首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pandinin 2 (Pin2) is an alpha-helical polycationic peptide, identified and characterized from venom of the African scorpion Pandinus imperator with high antimicrobial activity against Gram-positive bacteria and less active against Gram-negative bacteria, however it has demonstrated strong hemolytic activity against sheep red blood cells. In the chemically synthesized Pin2GVG analog, the GVG motif grants it low hemolytic activity while keeping its antimicrobial activity. In this work, we performed 12 μs all-atom molecular dynamics simulation of the antimicrobial peptides (AMPs) Pin2 and Pin2GVG to explore their adsorption mechanism and the role of their constituent amino acid residues when interacting with pure POPC and pure POPG membrane bilayers. Starting from an α-helical conformation, both AMPs are attracted at different rates to the POPC and POPG bilayer surfaces due to the electrostatic interaction between the positively charged amino acid residues and the charged moieties of the membranes. Since POPG is an anionic membrane, the PAMs adhesion is stronger to the POPG membrane than to the POPC membrane and they are stabilized more rapidly. This study reveals that, before the insertion begins, Pin2 and Pin2GVG remained partially folded in the POPC surface during the first 300 and 600 ns, respectively, while they are mostly unfolded in the POPG surface during most of the simulation time. The unfolded structures provide for a large number of intermolecular hydrogen bonds and stronger electrostatic interactions with the POPG surface. The results show that the aromatic residues at the N-terminus of Pin2 initiate the insertion process in both POPC and POPG bilayers. As for Pin2GVG in POPC the C-terminus residues seem to initiate the insertion process while in POPG this process seems to be slowed down due to a strong electrostatic attraction. The membrane conformational effects upon PAMs binding are measured in terms of the area per lipid and the contact surface area. Several replicas of the systems lead to the same observations.  相似文献   

2.
Plasma membrane of each micro-organism has a unique set of lipid composition as a consequence of the environmental adaptation or a response to exposure to antimicrobial peptides (AMPs) as antibiotic agents. Understanding the relationship between lipid composition and action of antimicrobial peptides or considering how different lipid bilayers respond to AMPs may help us design more effective peptide drugs in the future. In this contribution, we intend to elucidate how two currently used membrane models, namely palmitoyl-oleoyl-phosphtidylglycerol (POPG) and 1-palmitoyl-oleoyl-glycero-phosphocholine (POPC), respond to antimicrobial peptide Piscidin-1 (Pis-1).The computed density profile of the peptide as it moves from the bulk solvent toward the membrane core suggests that Pis-1 penetrates into the POPG bilayer less than the POPC membrane. Furthermore, we showed that the two model membranes used in this study have different behavior in the presence of Pis-1. Hence, we suggest that membrane composition could be an important factor in determining lytic ability of peptide drugs to kill a unique bacterial species.

An animated interactive 3D complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:37  相似文献   

3.
Anoplin, a cationic decapeptide amide GLLKRIKTLL‐NH2 derived from venom sac of the solitary wasp Anoplius samariensis has been investigated through Molecular Dynamics. The wild‐type (WT) and four isoforms were simulated both in water and in the membrane‐mimicking solvent trifluoroethanol (TFE). In water all the investigated species, found to be in rapid equilibrium between different conformational states, can be considered as unfolded. On the other hand, in TFE all the systems enhance their rigidity and, in general, show α‐helix as the main folded conformation. Interestingly, a semi‐quantitative thermodynamic analysis has suggested that the folding driving force is not always the same being in some cases (e.g., the WT Anoplin) of entropic nature and in other cases of energetic nature. © 2015 Wiley Periodicals, Inc. Biopolymers 103: 692–701, 2015.  相似文献   

4.
Piscidin 1 (Pis‐1) has a high broad‐spectrum activity against bacteria, fungi, and viruses but it also has a moderate hemolytic activities. To improve the antibacterial activity and to reduce toxicity, mutants Pis‐1AA (G8A/G13A double mutant) and Pis‐1PG (G8P mutant) have been designed based on the crystal structure of Pis‐1. Eighteen independent molecular dynamics (MD) simulations of Pis‐1 and its mutants with membranes are conducted in this article. Furthermore, 60 independent MD simulations of three peptides in water box have also been discussed for comparison. The results indicate that the unfolding process starts at the middle of the peptide. Pis‐1 disrupts easily in the region of Val10‐Lys14. Pis‐1PG has a flexible N‐terminal region, and the interaction between N‐terminal and C‐terminal is very weak. Pis‐1AA has the most stable helical structure. In addition, percentage of native contacts and hydrogen bonds analysis are also performed. Lipid‐peptide interaction analysis suggests that Pis‐1 and Pis‐1AA has a stronger interaction with the zwitterionic dioleoylphosphatidylcholine (DOPC) lipid bilayer than Pis‐1PG. When compared with the results of peptide with membrane, peptides are unstable and unfolding quickly in water solution. Our results are applicable in examining diversities on hemolytic, antibacterial, and selectivity of antimicrobial peptides. © 2012 Wiley Periodicals, Inc. Biopolymers 97:998–1009, 2012.  相似文献   

5.
We investigated the structural determinants of the stability of a designed beta-hairpin containing a natural hydrophobic cluster from the protein GB1 and a D-Pro-Gly turn forming sequence. The results of our simulations shed light on the factors leading to an ordered secondary structure in a model peptide: in particular, the importance of the so-called diagonal interactions in forming a stable hydrophobic nucleus in the beta-hairpin, together with the more obvious lateral interactions, is examined. With the use of long timescale MD simulations in explicit water, we show the role of diagonal interactions in driving the peptide to the correct folded structure (formation of the hydrophobic core with Trp 2, Tyr 4, and Phe 9 in the first stages of refolding) and in keeping it in the ensemble of folded conformations. The combination of the stabilizing effects of the D-Pro-Gly turn sequence and of the hydrophobic nucleus formation thus favors the attainment of an ordered secondary structure compatible with the one determined experimentally. Moreover, our data underline the importance of the juxtapositions of the side chains of amino acids not directly facing each other in the three-dimensional structure. The combination of these interactions forces the peptide to sample a nonrandom portion of the conformational space, as can be seen in the rapid collapse to an ordered structure in the refolding simulation, and shows that the unfolded state can be closely correlated to the folded ensemble of structures, at least in the case of small model peptides.  相似文献   

6.
7.
The conformational spaces of five oligomers of tetrahydrofuran-based carbopeptoids in chloroform and dimethyl sulfoxide were investigated through nine molecular dynamics simulations. Prompted by nuclear magnetic resonance experiments that indicated various stable folds for some but not all of these carbopeptoids, their folding behaviour was investigated as a function of stereochemistry, chain length and solvent. The conformational distributions of these molecules were analysed in terms of occurrence of hydrogen bonds, backbone torsional-angle distributions, conformational clustering and solute configurational entropy. While a cis-linkage across the tetrahydrofuran ring favours right-handed helical structures, a trans-linkage results in a larger conformational variability. Intra-solute hydrogen bonding is reduced with increasing chain length and with increasing solvent polarity. Solute configurational entropies confirm the picture obtained: they are smaller for cis- than for trans-linked peptides, for chloroform than for dimethyl sulfoxide as solvent and for shorter peptide chains. The simulations provide an atomic picture of molecular conformational variability that is consistent with the available experimental data.  相似文献   

8.
Colombo G  Roccatano D  Mark AE 《Proteins》2002,46(4):380-392
The dynamics of the three-stranded beta-sheet peptide Betanova has been studied at four different temperatures (280, 300, 350, and 450 K by molecular dynamics simulation techniques, in explicit water. Two 20-ns simulations at 280 K indicate that the peptide remains very flexible under "folding" conditions sampling a range of conformations that together satisfy the nuclear magnetic resonance (NMR)-derived experimental constraints. Two simulations at 300 K (above the experimental folding temperature) of 20 ns each show partial formation of "native"-like structure, which also satisfies most of the NOE constraints at 280 K. At higher temperature, the presence of compact states, in which a series of hydrophobic contacts remain present, are observed. This is consistent with experimental observations regarding the role of hydrophobic contacts in determining the peptide's stability and in initiating the formation of turns and loops. A set of different structures is shown to satisfy NMR-derived distance restraints and a possible mechanism for the folding of the peptide into the NMR-determined structure is proposed.  相似文献   

9.
Replica exchange molecular dynamics (RexMD) simulations are frequently used for studying structure formation and dynamics of peptides and proteins. A significant drawback of standard temperature RexMD is, however, the rapid increase of the replica number with increasing system size to cover a desired temperature range. A recently developed Hamiltonian RexMD method has been used to study folding of the Trp‐cage protein. It employs a biasing potential that lowers the backbone dihedral barriers and promotes peptide backbone transitions along the replica coordinate. In two independent applications of the biasing potential RexMD method including explicit solvent and starting from a completely unfolded structure the formation of near‐native conformations was observed after 30–40 ns simulation time. The conformation representing the most populated cluster at the final simulation stage had a backbone root mean square deviation of ~1.3 Å from the experimental structure. This was achieved with a very modest number of five replicas making it well suited for peptide and protein folding and refinement studies including explicit solvent. In contrast, during five independent continuous 70 ns molecular dynamics simulations formation of collapsed states but no near native structure formation was observed. The simulations predict a largely collapsed state with a significant helical propensity for the helical domain of the Trp‐cage protein already in the unfolded state. Hydrogen bonded bridging water molecules were identified that could play an active role by stabilizing the arrangement of the helical domain with respect to the rest of the chain already in intermediate states of the protein. Proteins 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

10.
铰链结构,又称铰链区或转角,是部分抗菌肽序列中存在的一种特殊结构。但目前抗菌肽结构的研究多集中于标准的α-螺旋和β-折叠二级结构,对于铰链结构及其作用总结较少。铰链结构对抗菌肽生物活性有重要影响,主要原因是铰链结构能够提高抗菌肽的结构灵活性,促进其对细菌细胞膜的破坏作用或与胞内作用靶点的结合效率,进而提高抗菌肽的抗菌活性。同时,降低的抗菌肽结构刚性,消减了抗菌肽对真核细胞的毒性。文中结合了笔者课题组相关工作,就铰链结构特点、对抗菌肽生物活性的影响以及在抗菌肽分子设计方面的应用进行了综述,以期为新型抗菌肽的设计和开发提供参考。  相似文献   

11.
Antimicrobial peptides (AMPs), with their extraordinary properties, such as broad-spectrum activity, rapid action and difficult development of resistance, have become promising molecules as new antibiotics. Despite their various mechanisms of action, the interaction of AMPs with the bacterial cell membrane is the key step for their mode of action. Moreover, it is generally accepted that the membrane is the primary target of most AMPs, and the interaction between AMPs and eukaryotic cell membranes (causing toxicity to host cells) limits their clinical application. Therefore, researchers are engaged in reforming or de novo designing AMPs as a ‘single-edged sword’ that contains high antimicrobial activity yet low cytotoxicity against eukaryotic cells. To improve the antimicrobial activity of AMPs, the relationship between the structure and function of AMPs has been rigorously pursued. In this review, we focus on the current knowledge of α-helical cationic antimicrobial peptides, one of the most common types of AMPs in nature.  相似文献   

12.
13.
The villin headpiece helical subdomain (HP36) is one of the best known model systems for computational studies of fast‐folding all‐α miniproteins. HP21 is a peptide fragment—derived from HP36—comprising only the first and second helices of the full domain. Experimental studies showed that although HP21 is mostly unfolded in solution, it does maintain some persistent native‐like structure as indicated by the analysis of NMR‐derived chemical shifts. Here we compare the experimental data for HP21 with the results obtained from a 15‐μs long folding molecular dynamics simulation performed in explicit water and with full electrostatics. We find that the simulation is in good agreement with the experiment and faithfully reproduces the major experimental findings, namely that (a) HP21 is disordered in solution with <10% of the trajectory corresponding to transiently stable structures, (b) the most highly populated conformer is a native‐like structure with an RMSD from the corresponding portion of the HP36 crystal structure of <1 Å, (c) the simulation‐derived chemical shifts—over the whole length of the trajectory—are in reasonable agreement with the experiment giving reduced χ2 values of 1.6, 1.4, and 0.8 for the Δδ13Cα, Δδ13CO, and Δδ13Cβ secondary shifts, respectively (becoming 0.8, 0.7, and 0.3 when only the major peptide conformer is considered), and finally, (d) the secondary structure propensity scores are in very good agreement with the experiment and clearly indicate the higher stability of the first helix. We conclude that folding molecular dynamics simulations can be a useful tool for the structural characterization of even marginally stable peptides.  相似文献   

14.
The venom peptides from the scorpion Heterometrus spinifer have been poorly characterized so far. Here, we identified a novel class of antimicrobial peptides from the venom gland of H. spinifer, which were referred to as HsAp, HsAp2, HsAp3 and HsAp4, respectively. Each of the four peptides consists of 29 amino acid residues, and is cationic and weakly amphipathic. They display no significant homology to any other known peptides, and thus represent a new family of venom peptides from scorpions. Antimicrobial assay showed that HsAp is able to inhibit the growth of both Gram-negative and Gram-positive bacteria with the MIC values of 11.8–51.2 μM. HsAp is also able to inhibit the growth of the tested fungus. Genomic analysis indicated that the genes of all the four peptides are intronless. Our studies expand the families of antimicrobial peptides from scorpions.  相似文献   

15.
Folding propensities of bombinins H2 and H4, two members of amphibian bombinins H, a family of 17-20 residue alpha-helical peptides, have been investigated by means of circular dichroism (CD) measurements and molecular dynamics (MD) simulations. The two peptides, with primary structure IIGPVLGLVGSALGGLLKKI-NH2 and differing only for the configuration of the second aminoacid (an L-isoleucine in H2 and a D-alloisoleucine in H4) behave rather differently in solution. In particular both CD measurements and MD simulations indicate that bombinin H2 shows a markedly higher tendency to fold. From a careful inspection of MD trajectories it emerges that the stereochemical isomerization mutation of residue 2 to D-alloisoleucine in H4 peptide, drastically decreases its ability to form intrapeptide contacts. MD simulations also indicate that the conformational sampling in both systems derives from a subtle combination of energetic and entropic effects both involving the peptide itself and the solvent. The present results have been finally paralleled with preliminary information on bombinins H2 and H4 biological activity, i.e. interaction with membrane, supporting the hypothesis of an "already folded" conformation in water rather than interfacial folding tenet.  相似文献   

16.
We present a simple and efficient method called PATCHTRACK, for studying the dynamics of hydrophobic surface patches. It tracks the patches on snapshot structures taken from a Molecular Dynamics simulation. They are connected into so-called patch runs, which are subsequently clustered into so-called recurrent patches. The method is applied to simulations of three different proteins. Protein motion causes addition and removal of one or more atoms to a patch, resulting in size fluctuations of around 25%. The fluctuations eventually lead to the break-up of a patch, and their average life span is therefore remarkably short at around 4 ps. However, some patch runs are much more stable, lasting hundreds of picoseconds. One such case is the largest patch in amicyanin that is known to be biologically relevant. Another case, previously not reported, is found in phospholipase A(2), where the functional significance of a large recurrent patch formed by Leu58 and Phe94 seems likely. This patch appears to have been overlooked as it is relatively small in the X-ray structure, demonstrating the utility of the current method. The most frequently occurring patch size is 40-60 A(2), but sizes of up to 500 A(2) are also observed. There is no clear relation between patch run durations and their average size. However, long-lasting patch runs tend not to have large fluctuations. The recurrent patches have alternating periods of "liveness" and "dormancy"; around 25% of them is predominantly in the live state.  相似文献   

17.
Anionic and zwitterionic micelles are often used as simple models for the lipids found in bacterial and mammalian cell membranes to investigate antimicrobial peptide‐lipid interactions. In our laboratory we have employed a variety of 1D, 2D, and diffusion ordered (DOSY) NMR experiments to investigate the interactions of antimicrobial peptides containing unnatural amino acids with SDS and DPC micelles. Complete assignment of the proton spectra of these peptides is prohibited by the incorporation of a high percentage of unnatural amino acids which don't contain amide protons into the backbone. However preliminary assignment of the TOCSY spectra of compound 23 in the presence of both micelles indicated multiple conformers are present as a result of binding to these micelles. Chemical Shift Indexing agreed with previously collected CD spectra that indicated on binding to SDS micelles compound 23 adopts a mixture of α‐helical structures and on binding to DPC micelles this peptide adopts a mixture of helical and β‐turn/sheet like structures. DOSY NMR experiments also indicated that the total positive charge and the relative placement of that charge at the N‐terminus or C‐terminus are important in determining the mole fraction of the peptide that will bind to the different micelles. DOSY and 1H‐NMR experiments indicated that the length of Spacer #1 plays a major role in defining the binding conformation of these analogs with SDS micelles. Results obtained from molecular simulations studies of the binding of compounds 23 and 36 with SDS micelles were consistent with the observed NMR results. © 2013 Wiley Periodicals, Inc. Biopolymers 99: 548–561, 2013.  相似文献   

18.
The crossover behaviour of water droplet's state from the Wenzel state to the Cassie state with varying pillar height and surface fraction is examined critically using molecular dynamics. We report the effect of the system size on the wetting behaviour of water droplets by examining the contact angle for both regimes. We observe that when the droplet size is comparable to the pillar dimension, the contact angle of droplets fluctuates with increasing droplet size because of the contact line pinning, which is more pronounced in the Wenzel regime. We further demonstrate the phantom-wall method to evaluate free energy of intermediate wetting states.  相似文献   

19.
抗菌肽具有抗菌谱广、热稳定性强、分子量小及免疫原性小等特点,其杀菌机制独特,病原菌不易产生耐药性,有望开发成新一代肽类抗生素。本文主要综述了影响抗菌肽生物活性的生化性质,即螺旋度、疏水性、两亲性、正电荷数等,并从结构的角度论述了其对抗菌肽抑菌活性的影响。部分抗菌肽具有空间结构不稳定、溶血活性等缺点,限制了其临床应用。因此,对天然抗菌肽的改造也成为目前抗菌肽的研究热点,本文还综述了天然抗菌肽的改造方法。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号