首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3-Hydroxy-3-methylglutaryl coenzyme-A reductase (HMGR) is generally regarded as targets for the treatment of hypercholesterolemia. HMGR inhibitors (more commonly known as statins) are discovered as plasma cholesterol lowering molecules. In this work, 120 atorvastatin analogues were studied using a combination of molecular modeling techniques including three-dimensional quantitative structure–activity relationship (3D-QSAR), molecular docking and molecular dynamics (MD) simulation. The results show that the best CoMFA (comparative molecular field analysis) model has q2 = 0.558 and r2 = 0.977, and the best CoMSIA (comparative molecular similarity indices analysis) model has q2 = 0.582 and r2 = 0.919. Molecular docking and MD simulation explored the binding relationship of the ligand and the receptor protein. The calculation results indicated that the hydrophobic and electrostatic fields play key roles in QSAR model. After MD simulation, we found four vital residues (Lys735, Arg590, Asp690 and Asn686) and three hydrophobic regions in HMGR binding site. The calculation results show that atorvastatin analogues obtained by introduction of F atoms or gem-difluoro groups could obviously improve the inhibitory activity. The new HMGR inhibitor analogues design in this Letter had been submitted which is being currently synthesized by our laboratories.  相似文献   

3.
Abstract

P21-activated kinase 4 (PAK4) is a serine/threonine protein kinase, which is associated with many cancer diseases, and thus being considered as a potential drug target. In this study, three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking and molecular dynamics (MD) simulations were performed to explore the structure-activity relationship of a series of pyrropyrazole PAK4 inhibitors. The statistical parameters of comparative molecular field analysis (CoMFA, Q 2 = 0.837, R 2 = 0.990, and R 2 pred = 0.967) and comparative molecular similarity indices analysis (CoMSIA, Q 2 = 0.720, R 2 = 0.972, and R 2 pred = 0.946) were obtained from 3D-QSAR model, which exhibited good predictive ability and significant statistical reliability. The binding mode of PAK4 with its inhibitors was obtained through molecular docking study, which indicated that the residues of GLU396, LEU398, LYS350, and ASP458 were important for activity. Molecular mechanics generalized born surface area (MM-GBSA) method was performed to calculate the binding free energy, which indicated that the coulomb, lipophilic and van der Waals (vdW) interactions made major contributions to the binding affinity. Furthermore, through 100?ns MD simulations, we obtained the key amino acid residues and the types of interactions they participated in. Based on the constructed 3D-QSAR model, some novel pyrropyrazole derivatives targeting PAK4 were designed with improved predicted activities. Pharmacokinetic and toxicity predictions of the designed PAK4 inhibitors were obtained by the pkCSM, indicating these compounds had better absorption, distribution, metabolism, excretion and toxicity (ADMET) properties. Above research provided a valuable insight for developing novel and effective pyrropyrazole compounds targeting PAK4.  相似文献   

4.
Abstract

The 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) is a master regulator of glycolysis in cancer cells by synthesizing fructose-2,6-bisphosphate (F-2,6-BP), a potent allosteric activator of phosphofructokinase-1 (PFK-1), which is a rate-limiting enzyme of glycolysis. PFKFB3 is an attractive target for cancer treatment. It is valuable to discover promising inhibitors by using 3D-QSAR pharmacophore modeling, virtual screening, molecular docking and molecular dynamics simulation. Twenty molecules with known activity were used to build 3D-QSAR pharmacophore models. The best pharmacophore model was ADHR called Hypo1, which had the highest correlation value of 0.98 and the lowest RMSD of 0.82. Then, the Hypo1 was validated by cost value method, test set method and decoy set validation method. Next, the Hypo1 combined with Lipinski's rule of five and ADMET properties were employed to screen databases including Asinex and Specs, total of 1,048,159 molecules. The hits retrieved from screening were docked into protein by different procedures including HTVS, SP and XP. Finally, nine molecules were picked out as potential PFKFB3 inhibitors. The stability of PFKFB3-lead complexes was verified by 40?ns molecular dynamics simulation. The binding free energy and the energy contribution of per residue to the binding energy were calculated by MM-PBSA based on molecular dynamics simulation.  相似文献   

5.
Heat shock protein 90(Hsp90), as a molecular chaperone, play a crucial role in folding and proper function of many proteins. Hsp90 inhibitors containing isoxazole scaffold are currently being used in the treatment of cancer as tumor suppressers. Here in the present studies, new compounds based on isoxazole scaffold were predicted using a combination of molecular modeling techniques including three-dimensional quantitative structure–activity relationship (3D-QSAR), molecular docking and molecular dynamic (MD) simulations. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were also done. The steric and electrostatic contour map of CoMFA and CoMSIA were created. Hydrophobic, hydrogen bond donor and acceptor of CoMSIA model also were generated, and new compounds were predicted by CoMFA and CoMSIA contour maps. To investigate the binding modes of the predicted compounds in the active site of Hsp90, a molecular docking simulation was carried out. MD simulations were also conducted to evaluate the obtained results on the best predicted compound and the best reported Hsp90 inhibitors in the 3D-QSAR model. Findings indicate that the predicted ligands were stable in the active site of Hsp90.  相似文献   

6.
FtsZ is an appealing target for the design of antimicrobial agent that can be used to defeat the multidrug-resistant bacterial pathogens. Pharmacophore modelling, molecular docking and molecular dynamics (MD) simulation studies were performed on a series of three-substituted benzamide derivatives. In the present study a five-featured pharmacophore model with one hydrogen bond acceptors, one hydrogen bond donors, one hydrophobic and two aromatic rings was developed using 97 molecules having MIC values ranging from .07 to 957 μM. A statistically significant 3D-QSAR model was obtained using this pharmacophore hypothesis with a good correlation coefficient (R2 = .8319), cross validated coefficient (Q2 = .6213) and a high Fisher ratio (F = 103.9) with three component PLS factor. A good correlation between experimental and predicted activity of the training (R2 = .83) and test set (R2 = .67) molecules were displayed by ADHRR.1682 model. The generated model was further validated by enrichment studies using the decoy test and MAE-based criteria to measure the efficiency of the model. The docking studies of all selected inhibitors in the active site of FtsZ protein showed crucial hydrogen bond interactions with Val 207, Asn 263, Leu 209, Gly 205 and Asn-299 residues. The binding free energies of these inhibitors were calculated by the molecular mechanics/generalized born surface area VSGB 2.0 method. Finally, a 15 ns MD simulation was done to confirm the stability of the 4DXD–ligand complex. On a wider scope, the prospect of present work provides insight in designing molecules with better selective FtsZ inhibitory potential.  相似文献   

7.
8.
9.
Human Coagulation Factor IXa (FIXa), specifically inhibited at the initiation stage of the blood coagulation cascade, is an excellent target for developing selective and safe anticoagulants. To explore this inhibitory mechanism, 86 FIXa inhibitors were selected to generate pharmacophore models and subsequently SAR models. Both best pharmacophore model and ROC curve were built through the Receptor–Ligand Pharmacophore Generation module. CoMFA model based on molecular docking and PLS factor analysis methods were developed. Model propagations values are q2?=?0.709, r2?=?0.949, and r2pred?=?0.905. The satisfactory q2 value of 0.609, r2 value of 0.962, and r2pred value of 0.819 for CoMSIA indicated that the CoMFA and CoMSIA models are both available to predict the inhibitory activity on FIXa. On the basis of pharmacophore modeling, molecular docking, and 3D-QSAR modeling screening, six molecules are screened as potential FIXa inhibitors.  相似文献   

10.
Recently, Histone Lysine Specific Demethylase 1 (LSD1) was regarded as a promising anticancer target for the novel drug discovery. And several small molecules as LSD1 inhibitors in different structures have been reported. In this work, we carried out a molecular modeling study on the 6-aryl-5-cyano-pyrimidine fragment LSD1 inhibitors using three-dimensional quantitative structure–activity relationship (3D-QSAR), molecular docking and molecular dynamics simulations. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were used to generate 3D-QSAR models. The results show that the best CoMFA model has q2 = 0.802, r2ncv = 0.979, and the best CoMSIA model has q2 = 0.799, r2ncv = 0.982. The electrostatic, hydrophobic and H-bond donor fields play important roles in the models. Molecular docking studies predict the binding mode and the interactions between the ligand and the receptor protein. Molecular dynamics simulations results reveal that the complex of the ligand and the receptor protein are stable at 300 K. All the results can provide us more useful information for our further drug design.  相似文献   

11.
Acetyl-CoA carboxylase (ACC) enzyme plays an important role in the regulation of biosynthesis and oxidation of fatty acids. ACC is a recognized drug target for the treatment of obesity and diabetes. Combination of ligand and structure-based in silico methods along with activity and toxicity prediction provides best lead compounds in the drug discovery process. In this study, a data-set of 100 ACC inhibitors were used for the development of comparative molecular field analysis (CoMFA) and comparative molecular similarity index matrix analysis (CoMSIA) models. The generated contour maps were used for the design of novel ACC inhibitors. CoMFA and CoMSIA models were used for the predication of activity of designed compounds. In silico toxicity risk prediction study was carried out for the designed compounds. Molecular docking and dynamic simulations studies were performed to know the binding mode of designed compounds with the ACC enzyme. The designed compounds showed interactions with key amino acid residues important for catalysis, and good correlation was observed between binding free energy and inhibition of ACC.  相似文献   

12.
The three dimensional-quantitative structure activity relationship (3D-QSAR) studies were performed on a series of falcipain-3 inhibitors using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) techniques. A training set containing 42 molecules served to establish the QSAR models. The optimum CoMFA and CoMSIA models obtained for the training set were statistically significant with cross-validated correlation coefficients r(cv)(2) (q(2)) of 0.549 and 0.608, and conventional correlation coefficients (r(2)) of 0.976 and 0.932, respectively. An independent test set of 12 molecules validated the external predictive power of both models with predicted correlation coefficients (r(pred)(2)) for CoMFA and CoMSIA as 0.697 and 0.509, respectively. The docking of inhibitors into falcipain-3 active site using GOLD software revealed the vital interactions and binding conformation of the inhibitors. The CoMFA and CoMSIA field contour maps agree well with the structural characteristics of the binding pocket of falcipain-3 active site, which suggests that the information rendered by 3D-QSAR models and the docking interactions can provide guidelines for the development of improved falcipain-3 inhibitors.  相似文献   

13.
Three-dimensional quantitative structure–activity relationship (3D-QSAR) studies were performed on a series of substituted 1,4-dihydroindeno[1,2-c]pyrazoles inhibitors, using molecular docking and comparative molecular field analysis (CoMFA). The docking results from GOLD 3.0.1 provide a reliable conformational alignment scheme for the 3D-QSAR model. Based on the docking conformations and alignments, highly predictive CoMFA model was built with cross-validated q 2 value of 0.534 and non-cross-validated partial least-squares analysis with the optimum components of six showed a conventional r 2 value of 0.911. The predictive ability of this model was validated by the testing set with a conventional r 2 value of 0.812. Based on the docking and CoMFA, we have identified some key features of the 1,4-dihydroindeno[1,2-c]pyrazoles derivatives that are responsible for checkpoint kinase 1 inhibitory activity. The analyses may be used to design more potent 1,4-dihydroindeno[1,2-c]pyrazoles derivatives and predict their activity prior to synthesis.  相似文献   

14.
Filamentous temperature-sensitive protein Z (FtsZ), playing a key role in bacterial cell division, is regarded as a promising target for the design of antimicrobial agent. This study is looking for potential high-efficiency FtsZ inhibitors. Ligand-based pharmacophore and E-pharmacophore, virtual screening and molecular docking were used to detect promising FtsZ inhibitors, and molecular dynamics simulation was used to study the stability of protein-ligand complexes in this paper. Sixty-three inhibitors from published literatures with pIC50 ranging from 2.483 to 5.678 were collected to develop ligand-based pharmacophore model. 4DXD bound with 9PC was selected to develop the E-pharmacophore model. The pharmacophore models validated by test set method and decoy set were employed for virtual screening to exclude inactive compounds against ZINC database. After molecular docking, ADME analysis, IFD docking and MM-GBSA, 8 hits were identified as potent FtsZ inhibitors. A 50?ns molecular dynamics simulation was implemented on the compounds to assess the stability between potent inhibitors and FtsZ. The results indicated that the candidate compounds had a high docking score and were strongly combined with FtsZ by forming hydrogen bonding interactions with key amino acid residues, and van der Waals forces and hydrophobic interactions had significant contribution to the stability of the binding. Molecular dynamics simulation results showed that the protein-ligand compounds performed well in both the stability and flexibility of the simulation process.  相似文献   

15.
The discovery of clinically relevant inhibitors against MurF enzyme has proven to be a challenging task. In order to get further insight into the structural features required for the MurF inhibitory activity, we performed pharmacophore and atom-based three-dimensional quantitative structure–activity relationship studies for novel thiophene-3-carbonitriles based MurF inhibitors. The five-feature pharmacophore model was generated using 48 inhibitors having IC50 values ranging from 0.18 to 663?μm. The best-fitted model showed a higher coefficient of determination (R2?=?0.978), cross-validation coefficient (Q2?=?0.8835) and Pearson coefficient (0.9406) at four component partial least-squares factor. The model was validated with external data set and enrichment study. The effectiveness of the docking protocol was validated by docking the co-crystallized ligand into the catalytic pocket of MurF enzyme. Further, binding free energy calculated by the molecular mechanics generalized Born surface area approach showed that van der Waals and non-polar solvation energy terms are the main contributors to ligand binding in the active site of MurF enzyme. A 10-ns molecular dynamic simulation was performed to confirm the stability of the 3ZM6-ligand complex. Four new molecules are also designed as potent MurF inhibitors. These results provide insights regarding the development of novel MurF inhibitors with better binding affinity.  相似文献   

16.
Chemotypes comprising the d-annulated 1,3-dihydro-2H-1-benzazepin-2-one scaffold derived from the paullone structure were found to be potent vascular endothelial growth factor receptor 2 (VEGF-R2) kinase inhibitors. Three-dimensional quantitative structure-activity relationship (3D-QSAR) and docking studies were performed on a series of d-annulated benzazepinones with VEGF-R2 kinase inhibition activities. The comparative molecular field analysis and comparative molecular similarity indices analysis models using 32 molecules in the training set gave r2cv values of 0.811 and 0.769, r2 values of 0.962 and 0.953, respectively. 3D contour maps generated from the two models revealed that the electron-withdrawing groups at R1 and the bulky, electron-withdrawing as well as hydrogen bond donor groups at R2 position are favourable; the bulky, hydrogen bond acceptor substituent at R3 and the minor groups at R4 position may benefit the potency. We have designed a series of novel VEGF-R2 inhibitors by utilizing the SAR results revealed in the present study, which were predicted with excellent potencies in the developed models. The results may aid in designing of potential VEGF-R2 inhibitors with better activities.  相似文献   

17.
18.
The G-protein coupled estrogen receptor 1 GPER/GPR30 is a transmembrane seven-helix (7TM) receptor involved in the growth and proliferation of breast cancer. Due to the absence of a crystal structure of GPER/GPR30, in this work, molecular modeling studies have been carried out to build a three-dimensional structure, which was subsequently refined by molecular dynamics (MD) simulations (up to 120 ns). Furthermore, we explored GPER/GPR30’s molecular recognition properties by using reported agonist ligands (G1, estradiol (E2), tamoxifen, and fulvestrant) and the antagonist ligands (G15 and G36) in subsequent docking studies. Our results identified the E2 binding site on GPER/GPR30, as well as other receptor cavities for accepting large volume ligands, through GPER/GPR30 π–π, hydrophobic, and hydrogen bond interactions. Snapshots of the MD trajectory at 14 and 70 ns showed almost identical binding motifs for G1 and G15. It was also observed that C107 interacts with the acetyl oxygen of G1 (at 14 ns) and that at 70 ns the residue E275 interacts with the acetyl group and with the oxygen from the other agonist whereas the isopropyl group of G36 is oriented toward Met141, suggesting that both C107 and E275 could be involved in the protein activation. This contribution suggest that GPER1 has great structural changes which explain its great capacity to accept diverse ligands, and also, the same ligand could be recognized in different binding pose according to GPER structural conformations.  相似文献   

19.
New Delhi metallo-β-lactamase-1 (NDM-1) as a target for the development of anti-superbug agents, plays an important role in the resistance of β-lactam antibiotics and has received worldwide attention. Sulfhydryl propionic acid derivatives can effectively inhibit the catalytic activity of NDM-1, but the quantitative structure–activity relationship (QSAR) and inhibitor-target recognition mechanism both remain unclear. In this work, CoMFA and CoMSIA models of sulfhydryl propionic acid inhibitors with high predictive ability were obtained, from which the effect of different substituents on the inhibitory activity against NDM-1 were revealed at the molecular level. Then, two 120-nanosecond comparative molecular dynamics (MD) simulations for NDM-1 enzyme and NDM-1-inhibitor complex systems were performed to study the recognition and inhibition mechanism of sulfhydryl propionic acid derivatives. The binding of inhibitors alters the entire H-bond network of the NDM-1 system accompanied by the formation of strong interactions with I35, W93, H120, H122, D124, H189 and H250, further weakens the recognition of NDM-1 by its endogenic substrates. Finally, the results of free energy landscape and conformation cluster analyses show that NDM-1 underwent a significant conformational change after the association with sulfhydryl propionic acid inhibitors. Our findings can provide theoretical support and help for anti-superbug agents design based on the structures of NDM-1 and sulfhydryl propionic acid derivatives.  相似文献   

20.
A combination of the following computational methods: (i) molecular docking, (ii) 3-D Quantitative Structure Activity Relationship Comparative Molecular Field Analysis (3D-QSAR CoMFA), (iii) similarity search and (iv) virtual screening using PubChem database was applied to identify new anthranilic acid-based inhibitors of hepatitis C virus (HCV) replication. A number of known inhibitors were initially docked into the “Thumb Pocket 2” allosteric site of the crystal structure of the enzyme HCV RNA-dependent RNA polymerase (NS5B GT1b). Then, the CoMFA fields were generated through a receptor-based alignment of docking poses to build a validated and stable 3D-QSAR CoMFA model. The proposed model can be first utilized to get insight into the molecular features that promote bioactivity, and then within a virtual screening procedure, it can be used to estimate the activity of novel potential bioactive compounds prior to their synthesis and biological tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号