, however, the acrophases of the daily rhythms differed depending on the feeding regime: the maximum expression of Bmal1 and Clock in the ML and RD groups was in antiphase to the expression pattern observed in the fish fed at MD. Under constant conditions (DD?+?RD), Per2 and Cry1 showed circadian rhythmicity in the brain, whereas Bmal1, Clock, and Per2 did in the liver. Our results indicate that the seabream clock gene expression is endogenously controlled and in liver it is strongly entrained by food signals, rather than by the LD cycle, and that scheduled feeding can shift the phase of the daily rhythm of clock gene expression in a peripheral organ (liver) without changing the phase of these rhythms in a central oscillator (brain), suggesting uncoupling of the light-entrainable oscillator (LEO) from the food-entrainable oscillator (FEO). These findings provide the basis and new tools for improving our knowledge of the circadian system and entraining pathways of this fish species, which is of great interest for the Mediterranean aquaculture. (Author correspondence: javisan@um.es).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号