首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
脂肪酸合酶(Fatty acid synthase,FAS)催化乙酰辅酶A和丙二酸单酰辅酶A反应生成脂肪酸,是油脂合成代谢途径中最重要的酶之一。在高产油脂的圆红冬孢酵母Rhodosporidium toruloides中发现了一种新颖的FAS,它含两个亚基,与其他物种的FAS相比,具有独特的结构域组成,尤其是含两个酰基载体蛋白(ACP)结构域。由于ACP在脂肪酸合成反应中起辅因子作用,推测多个ACP有利于提高FAS的催化活性,为研究该FAS的生物化学和结构特征,构建了表达FAS两个亚基的载体,并转化大肠杆菌Escherichia coli BL21(DE3),含pET22b-FAS1和pET24-FAS2质粒的重组菌株ZWE06可同时高表达两个亚基,经硫酸铵沉淀、蔗糖密度梯度离心和阴离子交换层析纯化,得到的重组FAS比活力达到548 mU/mg。纯化的FAS复合物可用于后续酶动力学和蛋白结构研究,且表达与纯化方法的建立对研究其他ACP的功能具有参考价值。  相似文献   

4.
圆红冬孢酵母两阶段培养法生产微生物油脂   总被引:5,自引:2,他引:5  
为缩短发酵时间,减少原料消耗,采用细胞增殖和油脂积累分离的两阶段模式,培养圆红冬孢酵母Rhodosporidium toruloides AS 2.1389生产微生物油脂。结果表明,细胞增殖阶段获得的R.toruloides AS 2.1389细胞,重悬接种在葡萄糖溶液中,可快速积累油脂,菌体油脂含量超过自身干重的55%。增殖阶段细胞的菌龄越高,产油能力越强。油脂积累阶段使用高浓度葡萄糖溶液或未灭菌的葡萄糖溶液,油脂合成可以有效进行。油脂中脂肪酸成分以含16和18个碳原子的长链脂肪酸为主,可作为制备生物柴油的新型原料。  相似文献   

5.
恒化培养稀释率和碳氮比对圆红冬孢酵母油脂积累的影响   总被引:1,自引:0,他引:1  
采用恒化培养的方法,考察了稀释率(D)和碳氮比(mol/mol)对圆红冬孢酵母Rhodosporidiumtoruloides AS 2.138 9积累油脂的影响。结果表明:稀释率增大,油脂含量和油脂得率降低。在D=0.02 h 1时油脂得率最大,为0.18 g油/g糖;D=0.14 h 1时油脂生成速率最大,为0.09 g/(L.h)。碳氮比增大,油脂含量略有增加。在C/N=92时油脂得率最大,为0.12 g油/g糖;C/N=32时油脂生成速率最大,为0.13 g/(L.h)。碳氮比对油脂的脂肪酸组成影响不明显,油脂的棕榈酸、硬脂酸和油酸总含量超过85%。  相似文献   

6.
Direct utilization of crude glycerol, a major byproduct in biodiesel industry, becomes imperative, because its production has outpaced the demand recently. We demonstrated that the oleaginous yeast Rhodosporidium toruloides Y4 had a great capacity to convert glycerol into lipids with high yield using the two-stage production process. Significantly higher cell mass and lipid yield were observed when the media were made with synthetic crude glycerol than pure glycerol. The process achieved a lipid yield of 0.22 g g−1 glycerol, which was comparable with the lipid yield using glucose as the substrate. Lipid samples showed similar fatty acid compositional profiles to those of vegetable oils, suggesting that such microbial lipids were potential feedstock for biodiesel production. Our data provided an attractive route to integrate biodiesel production with microbial lipid technology for better resource efficiency and economical viability.  相似文献   

7.
以产油酵母圆红冬胞酵母(Rhodosporidium toruloides)作为研究对象,系统地研究了氮、磷、硫限制对其油脂积累的影响,并在3L生物反应器上考察了R.toruloides在C/P摩尔比为1 133.3时初始葡萄糖浓度对油脂生产的影响。结果表明:氮、磷、硫中任意一种营养元素受限,均能促使R.toruloides在胞内积累高于自身干重60%的油脂;通过改变培养基的组成,可以调节油脂中脂肪酸的构成,使油脂中饱和脂肪酸比例高于70%或不饱和脂肪酸比例高于60%。就油脂生产强度及转化效率而言,磷限制优于氮限制或硫限制。当C/P摩尔比相同时,初始葡萄糖浓度越低越有利于油脂生产。对采用不同原料生产微生物油脂的技术有一定指导意义。  相似文献   

8.
Fatty alcohols (FOHs) are important feedstocks in the chemical industry to produce detergents, cosmetics, and lubricants. Microbial production of FOHs has become an attractive alternative to production in plants and animals due to growing energy demands and environmental concerns. However, inhibition of cell growth caused by intracellular FOH accumulation is one major issue that limits FOH titers in microbial hosts. In addition, identification of FOH-specific exporters remains a challenge and previous studies towards this end are limited. To alleviate the toxicity issue, we exploited nonionic surfactants to promote the export of FOHs in Rhodosporidium toruloides, an oleaginous yeast that is considered an attractive next-generation host for the production of fatty acid-derived chemicals. Our results showed FOH export efficiency was dramatically improved and the growth inhibition was alleviated in the presence of small amounts of tergitol and other surfactants. As a result, FOH titers increase by 4.3-fold at bench scale to 352.6 mg/L. With further process optimization in a 2-L bioreactor, the titer was further increased to 1.6 g/L. The method we show here can potentially be applied to other microbial hosts and may facilitate the commercialization of microbial FOH production.  相似文献   

9.
Microbial lipids have potential applications in energy, and food industry, because most of those lipids are triacylglycerol with long‐chain fatty‐acids that are comparable to conventional vegetable oils and can be obtained without arable land requirement. Rhodosporidium toruloides is a strictly aerobic strain, where oxygen plays a crucial role in growth, maintenance, and metabolite production, such as lipids and carotenoids. Dissolved oxygen concentration is one of the major factors affecting yeast physiological and biochemical characteristics. In this context, different approaches have been developed to increase available oxygen by the increasing the aeration and the addition of an oxygen‐vector. The growth of R. toruloides in 2‐L mechanical stirred tank reactor equipped with 1 or 2 porous spargers and a 70 C/N ratio, revealed a lipid content of 0.47 and 0.52 g/g and a lipidic productivity of 0.16 and 0.17 g/L day, respectively. The oxygen‐vector addition, increased the lipidic productivity for 0.20 g/L day and a lipid contend of 0.51 g of lipids/g of biomass. The combined approach, combining high aeration (AA), and 1% of n‐dodecane addition (DA), produced a significant improvement in the lipid accumulation (62%, w/w), when compared with the DA (51%, w/w) and the AA (52%, w/w) approaches. The increasing of lipids accumulation and smaller culture time are key factors for the success of scale‐up and profitability of a bioprocess.  相似文献   

10.
In this study, secondary brewery wastewater (SBWW) supplemented with sugarcane molasses (SCM) was used for SBWW treatment with concomitant lipid and carotenoid production by the yeast Rhodosporidium toruloides NCYC 921. In order to improve the biomass production, ammonium sulfate, yeast extract and urea were tested as nitrogen sources. Urea was chosen as the best low-cost nitrogen source. A fed-batch cultivation was carried out with SBWW supplemented with 10 g L−1 of sugarcane molasses as carbon source, and 2 g L−1 of urea as nitrogen source. A maximum biomass concentration of 42.5 g L−1 was obtained at t = 126.5 h and the maximum biomass productivity was 0.55 g L−1 h−1 at t = 48.25 h. The maximum lipid content was 29.9 % w/w (DCW) at t = 94 h of cultivation and the maximum carotenoid content was 0.23 mg g−1 at 120 h of cultivation. Relatively to the SBWW treatment, after the batch phase, 45.8 % of total Kjeldahl nitrogen removal, 81.7 % of COD removal and 100 % of sugar consumption were observed. Flow cytometry analysis revealed that 27.27 % of the cells had injured membrane after the inoculation. This proportion was reduced to 10.37 % at the end of the cultivation, indicating that cells adapted to the growth conditions.  相似文献   

11.
Residue-specific chemical modification of amino acid residues of the microsomal epoxide hydrolase (mEH) from Rhodosporidium toruloides UOFS Y-0471 revealed that the enzyme is inactivated through modification of Asp/Glu and His residues, as well as through modification of Ser. Since Asp acts as the nucleophile, and Asp/Glu and His serve as charge relay partners in the catalytic triad of microsomal and soluble epoxide hydrolases during epoxide hydrolysis, inactivation of the enzyme by modification of the Asp/Glu and His residues agrees with the established reaction mechanism of these enzymes. However, the inactivation of the enzyme through modification of Ser residues is unexpected, suggesting that a Ser in the catalytic site is indispensable for substrate binding by analogy of the role of Ser residues in the related L-2-haloacid dehalogenases, as well as the ATPase and phosphatase enzymes. Co2+, Hg2+, Ag+, Mg2+ and Ca2+ inhibited enzyme activity and EDTA increased enzyme activity. The activation energy for inactivation of the enzyme was 167 kJ mol–1. Kinetic constants for the enzyme could not be determined since unusual behaviour was displayed during hydrolysis of 1,2-epoxyoctane by the purified enzyme. Enantioselectivity w as strongly dependent on substrate concentration. When the substrate was added in concentrations ensuring two-phase conditions, the enantioselectivity was greatly enhanced. On the basis of these results, it is proposed that this enzyme acts at an interface, analogous to lipases.  相似文献   

12.
13.
The oleaginous yeast Rhodosporidium toruloides is considered a promising candidate for production of chemicals and biofuels thanks to its ability to grow on lignocellulosic biomass, and its high production of lipids and carotenoids. However, efforts to engineer this organism are hindered by a lack of suitable genetic tools. Here we report the development of a CRISPR/Cas9 system for genome editing in R. toruloides based on a fusion 5S rRNA–tRNA promoter for guide RNA (gRNA) expression, capable of greater than 95% gene knockout for various genetic targets. Additionally, multiplexed double-gene knockout mutants were obtained using this method with an efficiency of 78%. This tool can be used to accelerate future metabolic engineering work in this yeast.  相似文献   

14.
15.
Purification of the membrane-associated epoxide hydrolase from the yeast Rhodosporidium toruloides CBS 0349 to electrophoretic homogeneity was achieved in a single chromatographic step employing the affinity ligand adsorbent Mimetic Green. More than 68% of the total epoxide hydrolase activity present in the whole cells was recovered from the membrane fraction. The enzyme was purified 26-fold with respect to the solubilized membrane proteins and was obtained in a 90% yield. The purified epoxide hydrolase has an apparent monomeric molecular weight of 54 kDa, and a pI of 7.3. The enzyme was optimally active at 30–40 °C, and pH 7.3–8.5. The enzyme is highly glycosylated with a carbohydrate content >42%. The specific activity of the purified enzyme for (±)-1,2-epoxyoctane is 172 mol min–1 mg protein–1. The amino acid composition of the protein was determined. This is the first report of a yeast epoxide hydrolase purified to homogeneity in milligram amounts.  相似文献   

16.
Maximum lipid production (66% w/w dry wt) inRhodotorula glutinis IIP-30 utilizing glucose in a fed-batch fermentation under N-limiting conditions at 30°C, was at pH 4. At pH 3, 5 and 6, the lipid contents were 12%, 48% and 44%, respectively. There was only a small change in the fatty acid profile over the pH range examined, although the ergosterol content decreased by a third as the pH increased.  相似文献   

17.
This work evaluates the ability of an ionic liquid‐methanol cosolvent system to extract lipids and recycle fermentable sugars recovered from oil‐bearing Rhodosporidium toruloides grown in batch culture on defined media using glucose and xylose as carbon sources. Growth on the recycled mixed carbon substrate was successful with glucose consumed before xylose and overall cell mass to lipid yields (YP/X) between 57% and 61% (w/w relative to whole dried cell mass) achieved. Enzymatic hydrolysis of the delipified carbohydrate fraction recovered approximately 9%–11% (w/w) of the whole dried cell mass as fermentable sugars, which were successfully recycled as carbon sources without further purification. In total, up to 70% (w/w) of the whole dried cell mass was recovered as lipids and fermentable sugars and the substrate to lipid yields (YP/S) was increased from 0.12 to 0.16 g lipid/g carbohydrate consumed, highlighting the promise of this approach to process lipid bearing cell biomass. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1239–1242, 2014  相似文献   

18.
Microbial lipid produced using yeast fermentation with inexpensive carbon sources such as lignocellulosic hydrolyzate can be an alternative feedstock for biodiesel production. Several inhibitors that can be generated during acid hydrolysis of lignocellulose were added solely or together into the culture medium to study their individual inhibitory actions and their synergistic effects on the growth and lipid accumulation of oleaginous yeast Rhodosporidium toruloides. When the inhibitors were present in isolation in the medium, to obtain a high cell biomass accumulation, the concentrations of formic acid, acetic acid, furfural and vanillin should be lower than 2, 5, 0.5 and 1.5 g/L, respectively. However, the synergistic effects of these compounds could dramatically decrease the minimum critical inhibitory concentrations leading to significant growth and lipid production inhibitions. Unlike the above-cited inhibitors, sodium lignosulphonate had no negative influence on biomass accumulation when its concentration was in the range of 0.5-2.0 g/L; in effect, it was found to facilitate cell growth and sugar-to-lipid conversion. The fatty acid compositional profile of the yeast lipid was in the compositional range of various plant oils and animal tallow. Finally, the crude yeast lipid from bagasse hydrolyzate could be well converted into fatty acid methyl ester (FAME, biodiesel) by enzymatic transesterification in a tert-butanol system with biodiesel yield of 67.2% and lipid-to-biodiesel conversion of 88.4%.  相似文献   

19.
《Process Biochemistry》2014,49(3):457-465
This work investigated effects of lignocellulose degradation products on cell biomass and lipid production by Cryptococcus curvatus. Furfural was found to have the strongest inhibitory effect. For the three phenolic compounds tested, vanillin was the most toxic, while PHB and syringaldehyde showed comparable inhibitions in the concentration range of 0–1.0 g/L. Generally little significant differences on the relative cell biomass and lipid contents at the same concentrations of tested compounds were observed between glucose and xylose as a sole carbon source. At 1.0 g/L of furfural, the cell biomass and lipid content decreased by 78.4% and 61.0% for glucose as well as 72.0% and 59.3% for xylose, respectively. C. curvatus ceased to grow at concentrations of PHB over 1.0 g/L or vanillin over 1.5 g/L. The strain could survive in the presence of syringaldehyde up to 2.0 g/L for glucose or 1.5 g/L for xylose. The compounds’ negative impact was reduced by an increase in inoculum size and a 10% (v/v) seed was detected to be optimal for cell biomass and lipid production. The results demonstrated C. curvatus could effectively utilize most of the dominant monosaccharides and cellobiose existing in lignocellulosic biomass hydrolysate in the presence of toxic compounds.  相似文献   

20.
Abstract The heterobasidiomycetous yeast Rhodosporidium sphaerocarpum isolated from the Antarctic Ocean and a saltpan, showed marked tolerance to high concentrations of NaCl in the growth medium. This yeast accumulated glycerol as a major osmoregulator, as well as Na+ and Cl, in response to changes in the concentration of NaCl in the external medium. The low levels of another cellular polyol, xylitol, did not respond to changes in the external medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号