首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundSerine proteases are one of the most studied group of enzymes. Despite the extensive mechanistic studies, some crucial details remain controversial, for example, how the cleaved product is released in the catalysis reaction. A cyclic peptidyl inhibitor (CSWRGLENHRMC, upain-1) of a serine protease, urokinase-type plasminogen activator (uPA), was found to become a slow substrate and cleaved slowly upon the replacement of single residue (W3A).MethodsBy taking advantage of the unique property of this peptide, we report the high-resolution structures of uPA in complex with upain-1-W3A peptide at four different pH values by X-ray crystallography.ResultsIn the structures obtained at low pH (pH 4.6 and 5.5), the cyclic peptide upain-1-W3A was found to be intact and remained in the active site of uPA. At 7.4, the scissile bond of the peptide was found cleaved, showing that the peptide became a uPA substrate. At pH 9.0, the C-terminal part of the substrate was no longer visible, and only the P1 residue occupying the S1 pocket was identified.ConclusionsThe analysis of these structures provides explanations why the upain-1-W3A is a slow substrate. In addition, we clearly identified the cleaved fragments of the peptide at both sides of the scissile bond in the active site of the enzyme, showing a slow release of the cleaved peptide.General significanceThis work indicates that the quick release of the cleaved P′ fragment after the first step of hydrolysis may not always be needed for the second hydrolysis.  相似文献   

2.
Urokinase-type plasminogen activator (uPA) plays a crucial role in the regulation of plasminogen activation, tumor cell adhesion and migration. The inhibition of uPA activity is a promising mechanism for anti-cancer therapy. A cyclic peptidyl inhibitor, upain-1, CSWRGLENHRMC, was identified recently as a competitive and highly specific uPA inhibitor. We determined the crystal structure of uPA in complex with upain-1 at 2.15 A. The structure reveals that the cyclic peptide adopts a rigid conformation stabilized by a disulfide bond (residues 1-12) and three tight beta turns (residues 3-6, 6-9, 9-12). The Glu7 residue of upain-1 forms hydrogen bonds with the main chain nitrogen atoms of residues 4, 5, and 6 of upain-1, and is also critical for maintaining the active conformation of upain-1. The Arg4 of upain-1 is inserted into the uPA's specific S1 pocket. The Ser2 residue of upain-1 locates close to the S1beta pocket of uPA. The Gly5 and Glu7 residues of upain-1 occupy the S2 pocket and the oxyanion hole of uPA, respectively. Furthermore, the Asn8 residue of upain-1 binds to the 37- and 60-loops of uPA and renders the specificity of upain-1 for uPA. Based on this structure, a new pharmacophore for the design of highly specific uPA inhibitors was proposed.  相似文献   

3.
To find new principles for inhibiting serine proteases, we screened phage-displayed random peptide repertoires with urokinase-type plasminogen activator (uPA) as the target. The most frequent of the isolated phage clones contained the disulfide bridge-constrained sequence CSWRGLENHRMC, which we designated upain-1. When expressed recombinantly with a protein fusion partner, upain-1 inhibited the enzymatic activity of uPA competitively with a temperature and pH-dependent K(i), which at 25 degrees C and pH 7.4 was approximately 500 nm. At the same conditions, the equilibrium dissociation constant K(D), monitored by displacement of p-aminobenzamidine from the specificity pocket of uPA, was approximately 400 nm. By an inhibitory screen against other serine proteases, including trypsin, upain-1 was found to be highly selective for uPA. The cyclical structure of upain-1 was indispensable for uPA binding. Alanine-scanning mutagenesis identified Arg(4) of upain-1 as the P(1) residue and indicated an extended binding interaction including the specificity pocket and the 37-, 60-, and 97-loops of uPA and the P(1), P(2), P(3)', P(4)', and the P(5)' residues of upain-1. Substitution with alanine of the P(2) residue, Trp(3), converted upain-1 into a distinct, although poor, uPA substrate. Upain-1 represents a new type of uPA inhibitor that achieves selectivity by targeting uPA-specific surface loops. Most likely, the inhibitory activity depends on its cyclical structure and the unusual P(2) residue preventing the scissile bond from assuming a tetrahedral geometry and thus from undergoing hydrolysis. Peptide-derived inhibitors such as upain-1 may provide novel mechanistic information about enzyme-inhibitor interactions and alternative methodologies for designing effective protease inhibitors.  相似文献   

4.
Some peptide sequences can behave as either substrates or inhibitors of serine proteases. Working with a cyclic peptidic inhibitor of the serine protease urokinase-type plasminogen activator (uPA), we have now demonstrated a new mechanism for an inhibitor-to-substrate switch. The peptide, CSWRGLENHAAC (upain-2), is a competitive inhibitor of human uPA, but is also slowly converted to a substrate in which the bond between Arg4 and Gly5 (the P1-P1′ bond) is cleaved. Substituting the P2 residue Trp3 to an Ala or substituting the P1 Arg4 residue with 4-guanidino-phenylalanine strongly increased the substrate cleavage rate. We studied the structural basis for the inhibitor-to-substrate switch by determining the crystal structures of the various peptide variants in complex with the catalytic domain of uPA. While the slowly cleaved peptides bound clearly in inhibitory mode, with the oxyanion hole blocked by the side chain of the P3′ residue Glu7, peptides behaving essentially as substrates with a much accelerated rate of cleavage was observed to be bound to the enzyme in substrate mode. Our analysis reveals that the inhibitor-to-substrate switch was associated with a 7?Å translocation of the P2 residue, and we conclude that the inhibitor-to-substrate switch of upain-2 is a result of a major conformational change in the enzyme-bound state of the peptide. This conclusion is in contrast to findings with so-called standard mechanism inhibitors in which the inhibitor-to-substrate switch is linked to minor conformational changes in the backbone of the inhibitory peptide stretch.  相似文献   

5.
6.
A piscicidal constituent (1), C20H28O3, (chloroform), which was named maingayic acid, was isolated from the leaf of Callicarpa maingayi. On the basis of the chemical spectral studies, the pKMCS evaluation and the octant rule on the ORD curves, we have and deduced that maingayic acid is a furanoid diterpene acid possessing a rearranged labdane skeleton shown as 1’a.  相似文献   

7.
Urokinase type plasminogen activator (uPA), a trypsin-like serine proteinase, plays an important role in normal tissue re-modelling, cell adhesion, and cell motility. In addition, studies utilizing normal animals and potent, selective uPA inhibitors or genetically modified mice that lack functional uPA genes have demonstrated that uPA can significantly enhance tumor initiation, growth, progression and metastasis, strongly suggesting that this enzyme may be a promising anti-cancer target. We have investigated the structure-activity relationship (SAR) of peptidomimetic inhibitors of uPA and solved high resolution X-ray structures of key, lead small molecule inhibitors (e.g. phenethylsulfonamidino(P4)-D-seryl(P3)-L-alanyl(P2)-L-argininal(P1) and derivatives thereof) in complex with the uPA proteinase domain. These potent inhibitors are highly selective for uPA. The non-natural D-seryl residue present at the P3 position in these inhibitors contributes substantially to both potency and selectivity because, due to its D-configuration, its side-chain binds in the S4 pocket to interact with the uPA unique residues Leu97b and His99. Additional potency and selectivity can be achieved by optimizing the inhibitor P4 residue to bind a pocket, known as S1sub or S1beta, that is adjacent to the primary specificity pocket of uPA.  相似文献   

8.
Abstract

The effect of pH and temperature on the apparent association equilibrium constant (Ka) for the binding of the bovine and porcine pancreatic secretory trypsin inhibitor (Kazal-type inhibitor, PSTI) to human leukocyte elastase has been investigated. At pH8.0, values of the apparent thermodynamic parameters for human leukocyte elastase: Kazal-type inhibitor complex formation are: bovine PSTT – Ka = 6.3 × 104M?1, δ5G° = -26.9kJ/mol, δH° = +11.7kJ/mol, and δS° = +1.3 × 102 entropy units; porcine PSTI –Ka = 7.0 × 103M?1,δG° = -21.5kJ/mol, δH° = +13.0kJ/mol, and δS° = +1.2 × 102 entropy units (values of Ka δG° and δS° were obtained at 21.0°C; values of δH° were temperature independent over the range (between 5.0°C and 45.0°C) explored). On increasing the pH from 4.5 to 9.5, values of Ka for bovine and porcine PSTI binding to human leukocyte elastase increase thus reflecting the acidic pK-shift of the His57 catalytic residue from ?7.0, in the free enzyme, to ?5.1, in the serine proteinase: inhibitor complexes. Thermodynamics of bovine and porcine PSTI binding to human leukocyte elastase has been analyzed in parallel with that of related serine (pro)enzyme/Kazal-type inhibitor systems. Considering the known molecular models, the observed binding behaviour of bovine and porcine PSTI to human leukocyte elastase was related to the inferred stereochemistry of the serine proteinase/inhibitor contact region(s).  相似文献   

9.
Abstract

The effect of pH and temperature on the apparent association equilibrium constant (Ka) for the binding of the recombinant proteinase inhibitor eglin c (eglin c), of the soybean Bowman-Birk proteinase inhibitor (BBI) and of its chymotrypsin and trypsin inhibiting fragments (F-C and F-T, respetively) to Leuproteinase, the leucine specific serine proteinase from spinach (Spinacia oleracea L.) leaves, has been investigated. On lowering the pH from 9.5 to 4.5, values of Ka (at 21°C) for complex formation decrease thus reflecting the acidic pK-shift of the hystidyl catalytic residue from ~6.9, in the free Leu-proteinase, to ~5.1, in the enzyme: inhibitor adducts. At pH 8.0, values of the apparent thermodynamic parameters for the proteinase:inhibitor complex formation are: Leu-proteinase:eglin c - Ka = 2.2 × 1011 M-1, δG°= - 64kJ/mol, δH° = + 5.9kJ/mol, and δS° = + 240J/molK; Leu-proteinase:BBI - Ka = 3.2 × 1010 M-1, δG° = - 59kJ/mol, δH°= + 8.8kJ/mol, and δS° = + 230J/molK; and Leu-proteinase:F-C - Ka = 1.1 × 106 M-1, δG°= - 34kJ/mol, δH° = + 18J/mol, and δS° = + 180J/molK (values of Ka, δG° and δS° were obtained at 21.0°C; values of δH° were temperature-independent over the range explored, i.e. between 10.0°C and 40.0°C). F-T does not inhibit Leu-proteinase up to an inhibitor concentration of 1.0 × 10-3 M, suggesting that the upper limit of Ka is 1 × 102 M-1. Considering the known molecular models, the observed binding behaviour of eglin c, BBI, F-C and F-T to Leu-proteinase has been related to the inferred stereochemistry of the enzyme/inhibitor contact region  相似文献   

10.
Among the seven tyrosine autophosphorylation sites identified in the intracellular domain of tyrosine kinase fibroblast growth factor receptor-1 (FGFR1), five of them are dispensable for FGFR1-mediated mitogenic signaling. The possibility of dissociating the mitogenic activity of basic FGF (FGF2) from its urokinase-type plasminogen activator (uPA)-inducing capacity both at pharmacological and structural levels prompted us to evaluate the role of these autophosphorylation sites in transducing FGF2-mediated uPA upregulation. To this purpose, L6 myoblasts transfected with either wild-type (wt) or various FGFR1 mutants were evaluated for the capacity to upregulate uPA production by FGF2. uPA was induced in cells transfected with wt-FGFR1, FGFR1-Y463F, -Y585F, -Y730F, -Y766F, or -Y583/585F mutants. In contrast, uPA upregulation was prevented in L6 cells transfected with FGFR1-Y463/583/585/730F mutant (FGFR1–4F) or with FGFR1-Y463/583/585/730/766F mutant (FGFR1–5F) that retained instead a full mitogenic response to FGF2; however, preservation of residue Y730 in FGFR1-Y463/583/585F mutant (FGFR1–3F) and FGFR1-Y463/583/585/766F mutant (FGFR1–4Fbis) allows the receptor to transduce uPA upregulation. Wild-type FGFR1, FGFR1–3F, and FGFR1–4F similarly bind to a 90-kDa tyrosine-phosphorylated protein and activate Shc, extracellular signal-regulated kinase (ERK)2, and JunD after stimulation with FGF2. These data, together with the capacity of the ERK kinase inhibitor PD 098059 to prevent ERK2 activation and uPA upregulation in wt-FGFR1 cells, suggest that signaling through the Ras/Raf-1/ERK kinase/ERK/JunD pathway is necessary but not sufficient for uPA induction in L6 transfectants. Accordingly, FGF2 was able to stimulate ERK1/2 phosphorylation and cell proliferation, but not uPA upregulation, in L6 cells transfected with the FGFR1-Y463/730F mutant, whereas the FGFR1-Y583/585/730F mutant was fully active. We conclude that different tyrosine autophosphorylation requirements in FGFR1 mediate cell proliferation and uPA upregulation induced by FGF2 in L6 cells. In particular, phosphorylation of either Y463 or Y730, dispensable for mitogenic signaling, represents an absolute requirement for FGF2-mediated uPA induction.  相似文献   

11.
A new inhibitor of dopamine β-hydroxylase, dopastin, has been isolated. The dopastin-producing strain was found in a mushroom culture, and after being separated, it was confirmed to be a member of Pseudomonas. Dopastin was obtained as colorless needles, mp 116~119°C, (c=0.5, С2Н5ОН), C9H17N3O3. The catalytic hydrogenation afforded dihydro-dopastin which also inhibits dopamine β-hydroxylase.  相似文献   

12.
Malonogalactan, a malonylated polysaccharide (—74° (c=1.6, H2O)) produced by Penicillium citrinum, consisted of d-galactose and malonic acid in the approximate molar ratio of 3:1. Molecular weight of the demalonylated galactan (-99° (c=4.6, H2O)) was about 40,000. From the data regarding optical rotation, nuclear magnetic resonance spectrum, infrared spectrum, glycosidase susceptibility, periodate oxidation, Smith degradation, methylation and acid hydrolysis, the possible structure of the Penicillium malonogalactan is deduced as follows: A galactan, 1,5-β-galactofuranoside polymer esterified with malonic acid at the position of 2 or 3.  相似文献   

13.
The influence of angiostatin K1-4.5, a fragment of the heavy chain of plasmin and a powerful inhibitor of angiogenesis, on kinetic parameters (k Pg and K Pg) of human Glu-plasminogen activation under the action of urokinase (uPA) not having affinity for fibrin and fibrin-specific tissue plasminogen activator (tPA) was investigated. Angiostatin does not affect on the k Pg value, but increases the value of K Pg plasminogen activation by urokinase. A decrease in the k Pg value and an increase in the K Pg value were found for fibrin-stimulated plasminogen activation by tPA with increasing concentrations of angiostatin. The obtained results show that angiostatin is a competitive inhibitor of the uPA activator activity, while it inhibits the activator activity of tPA with a mixed type. Such an influence of angiostatin on the kinetic constants of the plasminogen activation by urokinase suggests that angiostatin dose-dependent manner replaces plasminogen in the binary enzyme-substrate complex uPA-Pg. In the case of fibrin-stimulated plasminogen activation by tPA, both zymogen and tPA are bound to fibrin with the formation of the effective triple tPA-Pg-fibrin complex. Angiostatin replaces plasminogen both from the fibrin surface and from the enzyme-substrate tPA-Pg complex, which leads to a decrease in k Pg and an increase in K Pg of the plasminogen activation. Inhibition constants by angiostatin (K i) of plasminogen-activator activities of uPA and tPA determined by the Dixon method were found to be 0.59 ± 0.04 and 0.12 ± 0.05 μM, respectively.  相似文献   

14.
In order to define potential interaction sites of SGLT1 with the transport inhibitor phlorizin, mutagenesis studies were performed in a hydrophobic region of loop 13 (aa 604–610), located extracellularly, close to the C-terminus. COS 7 cells were transiently transfected with the mutants and the kinetic parameters of α-methyl-d-glucopyranoside (AMG) uptake into the cells were investigated. Replacement of the respective amino acids with lysine reduced the maximal uptake rate: Y604K showed 2.2%, L606K 48.4%, F607K 15.1%, C608K 13.1%, G609K 14.1%, and L610K 17.2% of control. In all mutants the apparent K i for phlorizin increased at least by a factor of 5 compared to the wild-type K i of 4.6 ± 0.7 μmol/l; most striking changes were observed for Y604K (K i = 75.3 ± 19.0 μmol/l) and C608K (K i = 83.6 ± 13.9 μmol/l). Replacement of these amino acids with a nonpolar amino acid instead of lysine such as in Y604F, Y604G and C608A showed markedly higher affinities for phlorizin. In cells expressing the mutants the apparent affinity of AMG uptake for the sugar was not statistically different from that of the wild type (K m = 0.8 ± 0.2 mmol/l). These studies suggest that the region between amino acids 604 and 610 is involved in the interaction between SGLT1 and phlorizin, probably by providing a hydrophobic pocket for one of the aromatic rings of the aglucone moiety of the glycoside. Received: 29 March 2001/Revised: 15 June 2001  相似文献   

15.
16.
Interaction between duodenase (a granase family member) from bovine duodenal mucosa and recombinant antichymotrypsin (rACT) and its P1 variants has been studied. Association rate constants (k a) were 11, 6.8, and 17 mM?1·sec?1 for rACT, ACT L358M, and ACT L358R, respectively. Natural antitrypsin (AT) compared to ACT was a 20 times more effective duodenase inhibitor (in terms of k a). Duodenase interacted with P1 variants of ACT via a suicide mechanism with stoichiometry of the process SI = 1.2. The nature of the P1 residue of the inhibitor did not influence the interaction if other residues did not meet conformational requirements of the duodenase substrate-binding pocket. Also, interaction of duodenase with ACT variants containing residues from AT reaction center loop (rACT P2-P3′, rACT P3-P4′, rACT P4-P3′, and rACT P6-P4′) was studied. The inhibition type ([E]0 = 1·10?7 M, 25°C) was revealed to be reversible-like, and efficacy of inhibition decreased with increase in the substituted part of the reactive center loop. Constants of inhibition (K i) were measured. Efficacy of interaction between the enzyme (duodenase) and inhibitor depends on topochemical correspondence between a substrate-binding pocket of the enzyme and substrate structure.  相似文献   

17.
The purpose of this study is to find optimal conditions for pre-hydrolysis in the new wood saccharification process with strong sulfuric acid. In the experiment, the hydrolysis rate of resistant fraction of pentosan of white birch (Shirakamba, Betula platyphylla Sukatchev var. japonica Hara) wood and the decomposition rate of xylose are measured in acid concentrations ranging from 30 to 60% at temperatures ranging from 30 to 90°C. The hydrolysis of resistant pentosan of white birch and the decomposition of xylose are the first-order reactions. The first-order reaction constant of hydrolysis of resistant pentosan, kB min-1, is expressed by the following empirical equations as the function of percentage concentration of sulfuric acid, C, and reaction temperature described by absolute temperature, T°K, ranging from 40 to 80°C:

where sulfuric acid concentrations range from 30 to 50%;

where sulfuric acid concentration is 60%.

The first-order reaction constant of decomposition of xylose, k2 min-1, is expressed by the following empirical equation as the function of sulfuric acid strength described by acidity function, H0, and reaction temperature described by absolute temperature, T°K, in sulfuric acid concentrations ranging from 30 to 60% at temperatures within the range of 40 to 100°C.

where C is sulfuric acid strength described by acidity function, H0.  相似文献   

18.
The substrate specificity of rice α-glucosidase II was studied. The enzyme was active especially on nigerose, phenyl-α-maltoside and maltooligosaccharides. The actions on isomaltose and phenyl-α-glucoside were weak, and on sucrose and methyl-α-glucoside, negligible. The α-glucans, such as soluble starch, amylopectin, β-limit dextrin, glycogen and amylose, were also hydrolyzed.

The ratio of the maximum velocities for hydrolyses of maltose (G2), nigerose (N), kojibiose (K), isomaltose (I), phenyl-α-maltoside (?M) and soluble starch (SS) was estimated to be 100: 94.4: 14.2: 7.1: 89.5: 103.1 in this order, and that for hydrolyses of malto-triose (G3), -tetraose (G4), -pentaose (G5), -hexaose (G6), -heptaose (G7), -octaose (G8), and amyloses ( and ), 113: 113: 113: 106: 113: 100: 106: 106. The Km values for N, K, I, ?M and SS were 2.4 mm, 0.58 mm, 20 mm, 1.6 mm and 5.0 mg/ml, respectively; those for G2, G3, G4, G5, G6, G7, G8, and , 2.4 mm, 2.2 mm, 2.1 mm, 1.5 mm, 1.0 mm, 1.1 mm, 0.95 mm, 1.5 mm and 1.1 mm.

Rice α-glucosidase II is considered an enzyme with a preferential activity on maltooligosaccharides.  相似文献   

19.
The 2.2 Å X-ray crystal structure of Candida tenuis xylose reductase (AKR2B5) bound with NADP+ reveals that Phe-114 contributes to the substrate binding pocket of the enzyme. In the related human aldose reductase (AKR1B1), this phenylalanine is replaced by a tryptophan. The side chain of Trp was previously implicated in forming a hydrogen bond with bound substrate or inhibitor. The apparent Michaelis constant of AKR2B5 for xylose (Km≈90 mM) is 60 times that of AKR1B1, perhaps because critical enzyme–substrate interactions of Trp are not available to Phe-114. We, therefore, prepared a Phe-114→Trp mutant (F114W) of AKR2B5, to mimic the aldose reductase relationship in xylose reductase. Detailed analysis of the kinetic consequences in purified F114W revealed that the Km values for xylose and xylitol at pH 7.0 and 25°C were increased 5.1- and 4.4-fold, respectively, in the mutant compared with the wild-type. Turnover numbers (kcat) of F114W for xylose reduction and xylitol oxidation were half those of the wild-type. Apparent dissociation constants of NADH (KiNADH=44 µM) and NAD+ (KiNAD+=177 µM) were increased 1.6- and 1.4-fold in comparison with values of KiNADH and KiNAD+ for the wild-type, respectively. Catalytic efficiencies (kcat/Km) for NADH-dependent reduction of different aldehydes were between 3.1- and 31.5-fold lower than the corresponding kcat/Km values of the wild-type. Therefore, replacement of Phe-114 with Trp weakens rather than strengthens apparent substrate binding by AKR2B5, suggesting that xylose reductase exploits residue 114 in a different manner from aldose reductase.  相似文献   

20.
Kinetics of carbon dioxide evolution was investigated in agitation system. Reaction steps of carbon dioxide evolution in submerged fermentations may consist of three steps; the first, hydration of carbon dioxide liberated from living cells, the second, dehydration of bicarbonate ions and the third, formation of carbon dioxide bubbles. Taking into account the equilibrium between hydration of carbon dioxide and dehydration of bicarbonate ions at physiological pH value, the fallowings may be rate-limiting steps in mass transfer of carbon dioxide in submerged fermentations, dehydration of bicarbonate ions and the bubble formation. The overall velocity constant of these two reaction steps was determined in the agitation vessel This reaction obeyed good first-order kinetics and the term of was introduced as a velocity constant. This value was influenced by agitation speed, temperature, viscosity of the fluid and carbonic anhydrase. The value of carbon dioxide coefficient (Kd)CO2 was higher than the oxygen absorption coefficient Kd. The driving force of mass transfer for carbon dioxide, DCO2pCO2, therefore, was lower than that for oxygen, PBPL. The relationship between the overall coefficient of oxygen transfer across gas-liquid interface KLa and the overall velocity constant of carbon dioxide evolution was expressed in the formula   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号