首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Cerutti H  Ma X  Msanne J  Repas T 《Eukaryotic cell》2011,10(9):1164-1172
Algae are a large group of aquatic, typically photosynthetic, eukaryotes that include species from very diverse phylogenetic lineages, from those similar to land plants to those related to protist parasites. The recent sequencing of several algal genomes has provided insights into the great complexity of these organisms. Genomic information has also emphasized our lack of knowledge of the functions of many predicted genes, as well as the gene regulatory mechanisms in algae. Core components of the machinery for RNA-mediated silencing show widespread distribution among algal lineages, but they also seem to have been lost entirely from several species with relatively small nuclear genomes. Complex sets of endogenous small RNAs, including candidate microRNAs and small interfering RNAs, have now been identified by high-throughput sequencing in green, red, and brown algae. However, the natural roles of RNA-mediated silencing in algal biology remain poorly understood. Limited evidence suggests that small RNAs may function, in different algae, in defense mechanisms against transposon mobilization, in responses to nutrient deprivation and, possibly, in the regulation of recently evolved developmental processes. From a practical perspective, RNA interference (RNAi) is becoming a promising tool for assessing gene function by sequence-specific knockdown. Transient gene silencing, triggered with exogenously synthesized nucleic acids, and/or stable gene repression, involving genome-integrated transgenes, have been achieved in green algae, diatoms, yellow-green algae, and euglenoids. The development of RNAi technology in conjunction with system level "omics" approaches may provide the tools needed to advance our understanding of algal physiological and metabolic processes.  相似文献   

3.
《Genomics》2020,112(5):3677-3686
Mutations in CYP2R1 and CYP27A1 involved in the conversion of Cholecalciferol into Calcidiol were associated with the impaired 25-hydroxylase activity therefore affecting the Vitamin D metabolism. Hence, this study attempted to understand the influence of genetic variations at the sequence and structural level via computational approach. The non-synonymous mutations retrieved from dbSNP database were assessed for their pathogenicity, stability as well as conservancy using various computational tools. The above analysis predicted 11/260 and 35/489 non-synonymous mutations to be deleterious in CYP2R1 and CYP27A1 genes respectively. Native and mutant forms of the corresponding proteins were modeled. Further, interacting native and mutant proteins with cholecalciferol showed difference in hydrogen bonds, hydrophobic bonds and their binding affinities suggesting the possible influence of these mutations in their function. Also, expression of these genes in various disease conditions was investigated using GEO datasets which predicted that there is a differential expression in cancer and arthritis.  相似文献   

4.
Single-nucleotide polymorphisms (SNPs) play a major role in the understanding of the genetic basis of many complex human diseases. Also, the genetics of human phenotype variation could be understood by knowing the functions of these SNPs. It is still a major challenge to identify the functional SNPs in a disease-related gene. In this work, we have analyzed the genetic variation that can alter the expression and the function of the BRCA1 gene using computational methods. Of the total 477 SNPs, 65 were found to be nonsynonymous (ns) SNPs. Among the 14 SNPs in the untranslated region, 4 were found in the 5' and 10 were found in the 3' untranslated region (UTR). It was found that 16.9% of the nsSNPs were damaging, by both the SIFT and the PolyPhen servers. The UTR Resource tool suggested that 2 of 4 SNPs in the 5' UTR and 3 of 10 SNPs in the 3' UTR might change the protein expression levels. We identified major mutations from proline to serine at positions 1776 and 1812 of the native protein of the BRCA1 gene. From a comparison of the stabilizing residues of the native and mutant proteins, we propose that an nsSNP (rs1800751) could be an important candidate for the breast cancer caused by the BRCA1 gene.  相似文献   

5.
6.
A gene, presumably involved in spermatogenesis, was identified and characterized by using cDNA microarray. Hybridization intensity was 2.13 fold higher in adult testis than that in fetal testis.The full length of this gene was 4288bp and it encoded a 578 amino acid protein. Conserved structure and amino acid sequence analysis revealed that the protein contained 1 Thif-domain, 2 UBACT-domains,and a functional active site cysteine lay upstream of UBACT domain, all of them also existed in ubiquitin-activating enzyme E1 and E1 like proteins. So we named this gene as a novel ubiquitin-activating enzyme E1 like gene (nUBE1L). Expression profile showed that nUBE1L was predominantly expressed in testis.Comparison of the expression of nUBE1L in different developmental stages of testis indicated that it was highly expressed in adult testis. In conclusion, nUBE1L is a novel human E1 like gene highly expressed inadult testis, which plays key role in ubiquitin system, and accordingly influences spermatogenesis and male fertility.  相似文献   

7.
8.
9.
10.
A series of nucleobase-modified siRNA duplexes containing "rare" nucleosides, 2-thiouridine (s(2)U), pseudouridine (Psi), and dihydrouridine (D), were evaluated for their thermodynamic stability and gene silencing activity. The duplexes with modified units at terminal positions exhibited similar stability as the nonmodified reference. Introduction of the s(2)U or Psi units into the central part of the antisense strand resulted in duplexes with higher melting temperatures (Tm). In contrary, D unit similarly like wobble base pair led to the less stable duplexes (DeltaTm 3.9 and 6.6 degrees C, respectively). Gene-silencing activity of siRNA duplexes directed toward enhanced green fluorescent protein or beta-site APP cleaving enzyme was tested in a dual fluorescence assay. The duplexes with s(2)U and Psi units at their 3'-ends and with a D unit at their 5'-ends (with respect to the guide strands) were the most potent gene expression inhibitors. Duplexes with s(2)U and Psi units at their 5'-ends were by 50% less active than the nonmodified counterpart. Those containing a D unit or wobble base pair in the central domain had the lowest Tm, disturbed the A-type helical structure, and had more than three times lower activity than their nonmodified congener. Activity of siRNA containing the wobble base pair could be rescued by placing the thio-nucleoside at the position 3'-adjacent to the mutation site. Thermally stable siRNA molecules containing several s(2)U units in the antisense strand were biologically as potent as their native counterparts. The present results provide a new chemical tool for modulation of siRNA gene-silencing activity.  相似文献   

11.
12.
Peptidomics is a challenging field in which to create a link between genomic information and biological function through biochemical analysis of expressed peptides, including precise identification of post-translational modifications and proteolytic processing. We found that secreted peptides in Arabidopsis plants diffuse into the medium of whole-plant submerged cultures, and can be effectively identified by o- chlorophenol extraction followed by LC-MS analysis. Using this system, we first confirmed that a 12-amino-acid mature CLE44 peptide accumulated at a considerable level in the culture medium of transgenic plants overexpressing CLE44 . Next, using an in silico approach, we identified a novel gene family encoding small secreted peptides that exhibit significant sequence similarity within the C-terminal short conserved domain. We determined that the mature peptide encoded by At1g47485 , a member of this gene family, is a 15-amino-acid peptide containing two hydroxyproline residues derived from the conserved domain. This peptide, which we have named CEP1, is mainly expressed in the lateral root primordia and, when overexpressed or externally applied, significantly arrests root growth. CEP1 is a candidate for a novel peptide plant hormone.  相似文献   

13.
EPS8 codes for a protein essential in Ras to Rac signaling leading to actin remodeling. Three genes highly homologous to EPS8 were discovered, thereby defining a novel gene family. Here, we report the genomic structure of EPS8 and the EPS8-related genes in human and mouse. We performed BLASTN searches against the Celera Human Genome and Mouse Fragments Database. The mouse fragments were manually assembled, and the organization of both human and mouse genes was reconstructed. The gene structures in Celera annotations of the human and mouse genomes were compared to outline correspondences and divergences. We also compared the EPS8 family gene structures predicted by Celera with those predicted by NCBI. Moreover, we performed a virtual analysis of the expression of the EPS8 gene family members by using the SAGEmap Database in NCBI. Finally, we analyzed the domain organization of the gene products and their evolutionary conservation to define novel putative domains, thereby helping to predict novel modality of action for the members of this gene family. The data obtained will be instrumental in directing further experimental functional characterization of these genes.  相似文献   

14.
15.
Kallikreins are serine proteases that catalyze the release of kinins and other vasoactive peptides. Previously, we have studied one tissue-specific (H. Yu et al., 1996, J. Am. Soc. Nephrol. 7: 2559-2564) and one plasma-specific (H. Yu et al., 1998, Hypertension 31: 906-911) human kallikrein gene in end-stage renal disease (ESRD). Short sequence repeat polymorphisms for the human plasma kallikrein gene (KLKB1; previously known as KLK3) on chromosome 4 were associated with ESRD in an African American study population. This study of KLKB1 in ESRD has been extended by determining the genomic structure of KLKB1 and searching for allelic variants that may be associated with ESRD. Exon-spanning PCR primer sets were identified by serial testing of primer pairs designed from KLKB1 cDNA sequence and DNA sequencing of PCR products. Like the rat plasma kallikrein gene and the closely related human factor XI gene, the human KLKB1 gene contains 15 exons and 14 introns. The longest intron, F, is almost 12 kb long. The total length of the gene is approximately 30 kb. Sequence of the 5'-proximal promoter region of KLKB1 was obtained by shotgun cloning of genomic fragments from a bacterial artificial clone containing the KLKB1 gene, followed by screening of the clones using exon 1-specific probes. Primers flanking the exons and 5'-proximal promoter region were used to screen for allelic variants in the genomic DNA from ESRD patients and controls using the single-strand conformation polymorphism technique. We identified 12 allelic variants in the 5'-proximal promoter and 7 exons. Of note were a common polymorphism (30% of the population) at position 521 of KLKB1 cDNA, which leads to the replacement of asparagine with a serine at position 124 in the heavy chain of the A2 domain of the protein. In addition, an A716C polymorphism in exon 7 resulting in the amino acid change H189P in the A3 domain of the heavy chain was observed in 5 patients belonging to 3 ESRD families. A third polymorphism in the coding sequence was a C699A shift that caused an amino acid change, H183Q. This allele was observed in 8 cases from 6 ESRD families but was not found in any control DNAs. Individually or combined, the allelic variants observed are not statistically associated with ESRD, though in several cases (e.g., H183Q) the small number of people in the population carrying these alleles limits our ability to statistically test for significant association with ESRD. Two new CA/GT repeat polymorphic markers, designated KLK3f and KLK3g, that have heterozygosities of 0.65 and 0.84, respectively, were identified within introns M and N. Analysis using the relative predispositional effect technique indicated that the frequencies of alleles 4 and 8 of KLK3f and allele 8 of KLK3g were significantly different between controls and ESRD cases. They accounted for 0.226, 0.096, and 0.313, respectively, in the probands of 166 ESRD families compared to 0.172, 0.066, and 0.244 in 139 healthy race-matched controls (allele P and total P < 0.05 for all three alleles). Therefore, although polymorphisms in the coding and 5'-proximal promoter of KLKB1 show no statistically significant association with ESRD in African Americans, there is still evidence for association of this part of chromosome 4 with ESRD. This observation suggests that other sequences within or near KLKB1, or another gene nearby, may contribute to ESRD susceptibility.  相似文献   

16.
The human infectious disease become of the great importance for Health Welfare. The infectious diseases mortality rate reaches one third of total mortality among 51 million patients died annually. The genetic factors seem to be most responsible for potency of human body to withstand to infections, caused by a variety of causative agents. The detection of the coincident factors and understanding the mechanisms of formation of susceptibility and resistance to infectious agents appeared to be important aspects for development of the new methods of prevention and treatment the infectious diseases. In inbred mice the natural resistance to infections, caused by Mycobacterium bovis, Mycobacterium avium, Mycobacterium lepraemurium, Leishmania donovani and Salmonella typhimurium is controlled by gene Nrampl (natural resistance associated macrophage protein gene). The gene codes for integral membrane protein, expressed by phagocytes. Protein is localized in the endosomal/lysosomal compartment of the silent macrophage, being recruited to the membrane of the phagosome containing particles under phagocytosis. This function is to transfer bivalent cations of metals from phagosome inward macrophage, that appears to affect negatively on destiny of microbes consumed. The human homologue of the Nrampl gene, denoted as NRAMP1, is situated on human chromosome 2q35. The gene Nrampl consists of 15 exones of different spread disparted by intrones of various sizes. Several polymorphous variants of the gene are described. The experimental presuppositions to more extensive investigation of the role of the gene NRAMPl in development of human pathology are pointed out.  相似文献   

17.
Recombinant human monoclonal antibodies have become important protein-based therapeutics for the treatment of various diseases. The antibody structure is complex, consisting of beta-sheet rich domains stabilized by multiple disulfide bridges. The dimerization of the C(H)3 domain in the constant region of the heavy chain plays a pivotal role in the assembly of an antibody. This domain contains a single buried, highly conserved disulfide bond. This disulfide bond was not required for dimerization, since a recombinant human C(H)3 domain, even in the reduced state, existed as a dimer. Spectroscopic analyses showed that the secondary and tertiary structures of reduced and oxidized C(H)3 dimer were similar, but differences were observed. The reduced C(H)3 dimer was less stable than the oxidized form to denaturation by guanidinium chloride (GdmCl), pH, or heat. Equilibrium sedimentation revealed that the reduced dimer dissociated at lower GdmCl concentration than the oxidized form. This implies that the disulfide bond shifts the monomer-dimer equilibrium. Interestingly, the dimer-monomer dissociation transition occurred at lower GdmCl concentration than the unfolding transition. Thus, disulfide bond formation in the human C(H)3 domain is important for stability and dimerization. Here we show the importance of the role played by the disulfide bond and how it affects the stability and monomer-dimer equilibrium of the human C(H)3 domain. Hence, these results may have implications for the stability of the intact antibody.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号