首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The NS5B RdRp polymerase is a prominent enzyme for the replication of Hepatitis C virus (HCV). During the HCV replication, the template RNA binding takes place in the “fingers” sub-domain of NS5B. The “fingers” domain is a new emerging allosteric site for the HCV drug development. The inhibitors of the “fingers” sub-domain adopt a new antiviral mechanism called RNA intervention. The details of essential amino acid residues, binding mode of the ligand, and the active site intermolecular interactions of RNA intervention reflect that this mechanism is ambiguous in the experimental study. To elucidate these details, we performed molecular docking analysis of the fingers domain inhibitor quercetagetin (QGN) with NS5B polymerase. The detailed analysis of QGN-NS5B intermolecular interactions was carried out and found that QGN interacts with the binding pocket amino acid residues Ala97, Ala140, Ile160, Phe162, Gly283, Gly557, and Asp559; and also forms π?π stacking interaction with Phe162 and hydrogen bonding interaction with Gly283. These are found to be the essential interactions for the RNA intervention mechanism. Among the strong hydrogen bonding interactions, the QGN?Ala140 is a newly identified important hydrogen bonding interaction by the present work and this interaction was not resolved by the previously reported crystal structure. Since D559G mutation at the fingers domain was reported for reducing the inhibition percentage of QGN to sevenfold, we carried out molecular dynamics (MD) simulation for wild and D559G mutated complexes to study the stability of protein conformation and intermolecular interactions. At the end of 50?ns MD simulation, the π?π stacking interaction of Phe162 with QGN found in the wild-type complex is altered into T-shaped π stacking interaction, which reduces the inhibition strength. The origin of the D559G resistance mutation was studied using combined MD simulation, binding free energy calculations and principal component analysis. The results were compared with the wild-type complex. The mutation D559G reduces the binding affinity of the QGN molecule to the fingers domain. The free energy decomposition analysis of each residue of wild-type and mutated complexes revealed that the loss of non-polar energy contribution is the origin of the resistance.

Communicated by Ramaswamy H. Sarma  相似文献   


2.
Viruses of the family Flaviviridae are important human and animal pathogens. Among them, the Flaviviruses dengue (DENV) and West Nile (WNV) cause regular outbreaks with fatal outcomes. The RNA-dependent RNA polymerase (RdRp) activity of the non-structural protein 5 (NS5) is a key activity for viral RNA replication. In this study, crystal structures of enzymatically active and inactive WNV RdRp domains were determined at 3.0- and 2.35-A resolution, respectively. The determined structures were shown to be mostly similar to the RdRps of the Flaviviridae members hepatitis C and bovine viral diarrhea virus, although with unique elements characteristic for the WNV RdRp. Using a reverse genetic system, residues involved in putative interactions between the RNA-cap methyltransferase (MTase) and the RdRp domain of Flavivirus NS5 were identified. This allowed us to propose a model for the structure of the full-length WNV NS5 by in silico docking of the WNV MTase domain (modeled from our previously determined structure of the DENV MTase domain) onto the RdRp domain. The Flavivirus RdRp domain structure determined here should facilitate both the design of anti-Flavivirus drugs and structure-function studies of the Flavivirus replication complex in which the multifunctional NS5 protein plays a central role.  相似文献   

3.
The helicase domain of dengue virus NS3 protein (DENV NS3H) contains RNA-stimulated nucleoside triphosphatase (NTPase), ATPase/helicase, and RNA 5′-triphosphatase (RTPase) activities that are essential for viral RNA replication and capping. Here, we show that DENV NS3H unwinds 3′-tailed duplex with an RNA but not a DNA loading strand, and the helicase activity is poorly processive. The substrate of the divalent cation-dependent RTPase activity is not restricted to viral RNA 5′-terminus, a protruding 5′-terminus made the RNA 5′-triphosphate readily accessible to DENV NS3H. DENV NS3H preferentially binds RNA to DNA, and the functional interaction with RNA is sensitive to ionic strength.  相似文献   

4.
Staphylococcus aureus MurE enzyme catalyzes the addition of l-lysine as third residue of the peptidoglycan peptide moiety. Due to the high substrate specificity and its ubiquitous nature among bacteria, MurE enzyme is considered as one of the potential target for the development of new therapeutic agents. In the present work, induced fit docking (IFD), binding free energy calculation, and molecular dynamics (MD) simulation were carried out to elucidate the inhibition potential of 2-thioxothiazolidin-4-one based inhibitor 1 against S. aureus MurE enzyme. The inhibitor 1 formed majority of hydrogen bonds with the central domain residues Asn151, Thr152, Ser180, Arg187, and Lys219. Binding free-energy calculation by MM-GBSA approach showed that van der Waals (ΔGvdW, ?57.30?kcal/mol) and electrostatic solvation (ΔGsolv, ?36.86?kcal/mol) energy terms are major contributors for the inhibitor binding. Further, 30-ns MD simulation was performed to validate the stability of ligand–protein complex and also to get structural insight into mode of binding. Based on the IFD and MD simulation results, we designed four new compounds D1–D4 with promising binding affinity for the S. aureus MurE enzyme. The designed compounds were subjected to the extra-precision docking and binding free energy was calculated for complexes. Further, a 30-ns MD simulation was performed for D1/4C13 complex.  相似文献   

5.
Alar, a Pyridoxal 5′-phosphate (PLP)-dependent bacterial enzyme is responsible for the racemisation of L-alanine into D-alanine which is essential for the peptidoglycan biosynthesis in both Gram-positive and Gram-negative bacteria. In the present study, we performed induced fit docking, binding free energy calculation and molecular dynamics simulation to elucidate the Alar inhibition potential of 1,2,4-thiadiazolidine-3,5-dione-based inhibitor 1. The inhibitor binds to the hydrophobic groove of Alar and the binding was found to be stable throughout 20-ns MD simulation. Induced fit docking result showed that Lys42, Tyr46, Tyr175 and Tyr364 residues are primarily responsible for the stabilisation of inhibitor–protein complex. Further, high negative van der Waals binding free energy value of –38.88 kcal/mol, indicated it as the main driving force for the inhibitor binding. Based on the information obtained from this study, we designed few molecules as potent Alar inhibitor. In order to gain structural insight and to validate the stability of complex, we performed 20-ns MD simulation of the designed molecule D1. Results obtained from this study can be used for the design of M. tuberculosis Alar potent inhibitors lacking affinity for the co-factor PLP.  相似文献   

6.

Objectives

To develop an RNA aptamer specific for the methyltransferase (MTase) of dengue virus (DENV) which is essential for viral genome replication and translation acting directly on N-7 and 2′-O-methylation of the type-I cap structure of the viral RNA.

Results

We identified 2′-fluoro-modified RNA aptamers that can specifically bind DENV serotype 2 (DENV2) MTase using systematic evolution of ligands by exponential enrichment technology. We truncated the chosen aptamer into a 45-mer RNA sequence that can bind DENV2 MTase with K d  ~ 28 nM and inhibit N-7 methylation activity of the protein. Moreover, the 45-mer truncated aptamer could not only bind with an K d  ~ 15.6 nM but also inhibit methylation activity of DENV serotype 3 (DENV3) MTase. The 45-mer aptamer competitively impeded binding of both DENV2 and DENV3 genomic RNA to MTase of each serotype.

Conclusion

The selected 45-mer truncated RNA aptamer specifically and avidly bound DENV MTase and competitively inhibited its methylation activity, and thus could be useful for the development of anti-DENV agents.
  相似文献   

7.
Viral RNA-dependent RNA polymerases (RdRps) responsible for the replication of single-strand RNA virus genomes exert their function in the context of complex replication machineries. Within these replication complexes the polymerase activity is often highly regulated by RNA elements, proteins or other domains of multi-domain polymerases. Here, we present data of the influence of the methyltransferase domain (NS5-MTase) of dengue virus (DENV) protein NS5 on the RdRp activity of the polymerase domain (NS5-Pol). The steady-state polymerase activities of DENV-2 recombinant NS5 and NS5-Pol are compared using different biochemical assays allowing the dissection of the de novo initiation, transition and elongation steps of RNA synthesis. We show that NS5-MTase ensures efficient RdRp activity by stimulating the de novo initiation and the elongation phase. This stimulation is related to a higher affinity of NS5 toward the single-strand RNA template indicating NS5-MTase either completes a high-affinity RNA binding site and/or promotes the correct formation of the template tunnel. Furthermore, the NS5-MTase increases the affinity of the priming nucleotide ATP upon de novo initiation and causes a higher catalytic efficiency of the polymerase upon elongation. The complex stimulation pattern is discussed under the perspective that NS5 adopts several conformations during RNA synthesis.  相似文献   

8.
The N-terminal 33 kDa domain of non-structural protein 5 (NS5) of dengue virus (DV), named NS5MTase(DV), is involved in two of four steps required for the formation of the viral mRNA cap (7Me)GpppA(2'OMe), the guanine-N7 and the adenosine-2'O methylation. Its S-adenosyl-l-methionine (AdoMet) dependent 2'O-methyltransferase (MTase) activity has been shown on capped (7Me+/-)GpppAC(n) RNAs. Here we report structural and binding studies using cap analogues and capped RNAs. We have solved five crystal structures at 1.8 A to 2.8 A resolution of NS5MTase(DV) in complex with cap analogues and the co-product of methylation S-adenosyl-l-homocysteine (AdoHcy). The cap analogues can adopt several conformations. The guanosine moiety of all cap analogues occupies a GTP-binding site identified earlier, indicating that GTP and cap share the same binding site. Accordingly, we show that binding of (7Me)GpppAC(4) and (7Me)GpppAC(5) RNAs is inhibited in the presence of GTP, (7Me)GTP and (7Me)GpppA but not by ATP. This particular position of the cap is in accordance with the 2'O-methylation step. A model was generated of a ternary 2'O-methylation complex of NS5MTase(DV), (7Me)GpppA and AdoMet. RNA-binding increased when (7Me+/-)GpppAGC(n-1) starting with the consensus sequence GpppAG, was used instead of (7Me+/-)GpppAC(n). In the NS5MTase(DV)-GpppA complex the cap analogue adopts a folded, stacked conformation uniquely possible when adenine is the first transcribed nucleotide at the 5' end of nascent RNA, as it is the case in all flaviviruses. This conformation cannot be a functional intermediate of methylation, since both the guanine-N7 and adenosine-2'O positions are too far away from AdoMet. We hypothesize that this conformation mimics the reaction product of a yet-to-be-demonstrated guanylyltransferase activity. A putative Flavivirus RNA capping pathway is proposed combining the different steps where the NS5MTase domain is involved.  相似文献   

9.
Pong WL  Huang ZS  Teoh PG  Wang CC  Wu HN 《FEBS letters》2011,585(16):2575-2581
In this study we showed that the dengue virus (DENV) core protein forms a dimer with an α-helix-rich structure, binds RNA and facilitates the strand annealing process. To assess the RNA chaperone activity of this core protein and other dengue viral RNA-interacting proteins, such as NS3 helicase and NS5 proteins, we engineered cis- and trans-cleavage hammerhead ribozyme constructs carrying DENV genomic RNA elements. Our results indicate that DENV core protein facilitates typical hammerhead structure formation by acting as an RNA chaperone and DENV NS5 has a weak RNA chaperone activity, while DENV NS3 helicase failed to refold RNA with a complex secondary structure.  相似文献   

10.
Flavivirus RNA replication occurs within a replication complex (RC) that assembles on ER membranes and comprises both non-structural (NS) viral proteins and host cofactors. As the largest protein component within the flavivirus RC, NS5 plays key enzymatic roles through its N-terminal methyltransferase (MTase) and C-terminal RNA-dependent-RNA polymerase (RdRp) domains, and constitutes a major target for antivirals. We determined a crystal structure of the full-length NS5 protein from Dengue virus serotype 3 (DENV3) at a resolution of 2.3 Å in the presence of bound SAH and GTP. Although the overall molecular shape of NS5 from DENV3 resembles that of NS5 from Japanese Encephalitis Virus (JEV), the relative orientation between the MTase and RdRp domains differs between the two structures, providing direct evidence for the existence of a set of discrete stable molecular conformations that may be required for its function. While the inter-domain region is mostly disordered in NS5 from JEV, the NS5 structure from DENV3 reveals a well-ordered linker region comprising a short 310 helix that may act as a swivel. Solution Hydrogen/Deuterium Exchange Mass Spectrometry (HDX-MS) analysis reveals an increased mobility of the thumb subdomain of RdRp in the context of the full length NS5 protein which correlates well with the analysis of the crystallographic temperature factors. Site-directed mutagenesis targeting the mostly polar interface between the MTase and RdRp domains identified several evolutionarily conserved residues that are important for viral replication, suggesting that inter-domain cross-talk in NS5 regulates virus replication. Collectively, a picture for the molecular origin of NS5 flexibility is emerging with profound implications for flavivirus replication and for the development of therapeutics targeting NS5.  相似文献   

11.
Dengue virus NS5 is the most highly conserved amongst the viral non-structural proteins and is responsible for capping, methylation and replication of the flavivirus RNA genome. Interactions of NS5 with host proteins also modulate host immune responses. Although replication occurs in the cytoplasm, an unusual characteristic of DENV2 NS5 is that it localizes to the nucleus during infection with no clear role in replication or pathogenesis. We examined NS5 of DENV1 and 2, which exhibit the most prominent difference in nuclear localization, employing a combination of functional and structural analyses. Extensive gene swapping between DENV1 and 2 NS5 identified that the C-terminal 18 residues (Cter18) alone was sufficient to direct the protein to the cytoplasm or nucleus, respectively. The low micromolar binding affinity between NS5 Cter18 and the nuclear import receptor importin-alpha (Impα), allowed their molecular complex to be purified, crystallised and visualized at 2.2 Å resolution using x-ray crystallography. Structure-guided mutational analysis of this region in GFP-NS5 clones of DENV1 or 2 and in a DENV2 infectious clone reveal residues important for NS5 subcellular localization. Notably, the trans conformation adopted by Pro-884 allows proper presentation for binding Impα and mutating this proline to Thr, as present in DENV1 NS5, results in mislocalizaion of NS5 to the cytoplasm without compromising virus fitness. In contrast, a single mutation to alanine at NS5 position R888, a residue conserved in all flaviviruses, resulted in a completely non-viable virus, and the R888K mutation led to a severely attenuated phentoype, even though NS5 was located in the nucleus. R888 forms a hydrogen bond with Y838 that is also conserved in all flaviviruses. Our data suggests an evolutionarily conserved function for NS5 Cter18, possibly in RNA interactions that are critical for replication, that is independent of its role in subcellular localization.  相似文献   

12.
Histone deacetylases (HDACs) are a family of proteins involved in the deacetylation of histones and other non-histones substrates. HDAC6 belongs to class II and shares similar biological functions with others of its class. Nevertheless, its three-dimensional structure that involves the catalytic site remains unknown for exploring the ligand recognition properties. Therefore, in this contribution, homology modeling, 100-ns-long Molecular Dynamics (MD) simulation and docking calculations were combined to explore the conformational complexity and binding properties of the catalytic domain 2 from HDAC6 (DD2-HDAC6), for which activity and affinity toward five different ligands have been reported. Clustering analysis allowed identifying the most populated conformers present during the MD simulation, which were used as starting models to perform docking calculations with five DD2-HDAC6 inhibitors: Cay10603 (CAY), Rocilinostat (RCT), Tubastatin A (TBA), Tubacin (TBC), and Nexturastat (NXT), and then were also submitted to 100-ns-long MD simulations. Docking calculations revealed that the five inhibitors bind at the DD2-HDAC6 binding site with the lowest binding free energy, the same binding mode is maintained along the 100-ns-long MD simulations. Overall, our results provide structural information about the molecular flexibility of apo and holo DD2-HDAC6 states as well as insight of the map of interactions between DD2-HDAC6 and five well-known DD2-HDAC6 inhibitors allowing structural details to guide the drug design. Finally, we highlight the importance of combining different theoretical approaches to provide suitable structural models for structure-based drug design.  相似文献   

13.
Flavivirus nonstructural protein 5 (NS5) consists of methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRp) domains, which catalyze 5’-RNA capping/methylation and RNA synthesis, respectively, during viral genome replication. Although the crystal structure of flavivirus NS5 is known, no data about the quaternary organization of the functional enzyme are available. We report the crystal structure of dengue virus full-length NS5, where eight molecules of NS5 are arranged as four independent dimers in the crystallographic asymmetric unit. The relative orientation of each monomer within the dimer, as well as the orientations of the MTase and RdRp domains within each monomer, is conserved, suggesting that these structural arrangements represent the biologically relevant conformation and assembly of this multi-functional enzyme. Essential interactions between MTase and RdRp domains are maintained in the NS5 dimer via inter-molecular interactions, providing evidence that flavivirus NS5 can adopt multiple conformations while preserving necessary interactions between the MTase and RdRp domains. Furthermore, many NS5 residues that reduce viral replication are located at either the inter-domain interface within a monomer or at the inter-molecular interface within the dimer. Hence the X-ray structure of NS5 presented here suggests that MTase and RdRp activities could be coordinated as a dimer during viral genome replication.  相似文献   

14.
Viral methyltransferases are involved in the mRNA capping process, resulting in the transfer of a methyl group from S-adenosyl-L-methionine to capped RNA. Two groups of methyltransferases (MTases) are known: (guanine-N7)-methyltransferases (N7MTases), adding a methyl group onto the N7 atom of guanine, and (nucleoside-2'-O-)-methyltransferases (2'OMTases), adding a methyl group to a ribose hydroxyl. We have expressed and purified two constructs of Meaban virus (MV; genus Flavivirus) NS5 protein MTase domain (residues 1-265 and 1-293, respectively). We report here the three-dimensional structure of the shorter MTase construct in complex with the cofactor S-adenosyl-L-methionine, at 2.9 angstroms resolution. Inspection of the refined crystal structure, which highlights structural conservation of specific active site residues, together with sequence analysis and structural comparison with Dengue virus 2'OMTase, suggests that the crystallized enzyme belongs to the 2'OMTase subgroup. Enzymatic assays show that the short MV MTase construct is inactive, but the longer construct expressed can transfer a methyl group to the ribose 2'O atom of a short GpppAC(5) substrate. West Nile virus MTase domain has been recently shown to display both N7 and 2'O MTase activity on a capped RNA substrate comprising the 5'-terminal 190 nt of the West Nile virus genome. The lack of N7 MTase activity here reported for MV MTase may be related either to the small size of the capped RNA substrate, to its sequence, or to different structural properties of the C-terminal regions of West Nile virus and MV MTase-domains.  相似文献   

15.
Liu L  Dong H  Chen H  Zhang J  Ling H  Li Z  Shi PY  Li H 《生物学前沿》2010,5(4):286-303
Many flaviviruses are significant human pathogens. The plus-strand RNA genome of a flavivirus contains a 5′ terminal cap 1 structure (m7GpppAmG). The flavivirus encodes one methyltransferase (MTase), located at the N-terminal portion of the NS5 RNA-dependent RNA polymerase (RdRp). Here we review recent advances in our understanding of flaviviral capping machinery and the implications for drug development. The NS5 MTase catalyzes both guanine N7 and ribose 2′-OH methylations during viral cap formation. Representative flavivirus MTases, from dengue, yellow fever, and West Nile virus (WNV), sequentially generate GpppA → m7GpppA → m7GpppAm. Despite the existence of two distinct methylation activities, the crystal structures of flavivirus MTases showed a single binding site for S-adenosyl-L-methionine (SAM), the methyl donor. This finding indicates that the substrate GpppA-RNA must be repositioned to accept the N7 and 2′-O methyl groups from SAM during the sequential reactions. Further studies demonstrated that distinct RNA elements are required for the methylations of guanine N7 on the cap and of ribose 2′-OH on the first transcribed nucleotide. Mutant enzymes with different methylation defects can trans complement one another in vitro, demonstrating that separate molecules of the enzyme can independently catalyze the two cap methylations in vitro. In the context of the infectious virus, defects in both methylations, or a defect in the N7 methylation alone, are lethal to WNV. However, viruses defective solely in 2′-O methylation are attenuated and can protect mice from later wild-type WNV challenge. The results demonstrate that the N7 methylation activity is essential for the WNV life cycle and, thus, methyltransferase represents a novel and promising target for flavivirus therapy.  相似文献   

16.
Flaviviruses are small, capped positive sense RNA viruses that replicate in the cytoplasm of infected cells. Dengue virus and other related flaviviruses have evolved RNA capping enzymes to form the viral RNA cap structure that protects the viral genome and directs efficient viral polyprotein translation. The N-terminal domain of NS5 possesses the methyltransferase and guanylyltransferase activities necessary for forming mature RNA cap structures. The mechanism for flavivirus guanylyltransferase activity is currently unknown, and how the capping enzyme binds its diphosphorylated RNA substrate is important for deciphering how the flavivirus guanylyltransferase functions. In this report we examine how flavivirus NS5 N-terminal capping enzymes bind to the 5' end of the viral RNA using a fluorescence polarization-based RNA binding assay. We observed that the K(D) for RNA binding is approximately 200 nM Dengue, Yellow Fever, and West Nile virus capping enzymes. Removal of one or both of the 5' phosphates reduces binding affinity, indicating that the terminal phosphates contribute significantly to binding. RNA binding affinity is negatively affected by the presence of GTP or ATP and positively affected by S-adensyl methoninine (SAM). Structural superpositioning of the dengue virus capping enzyme with the Vaccinia virus VP39 protein bound to RNA suggests how the flavivirus capping enzyme may bind RNA, and mutagenesis analysis of residues in the putative RNA binding site demonstrate that several basic residues are critical for RNA binding. Several mutants show differential binding to 5' di-, mono-, and un-phosphorylated RNAs. The mode of RNA binding appears similar to that found with other methyltransferase enzymes, and a discussion of diphosphorylated RNA binding is presented.  相似文献   

17.
Undecaprenyl phosphate (C55-P) acts as carrier lipid in the synthesis of peptidoglycan, which is de novo synthesized from dephosphorylation of undecaprenyl pyrophosphate (C55-PP). The phosphatidylglycerol phosphate phosphatase B (PgpB) catalyzes the dephosphorylation of C55-PP and forms C55-P. As no structural study has been made regarding the binding of C55-PP to PgpB, in the current study, in silico molecular docking, followed by 150 ns molecular dynamics simulation of the putative binding complex in membrane/solvent environment has been performed to understand conformational dynamics. Results are compared with simulated apo form and PE inhibitor-bound form. Analysis of correlated residual fluctuation network in apo form, C55-PP bound and PE inhibitor-bound form suggests that difference in dynamic coupling between TM domain and α2 and α3 helix of periplasmic domain provides ligand binding to facilitate catalysis or to show inhibitory activity. Distance distribution in catalytic residual pair, H207-R104; H207-R201 and H207-D211 which stabilizes phosphate-enzyme intermediate shows a narrow peak in 2.4–3.6 Å in substrate-bound compared to apo form. Binding interactions and binding free energy analyses complement the partial inhibition of PE where PE has less binding free energy compared to the C55-PP substrate as well as the difference in binding interaction with catalytic pocket. Thus, the present study provides how substrate binding couples the movement in TM domain and periplasmic domain which might help in the understanding of active site communication in PgpB. C55-PP phosphatase interactions with a catalytic pocket of PgpB provide new insight for designing drugs against bacterial infection.  相似文献   

18.
Zika virus (ZIKV) has emerged as major health concern, as ZIKV infection has been shown to be associated with microcephaly, severe neurological disease and possibly male sterility. As the largest protein component within the ZIKV replication complex, NS5 plays key roles in the life cycle and survival of the virus through its N-terminal methyltransferase (MTase) and C-terminal RNA-dependent RNA polymerase (RdRp) domains. Here, we present the crystal structures of ZIKV NS5 MTase in complex with an RNA cap analogue (m7GpppA) and the free NS5 RdRp. We have identified the conserved features of ZIKV NS5 MTase and RdRp structures that could lead to development of current antiviral inhibitors being used against flaviviruses, including dengue virus and West Nile virus, to treat ZIKV infection. These results should inform and accelerate the structure-based design of antiviral compounds against ZIKV.  相似文献   

19.
Ribavirin is one of the few nucleoside analogues currently used in the clinic to treat RNA virus infections, but its mechanism of action remains poorly understood at the molecular level. Here, we show that ribavirin 5'-triphosphate inhibits the activity of the dengue virus 2'-O-methyltransferase NS5 domain (NS5MTase(DV)). Along with several other guanosine 5'-triphosphate analogues such as acyclovir, 5-ethynyl-1-beta-d-ribofuranosylimidazole-4-carboxamide (EICAR), and a series of ribose-modified ribavirin analogues, ribavirin 5'-triphosphate competes with GTP to bind to NS5MTase(DV). A structural view of the binding of ribavirin 5'-triphosphate to this enzyme was obtained by determining the crystal structure of a ternary complex consisting of NS5MTase(DV), ribavirin 5'-triphosphate, and S-adenosyl-l-homocysteine at a resolution of 2.6 A. These detailed atomic interactions provide the first structural insights into the inhibition of a viral enzyme by ribavirin 5'-triphosphate, as well as the basis for rational drug design of antiviral agents with improved specificity against the emerging flaviviruses.  相似文献   

20.
Structural modification through binding interaction of plasma protein bovine serum albumin (BSA) with an extrinsic charge transfer fluorophore 5-(4-dimethylamino-phenyl)-penta-2,4-dienoic acid (DMAPPDA) and its response to external perturbation due to interactions with surfactant sodium dodecyl sulphate (SDS) have been explored at physiological pH by steady state absorption, emission, fluorescence anisotropy, red edge excitation shift, far-UV circular dichroism and time resolved spectral measurements in combination with Molecular Docking and Molecular Dynamics (MD) simulation. Interaction of the probe with BSA is reflected by a small change in protein secondary structure with fluorescence enhancement and blue shift of probe emission. Molecular docking studies revealed that the probe binds to the hydrophobic cavity of sub-domain IIA of BSA. The distance for energy transfer from the tryptophan of BSA to the bound DMAPPDA measured by Fluorescence Resonance Energy Transfer is in good agreement with the molecular docking results. MD simulation predicts stabilization of the complex with respect to the bare molecule. Interaction of BSA and SDS with DMAPPDA supports the movement of the probe from hydrophilic free water region to a more restricted hydrophobic zone inside the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号