首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
E Sejdić  Y Fu  A Pak  JA Fairley  T Chau 《PloS one》2012,7(8):e43104
Walking is a complex, rhythmic task performed by the locomotor system. However, natural gait rhythms can be influenced by metronomic auditory stimuli, a phenomenon of particular interest in neurological rehabilitation. In this paper, we examined the effects of aural, visual and tactile rhythmic cues on the temporal dynamics associated with human gait. Data were collected from fifteen healthy adults in two sessions. Each session consisted of five 15-minute trials. In the first trial of each session, participants walked at their preferred walking speed. In subsequent trials, participants were asked to walk to a metronomic beat, provided through visually, aurally, tactile or all three cues (simultaneously and in sync), the pace of which was set to the preferred walking speed of the first trial. Using the collected data, we extracted several parameters including: gait speed, mean stride interval, stride interval variability, scaling exponent and maximum Lyapunov exponent. The extracted parameters showed that rhythmic sensory cues affect the temporal dynamics of human gait. The auditory rhythmic cue had the greatest influence on the gait parameters, while the visual cue had no statistically significant effect on the scaling exponent. These results demonstrate that visual rhythmic cues could be considered as an alternative cueing modality in rehabilitation without concern of adversely altering the statistical persistence of walking.  相似文献   

2.
The objective of the present study was to investigate the effects of rhythmic arm swing on ipsilateral and contralateral soleus motoneuron pool excitability. Ten healthy human subjects participated in this study. Soleus H-reflexes were recorded from the ipsilateral and contralateral soleus muscles while the subject swung the right arm anteroposteriorly as if during gait. The soleus H-reflex was depressed throughout the whole arm swing cycle except in the ipsilateral leg during the onset of the backward arm swing, and in the contralateral leg during the last half of the backward arm swing and the onset of the forward arm swing. The depression was cyclically modulated in accordance with the time course of the arm swing periods, and the pattern of the modulation was reciprocal between the ipsilateral and contralateral legs. This cyclical and reciprocal modulation may be related to the regulation of soleus motoneuron pool excitability during gait.  相似文献   

3.
The objective of the present study was to investigate the effects of rhythmic arm swing on ipsilateral and contralateral soleus motoneuron pool excitability. Ten healthy human subjects participated in this study. Soleus H-reflexes were recorded from the ipsilateral and contralateral soleus muscles while the subject swung the right arm anteroposteriorly as if during gait. The soleus H-reflex was depressed throughout the whole arm swing cycle except in the ipsilateral leg during the onset of the backward arm swing, and in the contralateral leg during the last half of the backward arm swing and the onset of the forward arm swing. The depression was cyclically modulated in accordance with the time course of the arm swing periods, and the pattern of the modulation was reciprocal between the ipsilateral and contralateral legs. This cyclical and reciprocal modulation may be related to the regulation of soleus motoneuron pool excitability during gait.  相似文献   

4.
The purpose of this study was to investigate whether rhythmic arm swing modulates the long latency effect of transcranial magnetic stimulation (TMS) on soleus motoneuron pool excitability. Ten healthy humans rhythmically swung the left arm back and forth in a sitting position. The soleus H-reflex was evoked when the arm was in the backward swing phase. Conditioning TMS was delivered over the motor cortex 8?ms before the soleus H-reflex was evoked. The soleus H-reflex amplitude in both legs was depressed by the rhythmic arm swing. In contrast, rhythmic arm swing enhanced the facilitatory effect of conditioning TMS over the motor cortex contralateral to the arm swing side on the soleus H-reflex ipsilateral to the arm swing side. This finding indicates that rhythmic arm swing enhances some polysynaptic facilitatory pathways from the motor cortex contralateral to the arm swing side to the soleus motoneuron pool ipsilateral to the arm swing side.  相似文献   

5.
Locomotion of mammals, including humans, is based on the rhythmic activity of spinal cord circuitries. The functioning of these circuitries depends on multimodal afferent information and on supraspinal influences from the motor cortex. Using the method of transcranial magnetic stimulation (TMS) of arm muscle areas in the motor cortex, we studied the motor evoked potentials (MEP) in the upper arm muscles in stationary conditions and during voluntary and vibration-evoked arm movements. The study included 13 healthy subjects under arm and leg unloading conditions. In the first series of experiments, with motionless limbs, the effect of vibration of left upper arm muscles on motor responses in these muscles was evaluated. In the second series of experiments, MEP were compared in the same muscles during voluntary and rhythmic movements generated by left arm m. triceps brachii vibration (the right arm was stationary). Motionless left arm vibration led to an increase in MEP values in both vibrated muscle and in most of the non-vibrated muscles. For most target muscles, MEP was greater with voluntary arm movements than with vibration-evoked movements. At the same time, a similar MEP modulation in the cycle of arm movements was observed in the same upper arm muscles during both types of arm movements. TMS of the motor cortex significantly potentiated arm movements generated by vibration, but its effect on voluntary movements was weaker. These results indicate significant differences in the degree of motor cortex involvement in voluntary and evoked arm movements. We suppose that evoked arm movements are largely due to spinal rather than central mechanisms of generation of rhythmic movements.  相似文献   

6.
Four studies were conducted which demonstrate that most (63%) male Sprague-Dawley rats can attain criterion, nine correct choices over ten consecutive trials, on a time-of-day discrimination in an elevated T-maze, but that the task is relatively difficult. The discrimination required that the rats go to one goal arm during a morning session and the other in an afternoon session. The sessions always began at the same time and were at least 6 h apart. A larger proportion of rats attained criterion and required fewer trials when the discriminative cue was a maze insert providing visual and tactile stimulation (0.72), orientation and position of the maze in the room (0.88), or the rats were required to always make the same left or right turn (0.94). Also, once criterion was attained, rats trained on time-of-day discrimination only made about 70% correct choices with continued training. Housing the rats with continuous light, all laboratory noises masked with white noise, and a random feeding schedule did not prevent them from acquiring the time-place discrimination. Testing the rats with a random number of trials during morning and afternoon sessions and with added or omitted sessions revealed that the rats did not use response or session alternation strategies to perform the discrimination. Also, the particular experimenter administering the morning or afternoon sessions did not serve as a cue for the discrimination. The relative difficulty of the task suggests that time of day does not normally function as a discriminative stimulus for choices, but probably as a contextual stimulus. Further, performance of the task in the absence of time-of-day cues suggests that the discrimination is based on event memory combined with an internal timing mechanism.  相似文献   

7.
Abstract

This study investigated whether the variability of the sequence length of the go trials preceding a stop trial enhanced or interfered with inhibitory control. The hypotheses tested were either inhibitory control improves when the sequence length of the go trials varies as a consequence of increased preparatory effort or it degrades as a consequence of the switching cost from the go trial to the stop trial. The right-handed participants abducted the left or right index finger in response to a go cue during the go trials. A stop cue was given at 50, 90, or 130?ms after the go cue, with 0.25 probability in the stop trial. In the less variable session, a stop trial was presented after two, three, or four consecutive go trials. In the variable session, a stop trial was presented after one, two, three, four, or five consecutive go trials. The reaction time and stop-signal reaction time were not significantly different between the sessions and between the response sides. Nevertheless, the probability of successful inhibition of the right-hand response in the variable session was higher than that in the less variable session when the stop cue was given 50?ms after a go cue. This finding supports the view that preparatory effort due to less predictability of the chance of a forthcoming response inhibition enhances the ability of the right-hand response inhibition when the stop process begins earlier.  相似文献   

8.
The purpose of this study was to investigate whether rhythmic arm swing modulates the long latency effect of transcranial magnetic stimulation (TMS) on soleus motoneuron pool excitability. Ten healthy humans rhythmically swung the left arm back and forth in a sitting position. The soleus H-reflex was evoked when the arm was in the backward swing phase. Conditioning TMS was delivered over the motor cortex 8 ms before the soleus H-reflex was evoked. The soleus H-reflex amplitude in both legs was depressed by the rhythmic arm swing. In contrast, rhythmic arm swing enhanced the facilitatory effect of conditioning TMS over the motor cortex contralateral to the arm swing side on the soleus H-reflex ipsilateral to the arm swing side. This finding indicates that rhythmic arm swing enhances some polysynaptic facilitatory pathways from the motor cortex contralateral to the arm swing side to the soleus motoneuron pool ipsilateral to the arm swing side.  相似文献   

9.
Human-machine interface (HMI) designs offer the possibility of improving quality of life for patient populations as well as augmenting normal user function. Despite pragmatic benefits, utilizing auditory feedback for HMI control remains underutilized, in part due to observed limitations in effectiveness. The goal of this study was to determine the extent to which categorical speech perception could be used to improve an auditory HMI. Using surface electromyography, 24 healthy speakers of American English participated in 4 sessions to learn to control an HMI using auditory feedback (provided via vowel synthesis). Participants trained on 3 targets in sessions 1–3 and were tested on 3 novel targets in session 4. An “established categories with text cues” group of eight participants were trained and tested on auditory targets corresponding to standard American English vowels using auditory and text target cues. An “established categories without text cues” group of eight participants were trained and tested on the same targets using only auditory cuing of target vowel identity. A “new categories” group of eight participants were trained and tested on targets that corresponded to vowel-like sounds not part of American English. Analyses of user performance revealed significant effects of session and group (established categories groups and the new categories group), and a trend for an interaction between session and group. Results suggest that auditory feedback can be effectively used for HMI operation when paired with established categorical (native vowel) targets with an unambiguous cue.  相似文献   

10.
This study investigated long-term effects of training on postural control using the model of deficits in activation of transversus abdominis (TrA) in people with recurrent low back pain (LBP). Nine volunteers with LBP attended four sessions for assessment and/or training (initial, two weeks, four weeks and six months). Training of repeated isolated voluntary TrA contractions were performed at the initial and two-week session with feedback from real-time ultrasound imaging. Home program involved training twice daily for four weeks. Electromyographic activity (EMG) of trunk and deltoid muscles was recorded with surface and fine-wire electrodes. Rapid arm movement and walking were performed at each session, and immediately after training on the first two sessions. Onset of trunk muscle activation relative to prime mover deltoid during arm movements, and the coefficient of variation (CV) of EMG during averaged gait cycle were calculated. Over four weeks of training, onset of TrA EMG was earlier during arm movements and CV of TrA EMG was reduced (consistent with more sustained EMG activity). Changes were retained at six months follow-up (p<0.05). These results show persistence of motor control changes following training and demonstrate that this training approach leads to motor learning of automatic postural control strategies.  相似文献   

11.
Human participants searched in a dynamic three-dimensional computer-generated virtual-environment open-field search task for four hidden goal locations arranged in a diamond configuration located in a 5×5 matrix of raised bins. Participants were randomly assigned to one of two groups: Consistent or Inconsistent. All participants experienced 30 trials in which four goal locations maintained the same spatial relations to each other (i.e., a diamond pattern), but this diamond pattern moved to random locations within the 5×5 matrix from trial-to-trial. For participants in the Consistent group, each goal location within the pattern always provided a unique and consistent auditory cue throughout the experimental session. For participants in the Inconsistent group, the same distinct auditory cues were provided for each goal location; however, the locations of these auditory cues within the pattern itself were randomized from trial-to-trial throughout the experimental session. Results indicated that participants in both groups learned the spatial configuration of goal locations, but the presence of consistent auditory cues did not facilitate the learning of spatial relations among locations.  相似文献   

12.
Abstract

Purpose: Rhythmic auditory stimulation such as listening to music can alleviate gait bradykinesia in people with Parkinson disease (PD) by increasing spatiotemporal gait features. However, evidence about what specific kinematic alterations lead to these improvements is limited, and differences in responsiveness to cueing likely affect individual motor strategies. Self-generated cueing techniques, such as singing or mental singing, provide similar benefits but no evidence exists about how these techniques affect lower limb joint movement. In this study, we assessed immediate effects of external and self-generated cueing on lower limb movement trajectories during gait.

Methods: Using 3D motion capture, we assessed sagittal plane joint angles at the hip, knee, and ankle across 35 participants with PD, divided into responders (n?=?23) and non-responders (n?=?12) based on a clinically meaningful change in gait speed. Joint motion was assessed as overall range of motion as well as at two key time points during the gait cycle: initial contact and toe-off.

Results: Responders used both cue types to increase gait speed and induce increases in overall joint ROM at the hip while only self-generated cues also increased ROM at the ankle. Increased joint excursions for responders were also evident at initial contact and toe-off.

Conclusions: Our results indicate that self-generated rhythmic cues can induce similar increases in joint excursions as externally-generated cues and that some people may respond more positively than others. These results provide important insight into how self-generated cueing techniques may be tailored to meet the varied individual needs of people with PD.  相似文献   

13.
An optimization approach applied to mechanical linkage models is used to simulate human arm movements. Predicted arm trajectories are the result of minimizing a nonlinear performance index that depends on kinematic or dynamic variables of the movement. A robust optimization algorithm is presented that computes trajectories which satisfy the necessary conditions with high accuracy. It is especially adapted to the analysis of discrete and rhythmic movements. The optimization problem is solved by parameterizing each generalized coordinate (e.g., joint angular displacement) in terms of Jacobi polynomials and Fourier series, depending on whether discrete or rhythmic movements are considered, combined with a multiple shooting algorithm. The parameterization of coordinates has two advantages. First, it provides an initial guess for the multiple shooting algorithm which solves the optimization problem with high accuracy. Second, it leads to a low dimensional representation of discrete and rhythmic movements in terms of expansion coefficients. The selection of a suitable feature space is an important prerequisite for comparison, recognition and classification of movements. In addition, the separate computational analysis of discrete and rhythmic movements is motivated by their distinct neurophysiological realizations in the cortex. By investigating different performance indices subject to different boundary conditions, the approach can be used to examine possible strategies that humans adopt in selecting specific arm motions for the performance of different tasks in a plane and in three-dimensional space.  相似文献   

14.
We perform rhythmic and discrete arm movements on a daily basis, yet the motor control literature is not conclusive regarding the mechanisms controlling these movements; does a single mechanism generate both movement types, or are they controlled by separate mechanisms? A recent study reported partial asymmetric transfer of learning from discrete movements to rhythmic movements. Other studies have shown transfer of learning between large-amplitude to small-amplitude movements. The goal of this study is to explore which aspect is important for learning to be transferred from one type of movement to another: rhythmicity, amplitude or both. We propose two hypotheses: (1) Rhythmic and discrete movements are generated by different mechanisms; therefore we expect to see a partial or no transfer of learning between the two types of movements; (2) Within each movement type (rhythmic/discrete), there will be asymmetric transition of learning from larger movements to smaller ones. We used a learning-transfer paradigm, in which 70 participants performed flexion/extension movements with their forearm, and switched between types of movement, which differed in amplitude and/or rhythmicity. We found partial transfer of learning between discrete and rhythmic movements, and an asymmetric transfer of learning from larger movements to smaller movements (within the same type of movement). Our findings suggest that there are two different mechanisms underlying the generation of rhythmic and discrete arm movements, and that practicing on larger movements helps perform smaller movements; the latter finding might have implications for rehabilitation.  相似文献   

15.
Neural output from the locomotor system for each arm and leg influences the spinal motoneuronal pools directly and indirectly through interneuronal (IN) reflex networks. While well documented in other species, less is known about the functions and features of convergence in common IN reflex system from cutaneous afferents innervating different foot regions during remote arm and leg movement in humans. The purpose of the present study was to use spatial facilitation to examine possible convergence in common reflex pathways during rhythmic locomotor limb movements. Cutaneous reflexes were evoked in ipsilateral tibialis anterior muscle by stimulating (in random order) the sural nerve (SUR), the distal tibial nerve (TIB), and combined simultaneous stimulation of both nerves (TIB&SUR). Reflexes were evoked while participants performed rhythmic stepping and arm swinging movement with both arms and the leg contralateral to stimulation (ARM&LEG), with just arm movement (ARM) and with just contralateral leg movement (LEG). Stimulation intensities were just below threshold for evoking early latency (<80 ms to peak) reflexes. For each stimulus condition, rectified EMG signals were averaged while participants held static contractions in the stationary (stimulated) leg. During ARM&LEG movement, amplitudes of cutaneous reflexes evoked by combined TIB&SUR stimulation were significantly larger than simple mathematical summation of the amplitudes evoked by SUR or TIB alone. Interestingly, this extra facilitation seen during combined nerve stimulation was significantly reduced when performing ARM or LEG compared to ARM&LEG. We conclude that locomotor rhythmic limb movement induces excitation of common IN reflex pathways from cutaneous afferents innervating different foot regions. Importantly, activity in this pathway is most facilitated during ARM&LEG movement. These results suggest that transmission in IN reflex pathways is weighted according to the number of limbs directly engaged in human locomotor activity and underscores the importance of arm swing to support neuronal excitability in leg muscles.  相似文献   

16.
The aim of this study was to verify the contribution of haptic and auditory cues in the quick discrimination of an object mass. Ten subjects had to brake with the right hand the movement of a cup due to the falling impact of an object that could be of two different masses. They were asked to perform a quick left hand movement if the object was of the prescribed mass according to the proprioceptive and auditory cues they received from object contact with the cup and did not react to the other object. Three conditions were established: with both proprioceptive and auditory cues, only with proprioceptive cue or only with an auditory cue. When proprioceptive information was available subjects advanced responses time to the impact of the heavy object as compared with that of the light object. The addition of an auditory cue did not improve the advancement for the heavy object. We conclude that when a motor response has to be chosen according to different combinations of auditory and proprioceptive load-related information, subjects used mainly haptic information to fast respond and that auditory cues do not add relevant information that could ameliorate the quickness of a correct response.  相似文献   

17.
This study investigated the influence of gait speed on the control of mediolateral dynamic stability during gait initiation. Thirteen healthy young adults initiated gait at three self-selected speeds: Slow, Normal and Fast. The results indicated that the duration of anticipatory postural adjustments (APA) decreased from Slow to Fast, i.e. the time allocated to propel the centre of mass (COM) towards the stance-leg side was shortened. Likely as an attempt at compensation, the peak of the anticipatory centre of pressure (COP) shift increased. However, COP compensation was not fully efficient since the results indicated that the mediolateral COM shift towards the stance-leg side at swing foot-off decreased with gait speed. Consequently, the COM shift towards the swing-leg side at swing heel-contact increased from Slow to Fast, indicating that the mediolateral COM fall during step execution increased as gait speed rose. However, this increased COM fall was compensated by greater step width so that the margin of stability (the distance between the base-of-support boundary and the mediolateral component of the “extrapolated centre of mass”) at heel-contact remained unchanged across the speed conditions. Furthermore, a positive correlation between the mediolateral extrapolated COM position at heel-contact and step width was found, indicating that the greater the mediolateral COM fall, the greater the step width. Globally, these results suggest that mediolateral APA and step width are modulated with gait speed so as to maintain equivalent mediolateral dynamical stability at the time of swing heel-contact.  相似文献   

18.
Guillem K  Peoples LL 《PloS one》2011,6(9):e24049
Nicotine self-administration (SA) is maintained by several variables, including the reinforcing properties of nicotine-paired cues and the nicotine-induced amplification of those cue properties. The nucleus accumbens (NAc) is implicated in mediating the influence of these variables, though the underlying neurophysiological mechanisms are not yet understood. In the present study, Long-Evans rats were trained to self-administer nicotine. During SA sessions each press of a lever was followed by an intravenous infusion of nicotine (30 μg/kg) paired with a combined light-tone cue. Extracellular recordings of single-neuron activity showed that 20% of neurons exhibited a phasic change in firing during the nicotine-directed operant, the light-tone cue, or both. The phasic change in firing for 98% of neurons was an increase. Sixty-two percent of NAc neurons additionally or alternatively showed a sustained decrease in average firing during the SA session relative to a presession baseline period. These session decreases in firing were significantly less prevalent in a group of neurons that were activated during either the operant or the cue than in a group of neurons that were nonresponsive during those events (referred to as task-activated and task-nonactivated neurons, respectively). Moreover, the session decrease in firing was dose-dependent for only the task-nonactivated neurons. The data of the present investigation provide supportive correlational evidence for two hypotheses: (1) excitatory neurophysiological mechanisms mediate the NAc role in cue-maintenance of nicotine SA, and (2) a differential nicotine-induced inhibition of task-activated and task-nonactivated neurons mediates the NAc role in nicotine-induced amplification of cue effects on nicotine SA.  相似文献   

19.
This study investigated whether training-related improvements in facial expression categorization are facilitated by spontaneous changes in gaze behaviour in adults and nine-year old children. Four sessions of a self-paced, free-viewing training task required participants to categorize happy, sad and fear expressions with varying intensities. No instructions about eye movements were given. Eye-movements were recorded in the first and fourth training session. New faces were introduced in session four to establish transfer-effects of learning. Adults focused most on the eyes in all sessions and increased expression categorization accuracy after training coincided with a strengthening of this eye-bias in gaze allocation. In children, training-related behavioural improvements coincided with an overall shift in gaze-focus towards the eyes (resulting in more adult-like gaze-distributions) and towards the mouth for happy faces in the second fixation. Gaze-distributions were not influenced by the expression intensity or by the introduction of new faces. It was proposed that training enhanced the use of a uniform, predominantly eyes-biased, gaze strategy in children in order to optimise extraction of relevant cues for discrimination between subtle facial expressions.  相似文献   

20.
Chromatin remodelling is integral to the formation of long-term memories. Recent evidence suggests that histone modification may play a role in the persistence of memories associated with drug use. The present series of experiments aimed to examine the effect of histone deacetylase (HDAC) inhibition on the extinction and reinstatement of nicotine self-administration. Rats were trained to intravenously self-administer nicotine for 12 days on a fixed-ratio 1 schedule. In Experiment 1, responding was then extinguished through removal of nicotine and response-contingent cues. After each extinction session, the HDAC inhibitor, sodium butyrate (NaB), was administered immediately, or six hours after each session. In Experiment 2, response-contingent cues remained available across extinction to increase rates of responding during this phase, and NaB was administered immediately after the session. Finally, in Experiment 3, the effect of NaB treatment on extinction of responding for sucrose pellets was assessed. Across all experiments reinstatement to the cue and/or the reward itself was then tested. In the first experiment, treatment with NaB significantly attenuated nicotine and nicotine + cue reinstatement when administered immediately, but not six hours after each extinction session. When administered after cue-extinction (Expt. 2), NaB treatment specifically facilitated the rate of extinction across sessions, indicating that HDAC inhibition enhanced consolidation of the extinction memory. In contrast, there was no effect of NaB on the extinction and reinstatement of sucrose-seeking (Expt. 3), indicating that the observed effects are specific to a drug context. These results provide the first demonstration that HDAC inhibition facilitates the extinction of responding for an intravenously self-administered drug of abuse and further highlight the potential of HDAC inhibitors in the treatment of drug addiction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号