首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

In the present work, some surface properties of the fungi Scedosporium apiospermum, S. aurantiacum, S. minutisporum, and Lomentospora prolificans and their capability to adhere to and form a biofilm on diverse surfaces were evaluated. All four species had high conidial surface hydrophobicity and elevated electronegative zeta potentials. Abundant quantities of melanin were detected at the conidial surface, whereas sialic acid was absent. The numbers of non-germinated and germinated conidia adhered to poly-L-lysine-covered slides was higher than on glass after 4?h of fungi–surface contact. Additionally, after 72?h of interaction a typical biofilm structure had formed. Mature biofilms were also observed after 72?h on a nasogastric catheter (made from polyvinyl chloride), a late bladder catheter (siliconized latex), and a nasoenteric catheter (polyurethane). Interestingly, biofilm biomass increased considerably when the catheters had previously been incubated with serum. These results confirm that Scedosporium/Lomentospora spp. are capable of forming biofilms on diverse abiotic surfaces.  相似文献   

2.
Reported herein is the ability of Scedosporium apiospermum, S. aurantiacum, S. minutisporum and Lomentospora prolificans conidia to adhere, differentiate into hyphae and form biofilms on both polystyrene and lung epithelial cells. To different degrees, all of the fungi adhered to polystyrene after 4 h, with a predominance of those with germinated conidia. Prolonged fungi–polystyrene contact resulted in the formation of a monolayer of intertwined mycelia, which was identified as a typical biofilm structure due to the presence of a viable mycelial biomass, extracellular matrix and enhanced antifungal resistance. Ultrastructural details were revealed by SEM and CLSM, showing the dense compaction of the mycelial biomass and the presence of channels within the organized biofilm. A similar biofilm structure was observed following the co-culture of each fungus with A549 cells, revealing a mycelial trap covering all of the lung epithelial monolayer. Collectively, these results highlight the potential for biofilm formation by these clinically relevant fungal pathogens.  相似文献   

3.
《Cell》2021,184(23):5740-5758.e17
  1. Download : Download high-res image (254KB)
  2. Download : Download full-size image
  相似文献   

4.
We assayed the cytoskeleton organization of normal, scar, and embryonic human fibroblasts spread on major proteins of the extracellular matrix (ECM), type-I and-IV collagens, laminin 2/4, and fibronectin. Confocal fluorescent microscopy showed that fibroblasts of different origins were distinguished by their organization of actin structures and focal contacts visualized with antibodies to vinculin. It was found that different fibroblasts spread on identical ECM proteins had a common spatial organization of their cytoskeletons and some modifications of their actin structures and focal contacts. Variations in the organization of actin microfilaments indicate differences in cell interactions with various ECM proteins. The difference may be dependent on the integrin combination exposed on the cell membrane. It is suggested that fibroblasts of different origins differ in their morphogenetic functions.  相似文献   

5.
Candida albicans expresses a vast number of hydrolytic enzymes, playing roles in several phases of yeast-host interactions. Here, we identified two novel extracellular peptidase classes in C. albicans. Using gelatin-sodium dodecyl sulfate polyacrylamide gel electrophoresis two gelatinolytic activities were detected at physiological pH: a 60-kDa metallopeptidase, completely blocked by 1,10-phenanthroline, and a 50-kDa serine peptidase inhibited by phenylmethylsulfonyl fluoride. In an effort to establish a probable functional implication for these novel peptidase classes, we demonstrated that the 50-kDa secretory serine peptidase was active over a broad pH range (5.0-7.2) and was capable to hydrolyze some soluble human serum proteins and extracellular matrix components. Conversely, when this isolate was grown in yeast carbon base supplemented with bovine serum albumin, a secretory aspartyl peptidase activity was measured, instead of metallo- and serine peptidases, suggesting that distinct medium composition induces different expression of released peptidases in C. albicans. Additionally, we showed by quantitative proteolytic measurement, flow cytometry and immunoblotting assays that the brain heart infusion medium might repress the Sap1-3 production. Collectively, our results showed for the first time the capability of an extracellular proteolytic enzyme other than aspartic-type peptidases to cleave a broad spectrum of relevant host proteinaceous substrates by the human pathogen C. albicans.  相似文献   

6.
Summary Some effects of culturing adult rat hepatocytes on each of four different substrates—laminin (LN), collagen type I (C-I), collagen type IV (C-IV), and fibronectin (FN)—have been investigated under defined conditions. No differential effect on the attachment of the cells to the various substrates was noted; however, the spreading of hepatocytes shortly after initial plating was most strikingly enhanced by FN, whereas LN exhibited little or no such enhancement. The two collagen substrates enhanced the spreading of hepatocytes more than did LN, but less than FN. The different substrates had no differential effect on the induction of tyrosine aminotransferase by dexamethasone and glucagon for at least the first 10 d in culture. The longevity of the hepatocytes was not changed significantly by any of the substrates, at least through the 14th d of culture. During the culture periods the hepatocytes at high cell density were maintained as confluent monolayers, regardless of the substrate on which they had been cultured. After 14 d of culture, γ-glutamyltranspeptidase activity was highest in cells cultured on C-IV, and lowest in those on FN. DNA synthesis in cultured hepatocytes at a low cell density was highest in cells cultured on FN, with decreasing levels of this parameter in cells cultured on C-IV, C-I, and LN, respectively. These results demonstrate that specific components of the extracellular matrix modulate both differentiated functions and the replication of hepatocytes cultured in serum-free medium. This work was supported in part by grants (CA-07175, CA-09135, CA-22484) from the National Cancer Institute, Bethesda MD. N. Sawada was supported by a Cancer Research Campaign Grant D (U.K.) from the International Union Against Cancer.  相似文献   

7.
The production of abundant connective tissue within malignant tumors, the so-called desmoplastic stromal reaction, is a hallmark of colorectal adenocarcinomas. This stroma is produced to a large extent by myofibroblasts and contains various amounts of collagens (type I, III, and V), chondroitin sulfate proteoglycan, hyaluronic acid, fibronectin, and tenascin-C. In this study we have established a monolayer coculture model between two different colorectal adenocarcinoma cell lines (HRT-18, and CX-2) and colonic fibroblasts (CCD-18) to investigate the mechanisms regulating (i) the production of extracellular matrix (ECM) components, (ii) the induction of myofibroblastic differentiation, and (iii) cellular proliferation. We found that TGFbeta1 and FGF-2 stimulated ECM synthesis of fibroblasts. Myofibroblastic differentiation was stimulated by TGFbeta1 but suppressed by FGF-2. There was a mutual stimulation of proliferation between fibroblasts and carcinoma cells. The analogies with ECM components expressed in cocultures and colorectal adenocarcinoma samples suggest that the coculture model used in this study is useful to study tumor cell-fibroblast interactions.  相似文献   

8.
Cell culture in collagen lattice is known to be a more physiological model than monolayer for studying the regulation of extracellular matrix protein deposition. The synthesis of sulfated glycosaminoglycans (GAG) and dermatan sulfate (DS) proteoglycans by 3 cell strains were studied in confluent monolayers grown on plastic surface, in comparison to fully retracted collagen lattices. Cells were labelled with35S-sulfate, followed by GAG and proteoglycan analysis by cellulose acetate and SDS-polyacrylamide gel electrophoresis, respectively. The 3 cell strains contracted the lattice in a similar way. In monolayer cultures, the major part of GAG was secreted into culture medium whereas in lattice cultures of dermal fibroblasts and osteosarcoma MG-63 cells but not fibrosarcoma HT-1080 cells, a higher proportion of GAGs, including dermatan sulfate, was retained within the lattices. Small DS proteoglycans, decorin and biglycan, were detected in fibroblasts and MG-63 cultures. They were preferentially trapped within the collagen gel. In retracted lattices, decorin had a higher Mr than in monolayer. Biglycan was detected in monolayer and lattice cultures of MG-63 cells but in lattice cultures only in the case of fibroblasts. In this last case, an up regulation of biglycan mRNA steady state level and down regulation of decorin mRNA was observed, in comparison to monolayers, indicating that collagen can modulate the phenotypical expression of small proteoglycan genes.Supported by a fellowship from the Centre National de la Recherche Scientifique  相似文献   

9.
Summary Constitutive production of extracellular matrix with attachment and growth-promoting effects by an ovarian cancer cell line (UWOV2 (Pf)) growing in entirely protein-free conditions is described. This extracellular matrix has an ordered fibrillar, network structure consisting mainly of type IV collagen and laminin, as well as containing hyaluronan, glycoproteins, and proteoglycans. Type IV collagen appears to provide mainly structural support while other matrix components are responsible for the attachment and growth-promoting effects. This culture system provides an ideal model for studying the effects of extracellular matrix on cell attachment and growth. This system is also important in studying the concept of autonomous growth because the production of extracellular matrix by these cells appears to be growth regulatory even in an entirely protein-free culture system.  相似文献   

10.
The plasminogen activator (PA)/plasminogen/plasmin proteolytic system has begun to be taken into account in the fertilization process. In this study, we demonstrated the presence of plasminogen in the extracellular matrix (ECM) of hamster oocytes by indirect immunofluorescence and immunoperoxidase assays using human anti-plasminogen. Plasminogen appeared first on the zona pellucida (ZP) of ovarian oocytes and later on the plasma membrane (PM) of oviducal eggs. This would suggest that oviducal oocytes modulate the expression of plasminogen binding sites on the PM. Human plasminogen as well as that of other species, known to be activated by streptokinase (SK), is rapidly converted to a plasmin-SK complex. We demonstrated the rapid formation of a SK-plasminogen complex that yields plasmin in the blood plasma of hamsters. Both the in vivo and in vitro SK treatment of eggs from superovulated female hamsters caused a decreased in the ZP dissolution time (ZPdt), probably either due to the proteolytic effect of plasmin or due to the SK-Plasminogen. Extracellular proteolysis assays carried out on agar-casein plates confirmed the proteolytic activity of SK-incubated eggs; the controls, on the contrary, failed to display a halo. These studies show that (1) superovulated hamster eggs contain plasminogen in their ECM, (2) oviducal eggs exhibit plasminogen on their PMs, indicating the presence of their corresponding binding sites, (3) in hamsters, SK, a non-enzymatic exogenous protein would be capable of activating ECM plasminogen to plasmin, and (4) the complex SK-plasminogen and/or the plasmin are capable of changing the ZPdt with alpha-chymotrypsin.  相似文献   

11.
Cartilage contains numerous noncollagenous proteins in its extracellular matrix, including proteoglycans. At least 40 such molecules have been identified, differing greatly in structure, distribution, and function. Some are present in only selected cartilages or cartilage zones, some vary in their presence with a person's development and age, and others are more universal in their expression. Some may not even be made by the chondrocytes, but may arise by absorption from the synovial fluid. In many cases, the molecules' function is unclear, but the importance of others is illustrated by their involvement in genetic disorders. This review provides a selective survey of these molecules and discusses their structure, function, and involvement in inherited and arthritic disorders.  相似文献   

12.

Aims

The aim of this study was to clarify the effects of homologous and heterologous extracellular DNAs (eDNAs) and histone‐like DNA‐binding protein (HLP) on Streptococcus intermedius biofilm development and rigidity.

Methods and Results

Formed biofilm mass was measured with 0·1% crystal violet staining method and observed with a scanning electron microscope. The localizations of eDNA and extracellular HLP (eHLP) in formed biofilm were detected by staining with 7‐hydoxyl‐9H‐(1,3‐dichloro‐9,9‐dimethylacridin‐2‐one) and anti‐HLP antibody without fixation, respectively. DNase I treatment (200 U ml?1) markedly decreased biofilm formation and cell density in biofilms. Colocalization of eHLP and eDNA in biofilm was confirmed. The addition of eDNA (up to 1 μg ml?1) purified from Strep. intermedius, other Gram‐positive bacteria, Gram‐negative bacteria, or human KB cells into the Strep. intermedius culture increased the biofilm mass of all tested strains of Strep. intermedius, wild‐type, HLP‐downregulated strain and control strains. In contrast, the addition of eDNA (>1 μg ml?1) decreased the biofilm mass of all Strep. intermedius strains.

Conclusions

These findings demonstrated that eDNA and eHLP play crucial roles in biofilm development and its rigidity.

Significance and Impact of the Study

eDNA‐ and HLP‐targeting strategies may be applicable to novel treatments for bacterial biofilm‐related infectious diseases.  相似文献   

13.
Integrins are expressed in a highly regulated manner at the maternal‐fetal interface during implantation. However, the significance of extracellular matrix (ECM) ligands during the integrin‐mediated embryo attachment to the endometrium is not fully understood. Thus, the distribution of fibronectin in the rat uterus and blastocyst was studied at the time of implantation. Fibronectin was absent in the uterine luminal epithelial cells but was intensely expressed in the trophoblast cells and the inner cell mass suggesting that fibronectin secreted from the blastocyst may be a possible bridging ligand for the integrins expressed at the maternal‐fetal interface. An Arg‐Gly‐Asp (RGD) peptide was used to block the RGD recognition sites on integrins, and the effect on rat blastocyst attachment to Ishikawa cells was examined. There was a significant reduction in blastocyst attachment when either the blastocysts or the Ishikawa cells were pre‐incubated with the RGD‐blocking peptide. Thus, successful attachment of the embryo to the endometrium requires the interaction of integrins on both the endometrium and the blastocyst with the RGD sequence of ECM ligands, such as fibronectin. Pre‐treatment of both blastocysts and Ishikawa cells with the RGD peptide also inhibited blastocyst attachment, but not completely, suggesting that ECM bridging ligands that do not contain the RGD sequence are also involved in embryo attachment. J. Morphol. 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
Since their first introduction, stents have revolutionised the treatment of atherosclerosis; however, the development of in-stent restenosis still remains the Achilles' heel of stent deployment procedures. Computational modelling can be used as a means to model the biological response of arteries to different stent designs using mechanobiological models, whereby the mechanical environment may be used to dictate the growth and remodelling of vascular cells. Changes occurring within the arterial wall due to stent-induced mechanical injury, specifically changes within the extracellular matrix, have been postulated to be a major cause of activation of vascular smooth muscle cells and the subsequent development of in-stent restenosis. In this study, a mechanistic multi-scale mechanobiological model of in-stent restenosis using finite element models and agent-based modelling is presented, which allows quantitative evaluation of the collagen matrix turnover following stent-induced arterial injury and the subsequent development of in-stent restenosis. The model is specifically used to study the influence of stent deployment diameter and stent strut thickness on the level of in-stent restenosis. The model demonstrates that there exists a direct correlation between the stent deployment diameter and the level of in-stent restenosis. In addition, investigating the influence of stent strut thickness using the mechanobiological model reveals that thicker strut stents induce a higher level of in-stent restenosis due to a higher extent of arterial injury. The presented mechanobiological modelling framework provides a robust platform for testing hypotheses on the mechanisms underlying the development of in-stent restenosis and lends itself for use as a tool for optimisation of the mechanical parameters involved in stent design.  相似文献   

15.
Summary The adult mouse submandibular salivary gland provides a good model system to study gene regulation during normal and abnormal cell behavior because it synthesizes functionally distinct products ranging from growth factors and digestive enzymes to factors of relevance to homeostatic mechanisms. The present study describes the long-term growth and differentiation of submandibular salivary epithelial cells from adult male mice as a function of the culture substratum. Using a two-step partial dissociation procedure, it was possible to enrich for ductal cells of the granular convoluted tubules, the site of epidermal growth factor synthesis. Long-term cell growth over a period of 2 to 3 mo. with at least 3 serial passages was obtained only within three-dimensional collagen gels. Cells grew as ductal-type structures, many of which generated lumens with time in culture. Electron microscopic analysis in reference to the submandibular gland in vivo revealed enrichment for and maintenance of morphologic features of granular convoluted tubule cells. Reactivity with a keratin-specific monoclonal antibody established the epithelial nature of the cells that grew within collagen. Maintenance of cell differentiation, using immunoreactivity for epidermal growth factor as criterion, was determined by both cytochemical and biochemical approaches and was found to be dependent on the collagen matrix and hormones. Greater than 50% of the cells in primary collagen cultures contained epidermal growth factor only in the presence of testosterone and triiodothyronine. In contrast, cells initially seeded on plastic or cycled to plastic from collagen gels were virtually negative for epidermal growth factor. Biochemical analysis confirmed the presence of a protein with an apparent molecular weight of 6000 which comigrated with purified mouse epidermal growth factor. Epidermal growth factor was also present in detectable levels in Passage 1 cells. This culture system should permit assessment of whether modulation of submandibular gland ductal cell growth can be exerted via a mechanism that in itself includes epidermal growth factor and its receptor and signal transduction pathway. This work was supported by Public Health Service grant DE07766 from the National Institute of Dental Research, National Institutes of Health, Bethesda, MD.  相似文献   

16.
Proteoglycans were isolated from the extracellular matrix (ECM) of L6J1 rat myoblasts; their influence on myoblast adhesion has been studied. Proteoglycan digestion with chondroitinase AC and heparinase III, which degrade polysaccharide moieties, has revealed that chondroitin sulfate proteoglycans are a major class of myoblast extracellular matrix proteoglycans. Electrophoresis of enzymatically processed proteoglycans was used to examine their core proteins. Myoblast adhesion was suppressed by proteoglycans or a mixture of proteoglycans and a fibronectin-extracellular matrix. Myoblast adhesion to a substrate composed of fibronectin and proteoglycans is restored after the substrate was treated with chondroitinase AC. In conclusion, proteoglycans of L6J1 rat myoblast ECMs were isolated and purified. Chondroitin sulfate proteoglycans are a major class of proteoglycans. Isolated proteoglycans suppressed myoblast adhesion; the effect was mediated by polysaccharide moieties of proteoglycans.  相似文献   

17.
Thrombospondins (TSPs) are evolutionarily-conserved, secreted glycoproteins that interact with cell surfaces and extracellular matrix (ECM) and have complex roles in cell interactions. Unlike the structural components of the ECM that form networks or fibrils, TSPs are deposited into ECM as arrays of nanoscale puncta. The cellular and molecular mechanisms for the patterning of TSPs in ECM are poorly understood. In the present study, we investigated whether the mechanisms of TSP patterning in cell-derived ECM involves actin cytoskeletal pathways or TSP oligomer state. From tests of a suite of pharmacological inhibitors of small GTPases, actomyosin-based contractility, or actin microfilament integrity and dynamics, cytochalasin D and jasplakinolide treatment of cells were identified to result in altered ECM patterning of a model TSP1 trimer. The strong effect of cytochalasin D indicated that mechanisms controlling puncta patterning depend on global F-actin dynamics. Similar spatial changes were obtained with endogenous TSPs after cytochalasin D treatment, implicating physiological relevance. Under matched experimental conditions with ectopically-expressed TSPs, the magnitude of the effect was markedly lower for pentameric TSP5 and Drosophila TSP, than for trimeric TSP1 or dimeric Ciona TSPA. To distinguish between the variables of protein sequence or oligomer state, we generated novel, chimeric pentamers of TSP1. These proteins accumulated within ECM at higher levels than TSP1 trimers, yet the effect of cytochalasin D on the spatial distribution of puncta was reduced. These findings introduce a novel concept that F-actin dynamics modulate the patterning of TSPs in ECM and that TSP oligomer state is a key determinant of this process.  相似文献   

18.
The extracellular matrix of the ovoid and fusiform morphotypes of Phaeodactylum tricornutum (Bohlin) was characterized in detail. The structural and nanophysical properties were analyzed by microscopy. Of the two morphotypes, only the ovoid form secretes adhesive mucilage; light microscopy and scanning electron microscopy images showed that the mucilage was secreted from the girdle band region of the cell as cell‐substratum tethers, accumulating on the surface forming a biofilm. After 7 d, the secreted mucilage became entangled, forming adhesive strands that crisscrossed the substratum surface. In the initial secreted mucilage atomic force microscopy identified a high proportion of adhesive molecules without regular retraction curves and some modular‐like adhesive molecules, in the 7 d old biofilm, the adhesive molecules were longer with fewer adhesive events but greater adhesive strength. Chemical characterization was carried out on extracted proteins and polysaccharides. Differences in protein composition, monosaccharide composition, and linkage analysis are discussed in relation to the composition of the frustule and secreted adhesive mucilage. Polysaccharide analysis showed a broad range of monosaccharides and linkages across all fractions with idiosyncratic enrichment of particular monosaccharides and linkages in each fraction. 3‐linked Mannan was highly enriched in the cell frustule fractions indicating a major structural role, while Rhamnose and Fucose derivatives were enriched in the secreted fractions of the ovoid morphotype suggesting involvement in cell adhesion. Comparison of SDS‐PAGE of extracellular proteins showed two major bands for the ovoid morphotype and four for the fusiform morphotype of which only one appeared to be common to both morphotypes.  相似文献   

19.
The thyroid follicle, the morphofunctional unit of thyroid gland, is a spheroidal structure formed by a monolayer of polarized cells surrounding a closed cavity in which thyroglobulin accumulates. Newly isolated porcine thyroid cells reorganize into two types of structures which differ by the orientation of cell polarity: in follicle-like structures, obtained in the presence of TSH, the apical pole delineates a closed cavity and cells express most parameters characteristic of thyroid function; in inside-out follicles the apical pole is oriented towards the culture medium and cells do not express properly the thyroid function. The organization of newly formed follicles can be modified by stimulation of cell migration or by interaction of their apical poles with a new cell environment. Seeded on a hard surface (glass, plastic), cells of follicle-like structures or inside-out follicles formed in suspension migrate giving a monolayer. On the contrary, cells organized into a monolayer treated with hexamethylene bisacetamide, reorganize into follicle-like structures. Inside-out structures reoganize upon interaction of their apical poles with collagen I gel, a coherent matrix, or with a reconstituted basement membrane (RBM), a soft matrix. Overlaid with collagen I, monolayers reorganize into follicles. Embedded in collagen I or in RBM, inside-out follicles reorient their polarity giving functional follicles. On the RBM surface, cells pull on the gel and embed themselves in the soft matrix gel, finally reorienting their polarity to inside-in polarity. When comparing thyroid cells with other epithelial cell types (mammary cells, Sertoli cells), it appears that the obtention in culture of follicle-like structures, ie closed inside-in polarized cell organization, is the best way to express in culture both morphology and function of any specific epithelial tissue, the polarized monolayer in porous bottom culture chamber coming just behind.  相似文献   

20.
Studies of astronauts, experimental animals, and cells have shown that, after spaceflights, the function of the thyroid is altered by low-gravity conditions. The objective of this study was to investigate the cytoskeleton and extracellular matrix (ECM) protein synthesis of papillary thyroid cancer cells grown under zero g. We investigated alterations of ONCO-DG 1 cells exposed to simulated microgravity on a three-dimensional random-positioning machine (clinostat) for 30 min, 24 h, 48 h, 72 h, and 120 h (n=6, each group). ONCO-DG 1 cells grown under microgravity exhibited early alterations of the cytoskeleton and formed multicellular spheroids. The cytoskeleton was disintegrated, and nuclei showed morphological signs of apoptosis after 30 min. At this time, vimentin was increased. Vimentin and cytokeratin were highly disorganized, and microtubules (α–tubulin) did not display their typical radial array. After 48 h, the cytoskeletal changes were nearly reversed. The formation of multicellular spheroids continued. In parallel, the accumulation of ECM components, such as collagen types I and III, fibronectin, chondroitin sulfate, osteopontin, and CD44, increased. The levels of both transforming growth factor beta-1 (TGF-β1) and TGF-β receptor type II proteins were elevated from 24 h until 120 h clinorotation. Gene expression of TGF-β1 was clearly enhanced during culture under zero g. The amount of E-cadherin was enhanced time-dependently. We suggest that simulated weightlessness rapidly affects the cytoskeleton of papillary thyroid carcinoma cells and increases the amount of ECM proteins in a time-dependent manner.The work of Augusto Cogoli was supported by ETH Zurich, Switzerland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号