首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tetramolecular G-quadruplexes result from the association of four guanine-rich strands. Modification of the backbone strand or the guanine bases of the oligonucleotide may improve stability or introduce new functionalities. In this regard, the 8 position of a guanosine is particularly suitable for introduction of modifications since as it is positioned in the groove of the quadruplex structure. Modifications at this position should not interfere with structural assembly as would changes at Watson-Crick and Hoogsteen sites. In this study, we investigated the effect of an 8-methyl-2′-deoxyguanosine residue (M) on the structure and stability of tetramolecular parallel G-quadruplexes. In some cases, the presence of this residue resulted in the formation of unusual quadruplex structures containing all-syn tetrads. Furthermore, the modified nucleoside M at the 5′-end of the sequence accelerated quadruplex formation by 15-fold or more relative to the unmodified oligonucleotide, which makes this nucleobase an attractive replacement for guanine in the context of tetramolecular parallel quadruplexes.  相似文献   

2.
Telomeres are DNA-protein structures at the ends of eukaryotic chromosomes, the DNA of which comprise noncoding repeats of guanine-rich sequences. Telomeric DNA plays a fundamental role in protecting the cell from recombination and degradation. Telomeric sequences can form quadruplex structures stabilized by guanine quartets. These structures can be constructed from one, two, or four oligonucleotidic strands. Here, we report the thermodynamic characterization of the stability, analyzed by differential scanning calorimetry, of three DNA quadruplexes of different molecularity, all containing four G-tetrads. The conformational properties of these quadruple helices were studied by circular dichroism. The investigated oligomers form well-defined G-quadruplex structures in the presence of sodium ions. Two have the truncated telomeric sequence from Oxytricha, d(TGGGGT) and d(GGGGTTTTGGGG), which form a tetramolecular and bimolecular quadruplex, respectively. The third sequence, d(GGGGTTGGGGTGTGGGGTTGGGG) was designed to form a unimolecular quadruplex. The thermodynamic parameters of these quadruplexes have been determined. The tetramolecular structure is thermodynamically more stable than the bimolecular one, which, in turn, is more stable than the unimolecular one. The experimental data were discussed in light of the molecular-modeling study.  相似文献   

3.
A repeated non-coding DNA sequence d(TTAGGG)n is present in the telomeric ends of all human chromosomes. These repeats can adopt multiple inter and intramolecular non-B-DNA conformations that may play an important role in biological processes. Two intramolecular structures of the telomeric oligonucleotide dAGGG(TTAGGG)3, antiparallel and parallel, have been solved by NMR and X-ray crystallography. In both structures, the telomeric sequence adopts an intramolecular quadruplex structure that is stabilized by G-4 quartets, but the ways in which the sequence folds into the quadruplex are different. The folds of the human telomeric DNA were described as an anti-parallel basket-type and a parallel propeller-type. We applied 125I-radioprobing to determine the conformation of the telomeric quadruplex in solution, in the presence of either Na+ or K+ ions. The probability of DNA breaks caused by decay of 125I is inversely related to the distance between the radionuclide and the sugar unit of the DNA backbone; hence, the conformation of the DNA backbone can be deduced from the distribution of breaks. The probability of breaks measured in the presence of Na+ and K+ were compared with the distances in basket-type and propeller-type quadruplexes obtained from the NMR and crystal structures. Our radioprobing data demonstrate that the antiparallel conformation was present in solution in the presence of both K+ and Na+. The preferable conformation in the Na+-containing solution was the basket-type antiparallel quadruplex whereas the presence of K+ favored the chair-type antiparallel quadruplex. Thus, we believe that the two antiparallel and the parallel conformations may coexist in solution, and that their relative proportion is determined by the type and concentration of ions.  相似文献   

4.
Kaushik M  Bansal A  Saxena S  Kukreti S 《Biochemistry》2007,46(24):7119-7131
Under physiological concentrations of Na+ and K+, human telomeric DNA can self-associate into G-quadruplexes. On the basis of circular dichroism, gel electrophoresis, gel filtration, and UV-melting experiments, we report here that the double repeat of human telomere (d-TTAGGGTTAGGG; HUM2) forms parallel as well as antiparallel quadruplexes in the presence of K+, whereas Na+ facilitates only the antiparallel form. Here, the gel techniques and CD studies have proved to be complementary in detecting the molecularity and pattern of strand orientation. By correlating the gel and CD experiments, the antiparallel G-quadruplex was identified as a tetrameric species, whereas the parallel G-quadruplex was found to be dimeric. Both structural species were separated through gel filtration, which when run on native polyacrylamide gel electrphoresis (PAGE), confirmed their molecularity. UV-melting profiles also confirm the presence of two biphasic and one monophasic structural species in the presence of K+ and Na+, respectively. Though our observation is consistent with the recent NMR report (Phan, A. T., and Patel, D. J. (2003) J. Am. Chem. Soc. 125, 15021-15027), it seems to differ in terms of the molecularity of the antiparallel quadruplex. A model is proposed for an antiparallel tetrameric quadruplex, showing the possibility of Watson-Crick hydrogen bonds between intervening bases on antiparallel strands. This article expands the known structural motifs of DNA quadruplexes. To the best of our knowledge, four-stranded antiparallel quadruplexes have not been characterized to date. On the basis of the model, we hypothesize a possible mechanism for telomere-telomere association involving their G-overhangs, during certain stages of the cell cycle. The knowledge of peculiar geometries of the G-quadruplexes may also have implications for its specific recognition by ligands.  相似文献   

5.
6.
Here we report the analysis of dual G-quadruplexes formed in the four repeats of the consensus sequence from the insulin-linked polymorphic region (ACAGGGGTGTGGGG; ILPRn=4). Mobilities of ILPRn=4 in nondenaturing gel and circular dichroism (CD) studies confirmed the formation of two intramolecular G-quadruplexes in the sequence. Both CD and single molecule studies using optical tweezers showed that the two quadruplexes in the ILPRn=4 most likely adopt a hybrid G-quadruplex structure that was entirely different from the mixture of parallel and antiparallel conformers previously observed in the single G-quadruplex forming sequence (ILPRn=2). These results indicate that the structural knowledge of a single G-quadruplex cannot be automatically extrapolated to predict the conformation of multiple quadruplexes in tandem. Furthermore, mechanical pulling of the ILPRn=4 at the single molecule level suggests that the two quadruplexes are unfolded cooperatively, perhaps due to a quadruplex–quadruplex interaction (QQI) between them. Additional evidence for the QQI was provided by DMS footprinting on the ILPRn=4 that identified specific guanines only protected in the presence of a neighboring G-quadruplex. There have been very few experimental reports on multiple G-quadruplex-forming sequences and this report provides direct experimental evidence for the existence of a QQI between two contiguous G-quadruplexes in the ILPR.  相似文献   

7.
Recently, the human telomeric d[TAGGG(TTAGGG)3] sequence has been shown to form in K+ solution an intramolecular (3+1) G-quadruplex structure, whose G-tetrad core contains three strands oriented in one direction and the fourth in the opposite direction. Here we present a study on the structure of the Bombyx mori telomeric d[TAGG(TTAGG)3] sequence, which differs from the human counterpart only by one G deletion in each repeat. We found that this sequence adopted multiple G-quadruplex structures in K+ solution. We have favored a major G-quadruplex form by a judicious U-for-T substitution in the sequence and determined the folding topology of this form. We showed by NMR that this was a new chair-type intramolecular G-quadruplex which involved a two-layer antiparallel G-tetrad core and three edgewise loops. Our result highlights the effect of G-tract length on the folding topology of G-quadruplexes, but also poses the question of whether a similar chair-type G-quadruplex fold exists in the human telomeric sequences.  相似文献   

8.
G-quadruplexes are a family of four-stranded DNA structures, stabilized by G-quartets, that form in the presence of monovalent cations. Efforts are currently being made to identify ligands that selectively bind to G-quadruplex motifs as these compounds may interfere with the telomere structure, telomere elongation/replication and proliferation of cancer cells. The kinetics of quadruplex–ligands interactions are poorly understood: it is not clear whether quadruplex ligands lock into the preformed structure (i.e. increase the lifetime of the structure by lowering the dissociation constant, koff) or whether ligands actively promote the formation of the complex and act as quadruplex chaperones by increasing the association constant, kon. We studied the effect of a selective quadruplex ligand, a bisquinolinium pyridine dicarboxamide compound called 360A, to distinguish these two possibilities. We demonstrated that, in addition to binding to and locking into preformed quadruplexes, this molecule acted as a chaperone for tetramolecular complexes by acting on kon. This observation has implications for in vitro and in vivo applications of quadruplexes and should be taken into account when evaluating the cellular responses to these agents.  相似文献   

9.
The insulin‐linked polymorphic region (ILPR) is a VNTR region located upstream of the insulin (INS) gene consisting of the repeat 5′‐ACAGGGGTGTGGGG (repeat a) and several less abundant sequence repeats (b–n). Here, we have investigated the structural polymorphism of G‐quadruplexes formed from the most common repeat sequences (a–c) and their effect on insulin protein binding. We first established that the ILPR repeats “b” and “c” can form quadruplex structures. Insulin has previously been shown to bind a G‐quadruplex formed by a dimer of the repeat “a”. Our findings show that insulin binds preferentially to the repeat “a” G‐quadruplex (Kd = 0.17 ± 0.03 μM) over G‐quadruplexes formed from other ILPR repeats that were tested (Kds from 0.71 ± 0.15 to 1.07 ± 0.09 μM). Additionally, the Watson‐Crick complementary relationship between the loop regions of repeat “a” (ACA and TGT) seemingly play an important role in favoring a specific G‐quadruplex conformation, which based on our data is critical for insulin binding. Affinity for insulin is reduced in sequences lacking the putative WC complementarity, however upon engineered restoration of complementarity, insulin binding is recovered. A DMS footprinting assay on the repeat “a” G‐quadruplex in the presence of insulin, combined with binding affinities for ILPR mutants led to identification of a loop nucleotide critical for binding. Uniquely, insulin shows clear preference for binding to the G‐quadruplexes with the more antiparallel feature. Collectively, our results illustrate the specific nature of insulin binding to the ILPR G‐quadruplexes and begin to provide molecular details on such interactions. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 21–31, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

10.
The arrangement of the human telomeric quadruplex in physiologically relevant conditions has not yet been unambiguously determined. Our spectroscopic results suggest that the core quadruplex sequence G3(TTAG3)3 forms an antiparallel quadruplex of the same basket type in solution containing either K+ or Na+ ions. Analogous sequences extended by flanking nucleotides form a mixture of the antiparallel and hybrid (3 + 1) quadruplexes in K+-containing solutions. We, however, show that long telomeric DNA behaves in the same way as the basic G3(TTAG3)3 motif. Both G3(TTAG3)3 and long telomeric DNA are also able to adopt the (3 + 1) quadruplex structure: Molecular crowding conditions, simulated here by ethanol, induced a slow transition of the K+-stabilized quadruplex into the hybrid quadruplex structure and then into a parallel quadruplex arrangement at increased temperatures. Most importantly, we demonstrate that the same transitions can be induced even in aqueous, K+-containing solution by increasing the DNA concentration. This is why distinct quadruplex structures were detected for AG3(TTAG3)3 by X-ray, nuclear magnetic resonance and circular dichrosim spectroscopy: Depending on DNA concentration, the human telomeric DNA can adopt the antiparallel quadruplex, the (3 + 1) structure, or the parallel quadruplex in physiologically relevant concentrations of K+ ions.  相似文献   

11.
The (CGG) repeats associated with X-chromosome fragility are generally believed to form quadruplexes. This notion has persisted although it had been shown that only very short (CGG)n sequences form quadruplexes and that this quadruplex formation occurs in conditions far from physiological. We have now studied, using CD and absorption spectroscopies, quadruplex formation of (CGG)n (n = 4, 7, 8, or 16) and their analogs interrupted by (AGG) triplets under various solvent conditions. In healthy individuals, (AGG) triplets are interspersed throughout the (CGG) repeat regions and appear to hinder (CGG)n motif expansion. Here we show that (CGG) repeats do not form quadruplexes under physiological conditions in aqueous solution but, interestingly, quadruplexes are readily formed in water–ethanol solutions. The presence of (AGG) triplets markedly stabilized quadruplex formation. Quadruplexes may thus hinder rather than support (CGG)n motif expansion.  相似文献   

12.
Tandem repeats of the telomeric DNA sequence d(T4G4) of Oxytricha nova are capable of forming unusually stable secondary structures incorporating Hoogsteen hydrogen bonding interactions. The biological significance of such DNA structures is supported by evidence of specific recognition of telomere end-binding proteins in the crystal state. To further characterize structural polymorphism of Oxytricha telomeric DNAs, we have obtained and interpreted Raman, ultraviolet resonance Raman (UVRR) and circular dichroism (CD) spectra of the tandem repeats d(G4T4G4) (Oxy1.5), d(T4G4)2 (Oxy2) and dT6(T4G4)2 (T6Oxy2) and related non-telomeric isomers in aqueous salt solutions. Raman markers of Oxy1.5 identify both C2′-endo/anti and C2′-endo/syn conformations of the deoxyguanosine residues and Hoogsteen hydrogen bonded guanine quartets, consistent with the quadruplex fold determined previously by solution NMR spectroscopy. Raman, UVRR and CD signatures and Raman dynamic measurements, to monitor imino NH→ND exchanges, show that the Oxy1.5 antiparallel quadruplex fold is distinct from the hairpin structures of Oxy2 and T6Oxy2, single-stranded structures of d(TG)8 and dT6(TG)8 and previously reported quadruplex structures of d(T4G4)4 (Oxy4) and dG12. Spectral markers of the telomeric and telomere-related DNA structures are tabulated and novel Raman and UVRR indicators of thymidine and deoxyguanosine conformations are identified. The results will be useful for probing structures of Oxytricha telomeric repeats in complexes with telomere end-binding proteins.  相似文献   

13.
Influence of loop size on the stability of intramolecular DNA quadruplexes   总被引:9,自引:6,他引:3  
We have determined the stability of intramolecular DNA quadruplexes in which the four G3-tracts are connected by non-nucleosidic linkers containing propanediol, octanediol or hexaethylene glycol, replacing the TTA loops in the human telomeric repeat sequence. We find that these sequences all fold to form intramolecular complexes, which are stabilized by lithium < sodium < potassium. Quadruplex stability increases in the order propanediol < hexaethylene glycol < octanediol. The shallower shape of the melting profile with propanediol linkers and its lower dependency on potassium concentration suggests that this complex contains fewer stacks of G-quartets. The sequence with octanediol linkers displays a biphasic melting profile, suggesting that it can adopt more than one stable structure. All these complexes display melting temperatures above 310 K in the presence of 10 mM lithium, without added potassium, in contrast to the telomeric repeat sequence. These complexes also fold much faster than the telomeric repeat and there is little or no hysteresis between their melting and annealing profiles. In contrast, the human telomeric repeat sequence and a complex containing two hexaethylene glycol groups in each loop, are less stable and fold more slowly. The melting and annealing profiles for the latter sequence show significant differences, even when heated at 0.2°C min–1. CD spectra for the oligonucleotides containing non-nucleosidic linkers show positive maxima at 264 nm, with negative minima ~244 nm, which are characteristic of parallel quadruplex structures. These results show that the structure and stability of intramolecular quadruplexes is profoundly influenced by the length and composition of the loops.  相似文献   

14.
Telomeres consisting of tandem guanine-rich repeats can form secondary DNA structures called G-quadruplexes that represent potential targets for DNA repair enzymes. While G-quadruplexes interfere with DNA synthesis in vitro, the impact of G-quadruplex formation on telomeric repeat replication in human cells is not clear. We investigated the mutagenicity of telomeric repeats as a function of G-quadruplex folding opportunity and thermal stability using a shuttle vector mutagenesis assay. Since single-stranded DNA during lagging strand replication increases the opportunity for G-quadruplex folding, we tested vectors with G-rich sequences on the lagging versus the leading strand. Contrary to our prediction, vectors containing human [TTAGGG]10 repeats with a G-rich lagging strand were significantly less mutagenic than vectors with a G-rich leading strand, after replication in normal human cells. We show by UV melting experiments that G-quadruplexes from ciliates [TTGGGG]4 and [TTTTGGGG]4 are thermally more stable compared to human [TTAGGG]4. Consistent with this, replication of vectors with ciliate [TTGGGG]10 repeats yielded a 3-fold higher mutant rate compared to the human [TTAGGG]10 vectors. Furthermore, we observed significantly more mutagenic events in the ciliate repeats compared to the human repeats. Our data demonstrate that increased G-quadruplex opportunity (repeat orientation) in human telomeric repeats decreased mutagenicity, while increased thermal stability of telomeric G-quadruplexes was associated with increased mutagenicity.  相似文献   

15.
In addition to the well-known Watson–Crick double helix, DNA can form other structures. One of them is a four-stranded quadruplex, formation of which was also acknowledged in in vivo conditions. It was suggested that the presence of quadruplexes in e.g. telomeric region has a significant biological importance. We have studied structural properties of the human telomeric quadruplex formed by G3(T2AG3)3 and related sequences, in which each guanine base was one-by-one replaced by adenine. In the next step, we have studied sequences, in which two, or even four guanines were replaced by adenine. These sequences were studied in the presence of sodium or potassium ions. Using CD spectroscopy, UV thermal stability measurements, and polyacrylamide gel electrophoresis we found that none of the substitutions hindered the formation of the antiparallel quadruplex formed by the unsubstituted sequence in sodium solutions. However, the effect of substitution differed depending on the position of the guanine replaced. The middle quartet of the antiparallel basket scaffold was the most sensitive and led to the least stable structures. With other sequences, the effect of substitution depends on the position and also on the syn/anti glycosidic bond orientation of the appropriate guanosine in the original quadruplex structure. In the case of the multiple A for G substitutions, the G3(T2AG3)3 quadruplex was most destabilized by the G:G:A:A tetrad, in which the adenosines substituted syn guanosines. Interestingly, unlike with G3(T2AG3)3, no structural transitions were observed with the A-containing analogs of the sequence when sodium ions were replaced by potassium ions. The basic quadruplex topology remained antiparallel for all modified sequences in both salts. As in vivo misincorporation of A for a G in the telomeric sequence is possible and potassium is a physiological salt, these findings may be biologically important. In our next studies, we have compared the effect of the G to A substitutions in the human telomere sequence with 8-oxoguanine substituted samples or samples containing guanine apurinic sites. Data obtained from our study show a noticeable trend: it is not the type of the lesion but the position of the modification determines the effect on the conformation and stability of the quadruplex.  相似文献   

16.
Telomeric DNA of a variety of vertebrates including humans contains the tandem repeat d(TTAGGG)n. The guanine rich strand can fold into four-stranded G-quadruplex structures, which have recently become attractive for biomedical research. Indeed, the aptamers based on the quadruplex motif may prove useful as tools aimed at binding and inhibiting particular proteins, catalyzing various biochemical reactions, or even serving as pharmaceutically active agents. The incorporation of modified bases into oligonucleotides can have profound effects on their folding and may produce useful changes in physical and biological properties of the resulting DNA fragments. In this work, the adenines of the human telomeric repeat oligonucleotide d(TAGGGT) and d(AGGGT) were substituted by 2'-deoxy-8-(propyn-1-yl)adenosine (A-->APr) or by 8-bromodeoxyadenosine (A-->ABr). The biophysical properties of the resulting quadruplex structures were compared with the unmodified quadruplexes. NMR and CD spectra of the studied sequences were characteristic of parallel-stranded, tetramolecular quadruplexes. The analysis of the equilibrium melting curves reveals that the modifications stabilize the quadruplex structure. The results are useful when considering the design of novel aptameric nucleic acids with diverse molecular recognition capabilities that would not be present using native RNA/DNA sequences.  相似文献   

17.
Depending on conditions and base modifications, telomeric repeats can form many topological structures; parallel, antiparallel and hybrid forms. The influence of salts and some specific ligands on conformational changes has already been established. In this study, we analyze the human telomeric repeats 5′-GGG(TTAGGG)3-3′ because this sequence forms topologically different structures under various conditions which have been well described by many authors. CD results are compared with electrophoretic and UV absorption spectroscopy results obtained under corresponding conditions in the presence of different ratios of sodium and potassium ions and polyethylene glycol (PEG). We confirmed that the most stable G-quadruplexes could only form under crowding conditions with PEG-200 and K+ ion, but the molecularity is increased. Other monovalent ions without the presence of K+ are unable to form the parallel quadruplex conformer and no change of stoichiometry is observed, even when PEG-200 is present. The first derivative of a function applied to CD spectra seems to be a powerful tool for spectra evaluation of any G-quadruplex, and could be more unambiguous than a direct analysis of original spectra.  相似文献   

18.
We studied the effect of antitumor cisplatin and inefficient transplatin on the structure and stability of G quadruplexes formed by the model human telomere sequence 5′-GGG(TTAGGG)3-3′ using circular dichroism, UV-monitored thermal denaturation, and gel electrophoresis. In addition, to investigate whether there is a connection between the ability of cisplatin or transplatin to affect telomerase activity and stability of G quadruplexes, we also used a modified telomere repeat amplification protocol assay that uses an oligonucleotide substrate for telomerase elongation susceptible to forming a G quadruplex. The results indicate that cisplatin is more efficient than transplatin in disturbing the quadruplex structure, thereby precluding telomeric sequences from forming quadruplexes. On the other hand, the results of this work also demonstrate that in absence of free platinum complex, DNA adducts of antitumor cisplatin inhibit telomerase catalysis, so the mechanism underlying this inhibition does not involve formation of the G quadruplexes which are not elongated by telomerase.  相似文献   

19.
Inspired by the enormous importance attributed to the structure and function of human telomeric DNA, we focus our attention on the interaction of [Ru(bpy)2(dppz)]2+ with the guanine-rich single-strand oligomer 5′-AGGGTTAGGGTTAGGGTTAGGG-3′ (22AG) and the complementary cytosine-rich strand (22CT). In Na+ buffer, 22AG may adopt an antiparallel basket quadruplex, whereas, it favours a mixed parallel/antiparallel structure in K+ buffer. 22CT may self-associate at acidic pH into an i-motif. In this paper, the interaction between [Ru(bpy)2(dppz)]2+ and each unusual DNA was evaluated. It was interesting that [Ru(bpy)2(dppz)]2+ could promote the human telomeric repeat 22AG to fold into intramolecular antiparallel G-quadruplex without any other cations. What's more, [Ru(bpy)2(dppz)]2+ was found to have a strong preference for binding to G-quadruplexes that were induced through either Na+ or K+, while weak binding to i-motif was observed. The results also indicated that [Ru(bpy)2(dppz)]2+ could serve as a prominent molecular “light switch” for both G-quadruplexes, revealing a potential application of the title complex in luminescent signaling of G-quadruplex DNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号