首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Picornaviruses are non-enveloped viruses that represent a large family of positive-sense single-stranded RNA viruses including a number of causative agents of many human and animal diseases such as coxsackievirus B3 (CVB3) and rhinoviruses (HRV). In this study, we performed a high-throughput screening of a compound library composed of ~6000 small molecules in search of potential picornavirus 3C protease (3Cpro) inhibitors. As results, we identified quinone analogues that effectively inhibited both CVB3 3Cpro and HRV 3Cpro with IC50 values in low micromolar range. Together with predicted binding modes of these compounds to the active site of the viral protease, it is implied that structural features of these non-peptidic inhibitors may act as useful scaffold for further anti-picornavirus drug design and development.  相似文献   

2.
Human rhinovirus 3C protease (HRV 3Cpro) is known to be a promising target for development of therapeutic agents against the common cold because of the importance of the protease in viral replication as well as its expression in a large number of serotypes. To explore non-peptidic inhibitors of HRV 3Cpro, a series of novel heteroaromatic esters was synthesized and evaluated for inhibitory activity against HRV 3Cpro, to determine the structure–activity relationships. The most potent inhibitor, 7, with a 5-bromopyridinyl group, had an IC50 value of 80 nM. In addition, the binding mode of a novel analog, 19, with the 4-hydroxyquinolinone moiety, was explored by molecular docking, suggesting a new interaction in the S1 pocket.  相似文献   

3.
Members of the Enterovirus genus of the Picornaviridae family are abundant, with common human pathogens that belong to the rhinovirus (HRV) and enterovirus (EV) species, including diverse echo-, coxsackie- and polioviruses. They cause a wide spectrum of clinical manifestations ranging from asymptomatic to severe diseases with neurological and/or cardiac manifestations. Pandemic outbreaks of EVs may be accompanied by meningitis and/or paralysis and can be fatal. However, no effective prophylaxis or antiviral treatment against most EVs is available. The EV RNA genome directs the synthesis of a single polyprotein that is autocatalytically processed into mature proteins at Gln↓Gly cleavage sites by the 3C protease (3Cpro), which has narrow, conserved substrate specificity. These cleavages are essential for virus replication, making 3Cpro an excellent target for antivirus drug development. In this study, we report the first determination of the crystal structure of 3Cpro from an enterovirus B, EV-93, a recently identified pathogen, alone and in complex with the anti-HRV molecules compound 1 (AG7404) and rupintrivir (AG7088) at resolutions of 1.9, 1.3, and 1.5 Å, respectively. The EV-93 3Cpro adopts a chymotrypsin-like fold with a canonically configured oxyanion hole and a substrate binding pocket similar to that of rhino-, coxsackie- and poliovirus 3C proteases. We show that compound 1 and rupintrivir are both active against EV-93 in infected cells and inhibit the proteolytic activity of EV-93 3Cpro in vitro. These results provide a framework for further structure-guided optimization of the tested compounds to produce antiviral drugs against a broad range of EV species.  相似文献   

4.
建立一种以EV71 3C蛋白酶为靶标的抗肠病毒药物筛选模型,并应用于小分子化合物库筛选具有抗EV71活性的化合物.从临床手足口病例标本中分离肠道病毒进行PCR鉴定及基因组测序.通过插入突变在黄色荧光YFP编码框合适位点处引入EV71 3C酶切位点,构建对3C蛋白酶敏感的报告质粒pc DNA3-m YFP,然后将其与表达3C的质粒共转293A细胞,在3C抑制剂Rupintrivir存在与否的情况下通过荧光显微镜和酶标仪检测Ex(500nm)/Em(535nm)荧光信号的变化,判断建模是否成功;利用建好的筛选模型在高通量药物筛选平台对小分子化合物库进行初筛和复筛;再利用空斑分析检测筛选出的活性化合物是否对临床分离的EV71毒株具有抑制作用.m YFP在293A细胞中表达良好,3C的表达使荧光信号下降80%,Rupintrivir的存在则几乎不影响荧光表达,说明以3C为靶位的筛选模型构建成功.经过高通量初筛和复筛从26 000多种小分子化合物中获得26种能够显著回复m YFP表达的活性化合物;空斑分析显示其中2种化合物具有较为明显的抑制EV71复制的活性.因此,我们所构建的3C-m YFP共表达系统是一种简便有效的、可用于高通量筛选抗EV71 3C~(pro)药物的筛选模型.  相似文献   

5.
The 3C proteases (3Cpro) of enterovirus 71 (EV71) is a good molecular target for drug discovery. Notably, this protease was found to possess RNA-binding activity. The regions responsible for RNA binding were classified as KFRDI (positions 82–86) and VGK (positions 154–156) in 3Cpro by mutagenesis study. Although the RNA-binding regions are structurally distinct from the catalytic site of EV71 3Cpro, mutations in the RNA-binding regions influenced 3Cpro proteolytic activity. In contrast, mutations at the catalytic site had almost no influence on RNA binding ability. We identified certain mutations within 3Cpro which abrogated both the RNA-binding activity of the expressed, recombinant, protease and the ability to rescue virus from an infectious full-length clone of EV71 (pEV71). Interestingly, mutation at position 84 from Arg(R) to Lys(K) was found to retain good RNA binding and proteolytic activity for the recombinant 3Cpro; however, no virus could be rescued when pEV71 with the R84K mutation was introduced into the infectious copy. Together, these results may provide useful information for using 3Cpro as the molecular target to develop anti-EV71 agents.The second and the third authors contributed equally to this work.  相似文献   

6.
Picornavirus infection can cause Golgi fragmentation and impose a block in the secretory pathway which reduces expression of major histocompatibility antigens at the plasma membrane and slows secretion of proinflammatory cytokines. In this study, we show that Golgi fragmentation and a block in secretion are induced by expression of foot-and-mouth disease virus (FMDV) 3Cpro and that this requires the protease activity of 3Cpro. 3Cpro caused fragmentation of early, medial, and late Golgi compartments, but the most marked effect was on early Golgi compartments, indicated by redistribution of ERGIC53 and membrin. Golgi fragments were dispersed in the cytoplasm and were able to receive a model membrane protein exported from the endoplasmic reticulum (ER). Golgi fragments were, however, unable to transfer the protein to the plasma membrane, indicating a block in intra-Golgi transport. Golgi fragmentation was coincident with a loss of microtubule organization resulting from an inhibition of microtubule regrowth from the centrosome. Inhibition of microtubule regrowth also required 3Cpro protease activity. The loss of microtubule organization induced by 3Cpro caused Golgi fragmentation, but loss of microtubule organization does not block intra-Golgi transport. It is likely that the block of intra-Golgi transport is imposed by separate actions of 3Cpro, possibly through degradation of proteins required for intra-Golgi transport.  相似文献   

7.
Messenger RNA is recruited to the eukaryotic ribosome by a complex including the eukaryotic initiation factor (eIF) 4E (the cap‐binding protein), the scaffold protein eIF4G and the RNA helicase eIF4A. To shut‐off host–cell protein synthesis, eIF4G is cleaved during picornaviral infection by a virally encoded proteinase; the structural basis of this reaction and its stimulation by eIF4E is unclear. We have structurally and biochemically investigated the interaction of purified foot‐and‐mouth disease virus (FMDV) leader proteinase (Lbpro), human rhinovirus 2 (HRV2) 2A proteinase (2Apro) and coxsackievirus B4 (CVB4) 2Apro with purified eIF4GII, eIF4E and the eIF4GII/eIF4E complex. Using nuclear magnetic resonance (NMR), we completed 13C/15N sequential backbone assignment of human eIF4GII residues 551–745 and examined their binding to murine eIF4E. eIF4GII551–745 is intrinsically unstructured and remains so when bound to eIF4E. NMR and biophysical techniques for determining stoichiometry and binding constants revealed that the papain‐like Lbpro only forms a stable complex with eIF4GII551–745 in the presence of eIF4E, with KD values in the low nanomolar range; Lbpro contacts both eIF4GII and eIF4E. Furthermore, the unrelated chymotrypsin‐like 2Apro from HRV2 and CVB4 also build a stable complex with eIF4GII/eIF4E, but with KD values in the low micromolar range. The HRV2 enzyme also forms a stable complex with eIF4E; however, none of the proteinases tested complex stably with eIF4GII alone. Thus, these three picornaviral proteinases have independently evolved to establish distinct triangular heterotrimeric protein complexes that may actively target ribosomes involved in mRNA recruitment to ensure efficient host cell shut‐off.  相似文献   

8.
Previous work has shown that several nucleoporins, including Nup62 are degraded in cells infected with human rhinovirus (HRV) and poliovirus (PV) and that this contributes to the disruption of certain nuclear transport pathways. In this study, the mechanisms underlying proteolysis of Nup62 have been investigated. Analysis of Nup62 in lysates from HRV-infected cells revealed that Nup62 was cleaved at multiple sites during viral infection. The addition of purified HRV2 2A protease (2Apro) to uninfected HeLa whole cell lysates resulted in the cleavage of Nup62, suggesting that 2Apro is a major contributor to Nup62 processing. The ability of purified 2Apro to cleave bacterially expressed and purified Nup62 demonstrated that 2Apro directly cleaves Nup62 in vitro. Site-directed mutagenesis of putative cleavage sites in Nup62 identified six different positions that are cleaved by 2Apro in vitro. This analysis revealed that 2Apro cleavage sites were located between amino acids 103 and 298 in Nup62 and suggested that the N-terminal FG-rich region of Nup62 was released from the nuclear pore complex in infected cells. Analysis of HRV- and PV-infected cells using domain-specific antibodies confirmed that this was indeed the case. These results are consistent with a model whereby PV and HRV disrupt nucleo-cytoplasmic trafficking by selectively removing FG repeat domains from a subset of nuclear pore complex proteins.  相似文献   

9.
The global spread of enteroviruses (EVs) has become more frequent, severe and life-threatening. Intereron (IFN) I has been proved to control EVs by regulating IFN-stimulated genes (ISG) expression. 20-50-oligoadenylate synthetases 3 (OAS3) is an important ISG in the OAS/RNase L antiviral system. The relationship between OAS3 and EVs is still unclear. Here, we reveal that OAS3, superior to OAS1 and OAS2, significantly inhibited EV71 replication in vitro. However, EV71 utilized autologous 3C protease (3Cpro) to cleave intracellular OAS3 and enhance viral replication. Rupintrivir, a human rhinovirus 3C protease inhibitor, completely abolished the cleavage of EV71 3Cpro on OAS3. And the proteolytically deficient mutants H40G, E71A, and C147G of EV71 3Cpro also lost the ability of OAS3 cleavage. Mechanistically, the Q982-G983 motif in C-terminal of OAS3 was identified as a crucial 3Cpro cutting site. Further investigation indicated that OAS3 inhibited not only EV71 but also Coxsackievirus B3 (CVB3), Coxsackievirus A16 (CA16), Enterovirus D68 (EVD68), and Coxsackievirus A6 (CA6) subtypes. Notably, unlike other four subtypes, CA16 3Cpro could not cleave OAS3. Two key amino acids variation Ile36 and Val86 in CA16 3Cpro might result in weak and delayed virus replication of CA16 because of failure of OAS and 3AB cleavage. Our works elucidate the broad anti-EVs function of OAS3, and illuminate a novel mechanism by which EV71 use 3Cpro to escape the antiviral effect of OAS3. These findings can be an important entry point for developing novel therapeutic strategies for multiple EVs infection.  相似文献   

10.
11.
12.
This paper presents result of quantitative structure–activity relationships (QSAR) study realized with the PRECLAV, omega, brood and MOPAC software. The dependent property is the inhibitory activity against human carbonic anhydrase mitochondrial isoforms VA and VB. The calibration set includes 17 aromatic/heterocyclic sulphonamides incorporating phenacetyl, pyridylacetyl and thienylacetyl tails with three clinically used CA inhibitors namely AZA, TPM and ZNS molecules. The prediction set contains 24 others not yet synthesized substituted aromatic/heterocyclic sulphonamides having unknown observed values of activity. In the presence of prediction set, the predictive quality of QSAR of hCA VA (r2?=?0.9789, F?=?418.115, r2CV?=?0.9689) and hCA VB (r2?=?0.9768; F?=?379.717; r2CV?=?0.9637) is large. The obtained models suggest a slightly different inhibition mechanism for the two isoforms. Large percentage, in weight, of CONH molecular fragments seems to be favourable to inhibitory activity of both VA and VB.  相似文献   

13.
Identification of novel cellular proteins as substrates to viral proteases would provide a new insight into the mechanism of cell–virus interplay. Eight nuclear proteins as potential targets for enterovirus 71 (EV71) 3C protease (3Cpro) cleavages were identified by 2D electrophoresis and MALDI-TOF analysis. Of these proteins, CstF-64, which is a critical factor for 3′ pre-mRNA processing in a cell nucleus, was selected for further study. A time-course study to monitor the expression levels of CstF-64 in EV71-infected cells also revealed that the reduction of CstF-64 during virus infection was correlated with the production of viral 3Cpro. CstF-64 was cleaved in vitro by 3Cpro but neither by mutant 3Cpro (in which the catalytic site was inactivated) nor by another EV71 protease 2Apro. Serial mutagenesis was performed in CstF-64, revealing that the 3Cpro cleavage sites are located at position 251 in the N-terminal P/G-rich domain and at multiple positions close to the C-terminus of CstF-64 (around position 500). An accumulation of unprocessed pre-mRNA and the depression of mature mRNA were observed in EV71-infected cells. An in vitro assay revealed the inhibition of the 3′-end pre-mRNA processing and polyadenylation in 3Cpro-treated nuclear extract, and this impairment was rescued by adding purified recombinant CstF-64 protein. In summing up the above results, we suggest that 3Cpro cleavage inactivates CstF-64 and impairs the host cell polyadenylation in vitro, as well as in virus-infected cells. This finding is, to our knowledge, the first to demonstrate that a picornavirus protein affects the polyadenylation of host mRNA.  相似文献   

14.
Crystal structure of human enterovirus 71 3C protease   总被引:2,自引:0,他引:2  
Human enterovirus 71 (EV71) is the major pathogen that causes hand, foot and mouth disease that particularly affects young children. Growing hand, foot and mouth disease outbreaks were observed worldwide in recent years and caused devastating losses both economically and politically. However, vaccines or effective drugs are unavailable to date. The genome of EV71 consists of a positive sense, single-stranded RNA of ∼ 7400 bp, encoding a large precursor polyprotein that requires proteolytic processing to generate mature viral proteins. The proteolytic processing mainly depends on EV71 3C protease (3Cpro) that possesses both proteolysis and RNA binding activities, which enable the protease to perform multiple tasks in viral replication and pathogen-host interactions. The central roles played by EV71 3Cpro make it an appealing target for antiviral drug development. We determined the first crystal structure of EV71 3Cpro and analyzed its enzymatic activity. The crystal structure shows that EV71 3Cpro has a typical chymotrypsin-like fold that is common in picornaviral 3Cpro. Strikingly, we found an important surface loop, also denoted as β-ribbon, which adopts a novel open conformation in EV71 3Cpro. We identified two important residues located at the base of the β-ribbon, Gly123 and His133, which form hinges that govern the intrinsic flexibility of the ribbon. Structure-guided mutagenesis studies revealed that the hinge residues are important to EV71 3Cpro proteolytic activities. In summary, our work provides the first structural insight into EV71 3Cpro, including a mobile β-ribbon, which is relevant to the proteolytic mechanism. Our data also provides a framework for structure-guided inhibitor design against EV71 3Cpro.  相似文献   

15.
Chagas' disease is a parasitic infection widely distributed throughout Latin America, with devastating consequences in terms of human morbidity and mortality. Cruzain, the major cysteine protease from Trypanosoma cruzi, is an attractive target for antitrypanosomal chemotherapy. In the present work, classical two-dimensional quantitative structure-activity relationships (2D QSAR) and hologram QSAR (HQSAR) studies were performed on a training set of 45 thiosemicarbazone and semicarbazone derivatives as inhibitors of T. cruzi cruzain. Significant statistical models (HQSAR, q2 = 0.75 and r2 = 0.96; classical QSAR, q2 = 0.72 and r2 = 0.83) were obtained, indicating their consistency for untested compounds. The models were then used to evaluate an external test set containing 10 compounds which were not included in the training set, and the predicted values were in good agreement with the experimental results (HQSAR, = 0.95; classical QSAR, = 0.91), indicating the existence of complementary between the two ligand-based drug design techniques.  相似文献   

16.
Summary We have devised a method whereby any mutagenized cloned DNA from Bacillus subtilis can be reinserted at the original site on the B. subtilis chromosome. The procedure depends on the accuracy and high frequency of homologous recombination between the B. subtilis chromosome and the DNA taken up by the cell. The method makes use of two drug resistance selection markers (the chloramphenicol resistance gene and the neomycin resistance gene) and a marker gene which functions as a catalyst. The utility of the method has been demonstrated using leuB and pro of B. subtilis as target gene and catalyst, respectively, and mutations such as leuB: : cat, leuB , and pro: : neo constructed in vitro on the cloned DNA fragments. Transformation in sequential steps as (leuB + pro+)(leuB: : cat pro +) (leuB pro: : neo)(leuB pro +) resulted in a leuB single mutant without affecting other regions of the B. subtilis chromosome (gene-directed mutagenesis). We also demonstrate that other single mutations such as metD and pro , as well as the double mutation leuB pro can be introduced by the same procedure. In principle, true isogenies with multiple mutations can be constructed by the method described in this paper. Furthermore, the procedure should be generally applicable to any organisms in which homologous recombination is proficient.  相似文献   

17.
A gene encoding the 3BC of human enterovirus 71 (EV71) was cloned and inserted into a derivative of plasmid pET-32a(+) driven by T7 promoter. The expressed 3C protease (3Cpro) autocatalytically cleaved itself from the recombinant protein Trx-3BC and the mature 3Cpro partitioned in the soluble fraction of bacterial lysate. The 13-amino-acid peptide substrates with the junction of 3B/3C were used to verify the proteolysis activity of the purified 3Cpro. The EV71 3Cpro had a Km value of 63 μM (measured by a continuous fluorescence assay). The other solid-phase activity assay of the EV71 3Cpro was developed using HPLC to analyze the proteolytic products. The combination of two activity assays contributes to promote the identification of the specific inhibitors targeted to the EV71 3Cpro.  相似文献   

18.
Gallic acid and its derivatives exhibit a diverse range of biological applications, including anti-cancer activity. In this work, a data-set of forty-six molecules containing the galloyl moiety, and known to show anticarcinogenic activity against the MCF-7 human cancer cell line, have been chosen for pharmacophore modeling and 3D-Quantitative Structure Activity Relationship (3D-QSAR) studies. A tree-based partitioning algorithm has been used to find common pharmacophore hypotheses. The QSAR model was generated for three, four, and five featured hypotheses with increasing PLS factors and analyzed. Results for five featured hypotheses with three acceptors and two aromatic rings were the best out of all the possible combinations. On analyzing the results, the most robust (R2?=?.8990) hypothesis with a good predictive power (Q2?=?.7049) was found to be AAARR.35. A good external validation (R2 = .6109) was also obtained. In order to design new MCF-7 inhibitors, the QSAR model was further utilized in pharmacophore-based virtual screening of a large database. The predicted IC50 values of the identified potential MCF-7 inhibitors were found to lie in the micromolar range. Molecular docking into the colchicine domain of tubulin was performed in order to examine one of the probable mechanisms. This revealed various interactions between the ligand and the active site protein residues. The present study is expected to provide an effective guide for methodical development of potent MCF-7 inhibitors.  相似文献   

19.
PurposeTo train and validate a predictive model of mortality for hospitalized COVID-19 patients based on lung densitometry.MethodsTwo-hundred-fifty-one patients with respiratory symptoms underwent CT few days after hospitalization. “Aerated” (AV), “consolidated” (CV) and “intermediate” (IV) lung sub-volumes were quantified by an operator-independent method based on individual HU maximum gradient recognition. AV, CV, IV, CV/AV, IV/AV, and HU of the first peak position were extracted. Relevant clinical parameters were prospectively collected. The population was composed by training (n = 166) and validation (n = 85) consecutive cohorts, and backward multi-variate logistic regression was applied on the training group to build a CT_model. Similarly, models including only clinical parameters (CLIN_model) and both CT/clinical parameters (COMB_model) were developed. Model’s performances were assessed by goodness-of-fit (H&L-test), calibration and discrimination. Model’s performances were tested in the validation group.ResultsForty-three patients died (25/18 in training/validation). CT_model included AVmax (i.e. maximum AV between lungs), CV and CV/AE, while CLIN_model included random glycemia, C-reactive protein and biological drugs (protective). Goodness-of-fit and discrimination were similar (H&L:0.70 vs 0.80; AUC:0.80 vs 0.80). COMB_model including AVmax, CV, CV/AE, random glycemia, biological drugs and active cancer, outperformed both models (H&L:0.91; AUC:0.89, 95%CI:0.82–0.93). All models showed good calibration (R2:0.77–0.97). Despite several patient's characteristics were different between training and validation cohorts, performances in the validation cohort confirmed good calibration (R2:0–70-0.81) and discrimination for CT_model/COMB_model (AUC:0.72/0.76), while CLIN_model performed worse (AUC:0.64).ConclusionsFew automatically extracted densitometry parameters with clear functional meaning predicted mortality of COVID-19 patients. Combined with clinical features, the resulting predictive model showed higher discrimination/calibration.  相似文献   

20.
The oncolytic picornavirus Seneca Valley Virus (SVV-001) demonstrates anti-tumor activity in models of small cell lung cancer (SCLC), but may ultimately need to be combined with cytotoxic therapies to improve responses observed in patients. Combining SVV-001 virotherapy with a peptide prodrug activated by the viral protease 3Cpro is a novel strategy that may increase the therapeutic potential of SVV-001. Using recombinant SVV-001 3Cpro, we measured cleavage kinetics of predicted SVV-001 3Cpro substrates. An efficient substrate, L/VP4 (kcat/KM = 1932 ± 183 M-1s-1), was further optimized by a P2’ N→P substitution yielding L/VP4.1 (kcat/KM = 17446 ± 2203 M-1s-1). We also determined essential substrate amino acids by sequential N-terminal deletion and substitution of amino acids found in other picornavirus genera. A peptide corresponding to the L/VP4.1 substrate was selectively cleaved by SVV-001 3Cpro in vitro and was stable in human plasma. These data define an optimized peptide substrate for SVV-001 3Cpro, with direct implications for anti-cancer therapeutic development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号