首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Process Biochemistry》2014,49(10):1612-1621
The role of acetaldehyde dehydrogenase 1 (ALDH1) has been probed in several diseases, especially in various types of cancers. However, the role of ALDH1 in skin cells has not been well elucidated. In this study, we aimed to identify critical factors associated with ALDH1 in keratinocytes through gene and protein expression profiling approaches. To this end, we conducted serial OMICS studies, including DNA microarray analysis, integrated antibody–chip arrays, and the implementation of bioinformatics algorithms designed to integrate siRNA data upon ALDH1 silencing. Cumulatively, these approaches identified several novel genes and proteins in keratinocytes associated with the downregulation of ALDH1. These novel genes and proteins included CYP1A1, a member of the cytochrome family of enzymes; extracellular matrix genes; and cytokines and chemokines, which are believed to play important roles in ALDH1-associated skin diseases such as atopic dermatitis. By integrating the datasets obtained from these complementary high-throughput OMICS studies and utilizing the strengths of each method, we obtained new insights into the functional role of ALDH1 in skin cells. The approach used here could help contribute to our clinical understanding of ALDH1-associated diseases, and may also be broadly applicable to a wider range of diseases.  相似文献   

2.
Abstract

Previously, we detected that 14-3-3 protein epsilon (YWHAE) was involved in the pathogenesis of atopic dermatitis (AD) and tyrosinase-mediated pigmentation. In this study, we aimed to identify critical factors associated with YWHAE in human keratinocytes using high-throughput screening (HTS) approaches to reveal its functions in skin. We overexpressed YWHAE in human HaCaT keratinocytes and then conducted serial HTS studies, including RNA sequencing integrated with antibody arrays and the implementation of bioinformatics algorithms. Cumulatively, these approaches identified several novel genes in keratinocytes associated with the function of YWHAE including KRT9, KRT1, KRT6C, BST2, CIB2, APH1B, ACTC1, IFI27, TUBA1A, CAPN6, UTY, MX2, and MAPK15, based on RNA sequencing data, and MAPK1, MMP2, TYK2, NOS3, and CASP3, based on antibody array data. In particular, CD37 is a unique gene that was detected and validated in all the methods applied in this study. By integrating the datasets obtained from these HTS studies and utilizing the strengths of each method, we obtained new insights into the functional role of YWHAE in skin keratinocytes. The approach used here could contribute to the clinical understanding of YWHAE-associated applications in the treatment of AD disease. Abbreviations DAVID the database for annotation, visualization and integrated discovery

HTS High-throughput screening

KEGG Kyoto Encyclopedia of Genes and Genomes

PPI protein-protein interactions

Communicated by Ramaswamy H. Sarma  相似文献   

3.
Matters, G. L. and Scandalios, J. G. 1987. Synthesis of isozymesof superoxide dismutase in maize leaves in response to O3 SO2and elevated O2.—J. exp. Bot 38: 842–852. The activities of the enzymes superoxide dismutase (SOD) andcatalase were determined in maize leaves treated with O3or SO2for8 h, or with elevated levels of oxygen for up to 96 h. NeitherO3nor SO2significantly increased the levels of superoxide dismutaseor catalase activity. However, after 72 h in an atmosphere containing90% oxygen, superoxide dismutase activity was increased, butnot the activities of catalase, ascorbate pcroxidase, and malatedehydrogenase. Immunological analysis showed that amounts ofthe cytosolic superoxide dismutase isozymes, SOD-2 and SOD-4,were increased by the elevated oxygen but not the chroloplast(SOD-1) or mitochondrial (SOD-3) isozymes. Immunoprecipitationof translation products of leaf polysomes indicated that thehigher levels of SOD-2 and SOD-4 were due to increased amountsof polysome-bound mRNA coding for these proteins. The specificresponse of SOD-2 and SOD-4 to 90% oxygen treatments contrastswith the increase in all SOD isozymes in maize leaves treatedwith the herbicide paraquat. Key words: Air pollutants, maize, oxidative stress, oxygen, superoxide dismutase  相似文献   

4.
In the current study, the effects of the reactive oxygen species (ROS) generator 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH) on extracellular and intracellular ROS production in human keratinocytes (HACAT) were studied. AAPH is a water-soluble compound able to generate ROS at known and constant rates at 37°C. The short treatment (2 h) with AAPH brought a significant dose-dependent increase in NADPH oxidase activity in intact keratinocytes. The long-term treatment (24 h) with AAPH led to a persistent increase in NADPH oxidase activity for up to 48 hour following the AAPH removal from cell incubation medium. ROS and nitric oxide levels, lipoperoxidation, intracellular calcium, mitochondrial superoxide production, and membrane potential were significantly modified in AAPH-treated HACAT. Superoxide dismutase (SOD) and/or catalase addition to HACAT revealed that untreated keratinocytes produce mostly superoxide anion (O 2 ), while AAPH-treated keratinocytes overproduce hydrogen peroxide (H 2O 2) in extracellular medium. H 2O 2 is particularly stable and plays important roles in several cell signaling pathways. Taken together, our findings suggest a cost-effective and easily reproducible in vitro model of stressed human keratinocytes releasing significantly elevated ROS amounts in extracellular medium with respect to control keratinocytes. The possible application of the proposed model for keratinocytes-melanocytes cross-talk studies is also suggested. The model of AAPH-stressed human keratinocytes described here can represent a useful tool for redox cross-talk studies between keratinocytes and other skin cell types, and applied for researches regarding skin pathologies associated with oxidative stress.  相似文献   

5.
KIT proto-oncogene is a receptor tyrosine kinase critical for signal transduction in several cell types. An understanding of KIT distribution in normal skin may reveal new insights into its implication in cutaneous biology and its associated disease states. This study examines expression patterns of KIT protein in normal human skin. KIT protein expression was examined in 50 specimens of normal human skin using specific antibodies (CD117) and immunoperoxidase staining methods. KIT protein expression was seen in keratinocytes (stratum basale), melanocytes, mast cells, and in both sebaceous and sweat glands. In contrast, KIT protein expression was absent in stratum spinosum, stratum granulosum, stratum corneum, blood vessels and arrector pili muscle. Thus, the expression of KIT protein in normal human skin suggests its possible role in regulation of cutaneous development and function.  相似文献   

6.
A number of environmental stresses can lead to enhanced production of superoxide within plant tissues, and plants are believed to rely on the enzyme superoxide dismutase (SOD) to detoxify this reactive oxygen species. We have identified seven cDNAs and genes for SOD in Arabidopsis. These consist of three CuZnSODs (CSD1, CSD2, and CSD3), three FeSODs (FSD1, FSD2, and FSD3), and one MnSOD (MSD1). The chromosomal location of these seven SOD genes has been established. To study this enzyme family, antibodies were generated against five proteins: CSD1, CSD2, CSD3, FSD1, and MSD1. Using these antisera and nondenaturing-polyacrylamide gel electrophoresis enzyme assays, we identified protein and activity for two CuZnSODs and for FeSOD and MnSOD in Arabidopsis rosette tissue. Additionally, subcellular fractionation studies revealed the presence of CSD2 and FeSOD protein within Arabidopsis chloroplasts. The seven SOD mRNAs and the four proteins identified were differentially regulated in response to various light regimes, ozone fumigation, and ultraviolet-B irradiation. To our knowledge, this is the first report of a large-scale analysis of the regulation of multiple SOD proteins in a plant species.  相似文献   

7.

Background

ALS2/alsin is a guanine nucleotide exchange factor for the small GTPase Rab5 and involved in macropinocytosis-associated endosome fusion and trafficking, and neurite outgrowth. ALS2 deficiency accounts for a number of juvenile recessive motor neuron diseases (MNDs). Recently, it has been shown that ALS2 plays a role in neuroprotection against MND-associated pathological insults, such as toxicity induced by mutant Cu/Zn superoxide dismutase (SOD1). However, molecular mechanisms underlying the relationship between ALS2-associated cellular function and its neuroprotective role remain unclear.

Methodology/Principal Findings

To address this issue, we investigated the molecular and pathological basis for the phenotypic modification of mutant SOD1-expressing mice by ALS2 loss. Genetic ablation of Als2 in SOD1H46R, but not SOD1G93A, transgenic mice aggravated the mutant SOD1-associated disease symptoms such as body weight loss and motor dysfunction, leading to the earlier death. Light and electron microscopic examinations revealed the presence of degenerating and/or swollen spinal axons accumulating granular aggregates and autophagosome-like vesicles in early- and even pre-symptomatic SOD1H46R mice. Further, enhanced accumulation of insoluble high molecular weight SOD1, poly-ubiquitinated proteins, and macroautophagy-associated proteins such as polyubiquitin-binding protein p62/SQSTM1 and a lipidated form of light chain 3 (LC3-II), emerged in ALS2-deficient SOD1H46R mice. Intriguingly, ALS2 was colocalized with LC3 and p62, and partly with SOD1 on autophagosome/endosome hybrid compartments, and loss of ALS2 significantly lowered the lysosome-dependent clearance of LC3 and p62 in cultured cells.

Conclusions/Significance

Based on these observations, although molecular basis for the distinctive susceptibilities to ALS2 loss in different mutant SOD1-expressing ALS models is still elusive, disturbance of the endolysosomal system by ALS2 loss may exacerbate the SOD1H46R-mediated neurotoxicity by accelerating the accumulation of immature vesicles and misfolded proteins in the spinal cord. We propose that ALS2 is implicated in endolysosomal trafficking through the fusion between endosomes and autophagosomes, thereby regulating endolysosomal protein degradation in vivo.  相似文献   

8.

The purpose of this study was to investigate the effect of a superoxide-hydrogen peroxide (S-HP) imbalance of the superoxide dismutase manganese dependent (SOD2) gene, generated by paraquat and porphyrin exposure, on the keratinocytes cell line (HaCaT) oxidative metabolism. Paraquat acts increasing superoxide (O·?2) levels, while porphyrin increases hydrogen peroxide (H2O2) levels, acting as VV-SOD2-like and AA-SOD2-like molecules, respectively. First of all, HaCAT cells were treated with different concentrations of paraquat and porphyrin (1; 10; 30, and 70 μM) to determine the concentration of both that causes imbalance. After defining the concentration of paraquat and porphyrin (70 μM), a time curve was performed (1, 3, 6, and 24 h) to evaluate ROS production levels. Other oxidative parameters, such as nitric oxide (NO), lipoperoxidation (TBARS) and protein carbonyl, were evaluated after 24 h of incubation, as well as genotoxic analyses, apoptosis detection, and gene expression. Our findings revealed that paraquat exposure decreased cell viability, increasing lipoperoxidation, DNA damage, and apoptosis. On the other hand, porphyrin treatment increased cell viability and proliferation, ROS and NO production, triggering protein and DNA damage. In addition, porphyrin up-regulated Keap1 and Nrf2 gene expression, while paraquat decreased Nrf2 gene expression. In this sense, we suggested that the superoxide-hydrogen peroxide imbalance differentially modulates oxidative stress on keratinocytes cell line via Keap1-Nrf2 gene expression pathway.

  相似文献   

9.
This work aimed to evaluate the skin anti-photoaging properties of ginsenoside Rb3 (Rb3), one of the main protopanaxdiol-type ginsenosides from ginseng, in HaCaT keratinocytes. The skin anti-photoaging activity was assessed by analyzing the levels of reactive oxygen species (ROS), pro-matrix metalloproteinase-2 (proMMP-2), pro-matrix metalloproteinase-9 (proMMP-9), total glutathione (GSH), and superoxide dismutase (SOD) activity as well as cell viability in HaCaT keratinocytes under UV-B irradiation. When HaCaT keratinocytes were exposed to Rb3 prior to UV-B irradiation, Rb3 exhibited suppressive activities on UV-B-induced ROS, proMMP-2, and proMMP-9 enhancements. On the contrary, Rb3 displayed enhancing activities on UV-B-reduced total GSH and SOD activity levels. Rb3 could not interfere with cell viabilities in UV-B-irradiated HaCaT keratinocytes. Rb3 plays a protective role against UV-B-induced oxidative stress in human HaCaT keratinocytes, proposing its potential skin anti-photoaging properties.  相似文献   

10.
11.
《Free radical research》2013,47(1):379-382
The biological role and the regulation of superoxide dismutase (SOD) in E. coli have been investigated using genetics. Cloning of both E. coli SOD genes permitted construction of mutants completely lacking SOD. The conditional oxygen sensitivity of those mutants, together with their increased mutation rate, demonstrated the essential biological role of SOD. SOD-deficient mutants constitute a powerful tool to assess a possible role of O?2 or SOD in biological processes. Complementation of their deficiencies by the expression of SOD originating from a different organism is used for screening libraries for SOD genes of other species. Regulation of MnSOD has been studied using protein and operon fusions with the lactose operon, and isolating regulation mutants. These studies reveal multiregulation of MnSOD including response to the superoxide mediated oxidative stress and response to variations of the intracellular redox state induced by metabolic changes.  相似文献   

12.
13.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease in which motor neurons progressively and rapidly degenerate, eventually leading to death. The first protein found to contain ALS-associated mutations was copper/zinc superoxide dismutase 1 (SOD1), which is conformationally stable when it contains its metal ligands and has formed its native intramolecular disulfide. Mutations in SOD1 reduce protein folding stability via disruption of metal binding and/or disulfide formation, resulting in misfolding, aggregation, and ultimately cellular toxicity. A great deal of effort has focused on preventing the misfolding and aggregation of SOD1 as a potential therapy for ALS; however, the results have been mixed. Here, we utilize a small-molecule polytherapy of diacetylbis(N(4)-methylthiosemicarbazonato)copper(II) (CuATSM) and ebselen to mimic the metal delivery and disulfide bond promoting activity of the cellular chaperone of SOD1, the “copper chaperone for SOD1.” Using microscopy with automated image analysis, we find that polytherapy using CuATSM and ebselen is highly effective and acts in synergy to reduce inclusion formation in a cell model of SOD1 aggregation for multiple ALS-associated mutants. Polytherapy reduces mutant SOD1-associated cell death, as measured by live-cell microscopy. Measuring dismutase activity via zymography and immunoblotting for disulfide formation showed that polytherapy promoted more effective maturation of transfected SOD1 variants beyond either compound alone. Our data suggest that a polytherapy of CuATSM and ebselen may merit more study as an effective method of treating SOD1-associated ALS.  相似文献   

14.
Summary

Using various superoxide generating systems and nitroblue tetrazolium or cytochrome c as superoxide detector molecules it is possible to assess the superoxide dismutase activity of proteins. Intact antibodies raised to different antigens, the Fab’ fragment of anti-TNF [M632] and well-characterized recombinant Fv fragments of the murine antibody NQ11.7.22 appear to possess superoxide dismutase (SOD)-like activity.

Kinetic characteristics of the SOD-like activity of NQ11.7.22-Fv fragments suggest an enzymatic property and these fragments behave in an analogous manner to human erythrocyte Cu-Zn SOD. Furthermore, the SOD-like activity of the NQ11.7.22-Fv fragment is affected by certain single-point mutations in the amino acid composition and has a pH optimum of 6.2–6.6 which is unlike Cu-Zn SOD (pH 7.8–8.2). A change in tyrosine at the 32 position in the heavy chain and histidine at position 27 of the light chain of the NQ11.7.22-Fv fragment results in a profound reduction in SOD-like activity. Tyrosine at the 32 position in the heavy chain is known to play a significant role in antigen binding suggesting that the SOD-like activity occurs at the antigen-binding site itself. Single-point mutations at the periphery of the antigen combining site on the NQ11.7.22-Fv fragment had little or no effect on SOD-like activity.

Further studies show that immunoglobin (lgG-1), a commercially available murine monoclonal antibody, can also enhance the generation of hydrogen peroxide, the product of superoxide dismutation, when present in superoxide producing systems. The generation of hydrogen peroxide was increased by low pH (pH 6.25) with lgG-1 but reduced with Cu-Zn SOD.  相似文献   

15.
BackgroundAtractylodis rhizoma, an aromatic herb for resolving dampness, is used to treat Kidney-related edema in traditional Chinese medicine for thousands years. This herb possesses antioxidant effect. However, it is not yet clear how Atractylodis rhizoma prevents glomerular injury through its anti-oxidation.PurposeBased the analysis of Atractylodis rhizoma water extract (ARE) components and network pharmacology, this study was to explore whether ARE prevented glomerular injury via its anti-oxidation to inhibit oxidative stress-driven transient receptor potential channel 6 (TRPC6) and its downstream molecule calcium/calmodulin-dependent protein kinase IV (CaMK4) signaling.MethodsLiquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to analyze ARE components. Network pharmacology analysis was preliminarily performed. Male Sprague-Dawley rats were given 10% fructose drinking water (100 mL/d) for 16 weeks. ARE at 720 and 1090 mg/kg was orally administered to rats for the last 8 weeks. Hydrogen peroxide (H2O2) and malondialdehyde (MDA) level, and superoxide dismutase (SOD) activity in rat kidney cortex were detected, respectively. In rat glomeruli, redox-related factors forkhead box O3 (FoxO3), SOD2 and catalase (CAT), podocyte slit diaphragm proteins podocin and nephrin, cytoskeleton proteins CD2-associated protein (CD2AP) and α-Actinin-4, as well as TRPC6, p-CaMK4 and synaptopodin protein levels were analyzed by Western Blotting. SOD2 and CAT mRNA levels were detected by qRT-PCR.Results36 components were identified in ARE. Among them, network pharmacology analysis indicated that ARE might inhibit kidney oxidative stress. Accordingly, ARE up-regulated nuclear FoxO3 expression, and then increased SOD2 and CAT at mRNA and protein levels in glomeruli of fructose-fed rats. It reduced H2O2 and MDA levels, and increased SOD activity in renal cortex of fructose-fed rats. Subsequently, ARE down-regulated TRPC6 and p-CaMK4, and up-regulated synaptopodin in glomeruli of fructose-fed rats. Furthermore, ARE increased podocin and nephrin, as well as CD2AP and α-Actinin-4, being consistent with its reduction of urine albumin-to-creatinine ratio and improvement of glomerular structure injury in this animal model.ConclusionsThese results suggest that ARE may prevent glomerular injury in fructose-fed rats possibly by reducing oxidative stress to inhibit TRPC6/p-CaMK4 signaling and up-regulate synaptopodin expression. Therefore, ARE may be a promising drug for treating high fructose-induced glomerular injury in clinic.  相似文献   

16.
《Free radical research》2013,47(5):331-335
Several D-sugars were incubated with L-lysine or with L-arginine for 10 days. The resulting compounds are able to reduce nitrobluetetrazolium (NBT). This is prevented by superoxide dismutase (SOD), indicating that the superoxide radical is generated by the resulting Amadori compounds.

The formation of superoxide radical in vivo, as a result of nonenzymatic glycosylation of proteins, may be considered to be a contributory factor to the appearance of chronic complications of diabetes.  相似文献   

17.
Ethanol induces neuronal cell injury and death by dysregulating several signaling events that are controlled, in part, by activation of MAPK/ERK1/2 and/or inactivation of its corresponding phosphatase, PP1. Recently, we have purified a novel protein of 38 kDa in size, p38SJ, from a callus culture of Hypericum perforatum, which belongs to an emerging DINGG family of proteins with phosphate binding activity. Here, we show that treatment of neuronal cells with p38SJ protects cells against injury induced by exposure to ethanol. Furthermore, pre‐treatment of neuronal cells with p38SJ diminishes the level of the pro‐apoptotic protein Bax and some events associated with apoptosis such as caspase 3 cleavage. In addition, by inducing stress, alcohol can elevate production of reactive oxygen species (ROS) that leads to a decrease in the activity of superoxide dismutase (SOD). Our results showed that p38SJ restores the activity of SOD in the ethanol treated neuronal cells. These observations provide a novel biological tool for developing new approaches for preventing neuronal cell death induced by ethanol and possibly treatment of neurological disorders associated with alcohol abuse. J. Cell. Physiol. 221: 499–504, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
Aquaspirillum magnetotacticum MS-1 cells cultured microaerobically (dissolved O2 tension 1% of saturation), expressed proteins with superoxide dismutase (SOD) activity. The majority (roughly 95%) of total cell superoxide dismutase activity was located in the cell periplasm with little or no activity in the cell cytoplasm. Irontype SOD (FeSOD) contributed 88% of the total activity activity detected, although a manganese-type SOD (MnSOD) was present in the periplasm as well. Cells cultured at a higher dissolved O2 tension (10% of saturation) expressed increased activity of the MnSOD relative to that of the FeSOD.  相似文献   

19.

Background

While hyperglycemia-induced oxidative stress damages peripheral neurons, technical limitations have, in part, prevented in vivo studies to determine the effect of hyperglycemia on the neurons in the central nervous system (CNS). While olfactory dysfunction is indicated in diabetes, the effect of hyperglycemia on olfactory receptor neurons (ORNs) remains unknown. In this study, we utilized manganese enhanced MRI (MEMRI) to assess the impact of hyperglycemia on axonal transport rates in ORNs. We hypothesize that (i) hyperglycemia induces oxidative stress and is associated with reduced axonal transport rates in the ORNs and (ii) hyperglycemia-induced oxidative stress activates the p38 MAPK pathway in association with phosphorylation of tau protein leading to the axonal transport deficits.

Research Design and Methods

T1-weighted MEMRI imaging was used to determine axonal transport rates post-streptozotocin injection in wildtype (WT) and superoxide dismutase 2 (SOD2) overexpressing C57Bl/6 mice. SOD2 overexpression reduces mitochondrial superoxide load. Dihydroethidium staining was used to quantify the reactive oxygen species (ROS), specifically, superoxide (SO). Protein and gene expression levels were determined using western blotting and Q-PCR analysis, respectively.

Results

STZ-treated WT mice exhibited significantly reduced axonal transport rates and significantly higher levels of ROS, phosphorylated p38 MAPK and tau protein as compared to the WT vehicle treated controls and STZ-treated SOD2 mice. The gene expression levels of p38 MAPK and tau remained unchanged.

Conclusion

Increased oxidative stress in STZ-treated WT hyperglycemic mice activates the p38 MAPK pathway in association with phosphorylation of tau and attenuates axonal transport rates in the olfactory system. In STZ-treated SOD-overexpressing hyperglycemic mice in which superoxide levels are reduced, these deficits are reversed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号