首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract

Nizatidine is a histamine H2 receptor antagonist which act by inhibiting the production of stomach acid, thereby, finds its application in treating various diseases related to the gastrointestinal tract. Studying albumin–drug interaction is important for understanding the pharmacokinetics and pharmacodynamics of therapeutic candidates. In the present work, the interaction of nizatidine with BSA was investigated by employing multi-spectroscopic and computational studies. The formation of BSA–nizatidine complex was characterised by UV-visible and fluorescence based-spectroscopic studies. Steady-state fluorescence demonstrated the static mode of quenching of BSA by nizatidine. The interaction was spontaneous and nizatidine binds to BSA with a stoichiometry of 1:1. Forster resonance energy transfer calculations revealed that there was a high possibility of energy transfer between nizatidine and BSA. The resultant secondary structural change in BSA on the addition of nizatidine was studied by circular dichroism spectroscopy. Moreover, synchronous and three-dimensional fluorescence spectroscopy was used to determine the conformational changes occurred in the structure of albumin on the binding of nizatidine. Competitive-site marker experiments suggested that nizatidine binds in the Sudlow site II of BSA. Additionally, the effect of β-cyclodextrin as an inclusion compound on the interaction was studied. Furthermore, molecular modelling and simulation studies were performed to corroborate the results obtained above.

Communicated by Ramaswamy H. Sarma  相似文献   

2.
Albumin Casebrook is an electrophoretically slow genetic variant of human albumin with a relative molecular mass 2.5 kDa higher than normal albumin. It constitutes about 35% of total serum albumin in heterozygous carriers. The decrease in negative charge observed on incubation with sialidase suggested the presence of a carbohydrate moiety and the normalization of molecular weight following treatment with Endo-F indicated that this was an N-linked oligosaccharide. Partial acid hydrolysis and limited tryptic digestion established that the oligosaccharide was located in the C-terminal domaine, between residues 367 and 585. Tryptic, chymotryptic and S. aureus V8 proteinase digestions were carried out and the resulting glycopeptides were purified on concanavalin A-Sepharose. Peptide mapping of bound and unbound fractions followed by amino acid composition and sequence analysis, established a point mutation of 494 Asp → Asn. This introduces an Asn-Glu-Thr N-linkrf oligosaccharide attachment sequence centered on Asn-494 and explains the increase in molecular mass. There was no apparent pathology associated with the presence of this new glycosylated albumin, which was detected in two unrelated individuals of Anglo-Saxon descent.  相似文献   

3.
Carbapenems are used to control the outbreak of β-lactamases expressing bacteria. The effectiveness of drugs is influenced by its interaction with human serum albumin (HSA). Strong binding of carbapenems to HSA may lead to decreased bioavailability of the drug. The non-optimal drug dosage will provide a positive selection pressure on bacteria to develop resistance. Here, we investigated the interaction between meropenem and HSA at physiological pH 7.5 (N-isoform HSA) and non-physiological pH 9.2 (B-isoform HSA). Results showed that meropenem quenches the fluorescence of both ‘N’ and ‘B’ isoforms of HSA (ΔG < 0 and binding constant ~104 M?1). Electrostatic interactions and van der Waal interactions along with H-bonds stabilized the complex of meropenem with ‘N’ and ‘B’ isoforms of HSA, respectively. Molecular docking results revealed that meropenem binds to HSA near Sudlow’s site II (subdomain IIIA) close to Trp-214 with a contribution of a few residues of subdomain IIA. CD spectroscopy showed a change in the conformation of both the isoforms of HSA upon meropenem binding. The catalytic efficiency of HSA (only N-isoform) on p-nitrophenyl acetate was increased primarily due to a decrease in Km and an increase in kcat values. This study provides an insight into the molecular basis of interaction between meropenem and HSA.  相似文献   

4.
We have studied the effect of 2,2,2-trifluoroethanol (TFE), an α-helix inducer, versus methyl cyanide (MeCN), a β-sheet inducer, on acid-denatured human serum albumin (HSA) using far-UV circular dichroism, intrinsic fluorescence, 1-anilino-8-naphthalene sulfonate binding, and acrylamide quenching studies. Interestingly, at pH 2.0, where the recovery and resolution of the protein in reverse phase chromatography is high, its secondary structure remains unchanged even in the presence of very high concentration (76% v/v) of MeCN. Gain of 23 and 34% α-helicity was observed in the presence of 20 and 50% TFE, respectively. At pH 7.3, HSA aggregates in the presence of 40% MeCN, but it remains soluble up to 75% MeCN at pH 2.0. The results seem to be important for HSA isolation and purification.  相似文献   

5.
β2-Glycoprotein I (β2-GPI) is a plasma protein that binds to oxidized low-density lipoprotein (LDL) and negatively charged substances, and inhibits platelet activation and blood coagulation. In this study, we investigated the interaction of β2-GPI with a negatively charged lysophosphatidic acid (LPA) in platelet aggregation and blood clotting. Two negatively charged lysophospholipids, LPA and lysophosphatidylserine, specifically inhibited the binding of β2-GPI to oxidized LDL in a concentration-dependent manner. Intrinsic tryptophan fluorescence studies demonstrated that emission intensity of β2-GPI decreases in an LPA-concentration-dependent manner without a shift in wavelength maxima. LPA specifically induced the aggregation of β2-GPI in phosphate-buffered saline, and in incubated plasma and serum, both of which are known to accumulate LPA by the action of lecithin-cholesterol acyltransferase and lysophospholipase D/autotaxin. β2-GPI aggregated by LPA did not inhibit activated von Willebrand factor-induced aggregation, and did not prolong the activated partial thromboplastin time in blood plasma, in contrast to non-aggregated β2-GPI. These results suggest that β2-GPI aggregated by the binding to LPA fails to inhibit platelet aggregation and blood clotting in contrast to non-aggregated β2-GPI.  相似文献   

6.
7.
Human serum albumin (HSA) and α-1-acid glycoprotein (AGP) (acute phase protein) are the plasma proteins in blood system which transports many drugs. To understand the pharmacological importance of piperine molecule, here, we studied the anti-inflammatory activity of piperine on mouse macrophages (RAW 264.7) cell lines, which reveals that piperine caused an increase in inhibition growth of inflammated macrophages. Further, the fluorescence maximum quenching of proteins were observed upon binding of piperine to HSA and AGP through a static quenching mechanism. The binding constants obtained from fluorescence emission were found to be Kpiperine?=?5.7 ± .2 × 105 M?1 and Kpiperine = 9.3± .25 × 104 M?1 which correspond to the free energy of ?7.8 and ?6.71 kcal M?1at 25 °C for HSA and AGP, respectively. Further, circular dichrosim studies revealed that there is a marginal change in the secondary structural content of HSA due to partial destabilization of HSA–piperine complexes. Consequently, inference drawn from the site-specific markers (phenylbutazone, site I marker) studies to identify the binding site of HSA noticed that piperine binds at site I (IIA), which was further authenticated by molecular docking and molecular dynamic (MD) studies. The binding constants and free energy corresponding to experimental and computational analysis suggest that there are hydrophobic and hydrophilic interactions when piperine binds to HSA. Additionally, the MD studies have showed that HSA–piperine complex reaches equilibration state at around 3 ns, which prove that the HSA–piperine complex is stable in nature.  相似文献   

8.
9.
Chitosan is a naturally occurring deacetylated derivative of chitin with versatile biological activities. Here, we studied the interaction of chitosan oligomers with low degree of polymerization such as chitosan monomer (CM), chitosan dimer (CD), and chitosan trimer (CT) with human serum albumin (HSA) a major blood carrier protein and α-1-glycoprotein (AGP). Since, HSA and AGP are the two important plasma proteins that determine the drug disposition and affect the fate of distribution of drugs. Fluorescence emission spectra indicated that CM, CD, and CT had binding constants of KCM = 6.2 ± .01 × 105 M?1, KCD = 5.0 ± .01 × 104 M?1, and KCT = 1.6 ± .01 × 106 M?1, respectively, suggesting strong binding with HSA. However, binding of chitooligomers with AGP was insignificant. Thermodynamic and molecular docking analysis indicated that hydrogen bonds and also hydrophobic interaction played an important role in stabilizing the HSA-chitooligomer complexes with free energies of ?7.87, ?6.35, and ?8.4?Kcal/mol for CM, CD, and CT, respectively. Further, circular dichroism studies indicated a minor unfolding of HSA secondary structure, upon interaction with chitooligomers, which are supported with fluctuations of root mean square deviation (RMSD) and radius of gyration (Rg) of HSA. Docking analysis revealed that all three chitooligomers were bound to HSA within subdomain IIA (Site I). In addition, RMSD and Rg analysis depicted that HSA-chitooligomer complexes stabilized at around 4.5 ns. These results suggest that HSA might serve as a carrier in delivering chitooligomers to target tissues than AGP which has pharmacological importance.  相似文献   

10.
Human serum albumin (HSA) participates in heme scavenging, the bound heme turning out to be a reactivity center and a powerful spectroscopic probe. Here, the reversible unfolding of heme–HSA has been investigated by 1H-NMR relaxometry, circular dichroism, and absorption spectroscopy. In the presence of 6 equiv of myristate (thus fully saturating all available fatty acid binding sites in serum heme–albumin), 1.0 M guanidinium chloride induces some unfolding of heme–HSA, leading to the formation of a folding intermediate; this species is characterized by increased relaxivity and enhanced dichroism signal in the Soret region, suggesting a more compact heme pocket conformation. Heme binds to the folding intermediate with K d = (1.2 ± 0.1) × 10−6 M. In the absence of myristate, the conformation of the folding intermediate state is destabilized and heme binding is weakened [K d = (3.4 ± 0.1) × 10−5 M]. Further addition of guanidinium chloride (up to 5 M) brings about the usual denaturation process. In conclusion, myristate protects HSA from unfolding, stabilizing a folding intermediate state in equilibrium with the native and the fully unfolded protein, envisaging a two-step unfolding pathway for heme–HSA in the presence of myristate.  相似文献   

11.
The electron spin resonance (ESR) spectra of human and rabbit ferriheme-hemopexin complexes at 30oK show an ESR absorption characterized by gx = 1.60, gy = 2.25 and gz = 2.86, characteristic of low-spin ferriheme-proteins. The low-spin nature of the heme-iron in heme-hemopexin is corroborated by the observation of nuclear hyperfine splitting in M?ssbauer spectra at 4.2oK. The similarity of the ESR spectra of ferriheme-hemopexin with those of low-spin cytochromes which coordinate heme via two histidine residues points to a similar coordination mechanism in hemopexin. In contrast, the ESR spectra of the 1:1 and 2:1 complexes of heme with human serum albumin display signals at g = 6.0 and g = 2.0, characteristic of high-spin ferrihemeproteins.  相似文献   

12.
Our study focus on the biological importance of synthesized 5β-dihydrocortisol (Dhc) and 5β-dihydrocortisol acetate (DhcA) molecules, the cytotoxic study was performed on breast cancer cell line (MCF-7) normal human embryonic kidney cell line (HEK293), the IC50 values for MCF-7 cells were 28 and 25 μM, respectively, whereas no toxicity in terms of cell viability was observed with HEK293 cell line. Further experiment proved that Dhc and DhcA induced 35.6 and 37.7% early apoptotic cells and 2.5, 2.9% late apoptotic cells, respectively, morphological observation of cell death through TUNEL assay revealed that Dhc and DhcA induced apoptosis in MCF-7 cells. The complexes of HSA–Dhc and HSA–DhcA were observed as static quenching, and the binding constants (K) was 4.7 ± .03 × 104 M?1 and 3.9 ± .05 × 104 M?1, and their binding free energies were found to be ?6.4 and ?6.16 kcal/mol, respectively. The displacement studies confirmed that lidocaine 1.4 ± .05 × 104 M?1 replaced Dhc, and phenylbutazone 1.5 ± .05 × 104 M?1 replaced by DhcA, which explains domain I and domain II are the binding sites for Dhc and DhcA. Further, FT-IR, synchronous spectroscopy, and CD results revealed that the secondary structure of HSA was altered in the presence of Dhc and DhcA. Furthermore, the atomic force microscopy and transmission electron microscopy showed that the dimensions like height and molecular size of the HSA–Dhc and HSA–DhcA complex were larger compared to HSA alone. Detailed analysis through molecular dynamics simulations also supported greater stability of HSA–Dhc and HSA–DhcA complexes, and root-mean-square-fluctuation interpreted the binding site of Dhc as domain IB and domain IIA for DhcA. This information is valuable for further development of steroid derivative with improved pharmacological significance as novel anti-cancer drugs.  相似文献   

13.
Human serum albumin binding of folic acid and its γ-hydroxamate/carboxylate derivatives was studied by ultrafiltration and spectrofluorimetry, and it was found that the ligands exhibit a moderate binding (KD ~ 2-50 μM), and the folate-γ-phenylalanine represents the highest conditional binding constant towards albumin. This feature may have importance in the serum transport processes of these ligands. Interaction of folic acid and its derivatives with Zn(II) was investigated in aqueous solution to obtain the composition and stabilities of the complexes by the means of pH-potentiometry, 1H NMR and electrospray ionization mass spectrometry, together with the characterization of the proton dissociation processes and the hydro-lipophilic properties of the ligands. The formation of mono-ligand complexes was demonstrated in all cases and the contribution of the glutamyl carboxylates to the coordination was excluded. Binding of folic acid and its γ-carboxylate derivatives to Zn(II) via the pteridine moiety is suggested, while the (O,O) coordination fashion of the folate-γ-hydroxamate ligands has importance in their inhibitory activity against Zn(II)-containing matrix metalloproteinases. It was found that the enzyme inhibition of these folate-γ-hydroxamate ligands is mainly tuned by other features, such as the lipophilic character rather than the Zn(II)-chelate stability.  相似文献   

14.
Abstract

The binding characteristic of anti-platelet drug dipyridamole has been investigated with a transport protein, serum albumin. A multi-spectroscopic approach has been employed, and the results were well supported by in silico molecular docking and simulation studies. The fluorescence quenching of serum albumin at three different temperatures revealed that the mechanism involved is static and the binding constant of the interaction was found to be of the order of 104 M?1. The reaction was found to be spontaneous and involved hydrophobic interactions. Synchronous, 3D fluorescence and CD spectroscopy indicated a change in conformation of bovine serum albumin (BSA) on interaction with DP. Using site-selective markers, the binding site of DP was found to be in subdomain IB. Molecular docking studies further corroborated these results. Molecular dynamic (MD) simulations showed lower RMSD values on interaction, suggesting the existence of a stable complex between DP and BSA. Furthermore, since β-Cyclodextrin (βCD) is used to improve the solubility of DP in ophthalmic solutions, therefore, the effect of (βCD) on the interaction of BSA and DP was also studied, and it was found that in the presence of βCD, the binding constant for BSA-DP interaction decreased. The present study is an attempt to characterize the transport of DP and to improve its bioavailability, consequently helping in dosage design to achieve optimum therapeutic levels.

Communicated by Ramaswamy H. Sarma  相似文献   

15.
Albumin Kenitra is a new type of genetic variant of human serum albumin that has been found in two members of a family of Sephardic Jews from Kenitra (Morocco). The slow-migrating variant and the normal protein were isolated by anion-exchange chromatography and, after treatment with CNBr, the digests were analyzed by two-dimensional electrophoresis in a polyacrylamide gel. The CNBr peptides of the variant were purified by reverse-phase high performance liquid chromatography and submitted to sequence analysis. Albumin Kenitra is peculiar because it has an elongated polypeptide chain, 601 residues instead of 585, and its sequence is modified beginning from residue 575. DNA structural studies showed that the variant is caused by a single-base insertion, an adenine at nucleotide position 15 970 in the genomic sequence, which leads to a frameshift with the subsequent translation to the first termination codon of exon 15. Mass spectrometric analyses revealed that the four additional cysteine residues of the variant form two new S-S bridges and showed that albumin Kenitra is partially O-glycosylated by a monosialylated HexHexNAc structure. This oligosaccharide chain has been located to Thr596 by amino-acid sequence analysis of the tryptic fragment 592-597.  相似文献   

16.
Binding affinities of flavonols namely quercetin, myricetin, and kaempferol to human serum albumin (HSA) were determined fluorimetrically and the order was observed to be myricetin > quercetin > kaempferol demonstrating structure–activity relationship. Quercetin-coated silver nanoparticles (AgNPs) show higher binding affinity to HSA compared to free quercetin with binding constants 6.04 × 107 M?1 and 4.2 × 106 M?1, respectively. Using site-specific markers it is concluded that free quercetin and that coated on AgNPs bind at different sites. Significant structural changes in circular dichroism (CD) spectra of HSA were recorded with quercetin-coated AgNPs compared to free quercetin. These results were further substantiated by time-resolved fluorescence spectroscopy where fluorescence life time of the tryptophan residue in HSA–quercetin-coated AgNPs complex decreased to 3.63 ns from 4.22 ns in HSA–quercetin complex. Isothermal calorimetric studies reveal two binding modes for quercetin-coated AgNPs and also higher binding constants compared to free quercetin. These higher binding affinities are attributed to altered properties of quercetin when coated on AgNPs enabling it to reach the binding sites other than site II where free quercetin mainly binds.  相似文献   

17.
Docetaxel is one of the most effective anticancer drugs. However, the current formulation of docetaxel contains Tween 80 and ethanol as the solvent, which can cause severe side effects. Consequently, the development of new type of formulation of docetaxel with high efficiency and low side effects is a very important issue. In this study, we explored the covalent linking of docetaxel and albumin via one organic linker. 6-Maleimidocaproic acid was applied to link the C2′ hydroxyl group of docetaxel with the cysteine-34 of albumin to obtain 1:1 docetaxel–albumin conjugate. The synthesized conjugate can control the release of docetaxel in the bovine serum. Furthermore, in vitro cell cytotoxicity experiments indicated that the docetaxel–albumin conjugate have high activities for human prostate cancer cell line PC3 and human breast cancer cell line MCF-7. The present study provides a valuable strategy for further development of a new type of docetaxel–albumin prodrug.  相似文献   

18.
19.
Coumarin molecules have biological activities possessing lipid-controlling activity, anti-hepatitis C activity, anti-diabetic, anti-Parkinson activity, and anti-cancer activity. Here, we have presented an inclusive study on the interaction of 8-substituted-7-hydroxy coumarin derivatives (Umb-1/Umb-2) with α-1-glycoprotein (AGP) and human serum albumin (HSA) which are the major carrier proteins in the human blood plasma. Binding constants obtained from fluorescence emission data were found to be KUmb-1=3.1 ± .01 × 104 M?1, KUmb-2 = 7 ± .01 × 104 M?1, which corresponds to ?6.1 and ?6.5 kcal/mol of free energy for Umb-1 and Umb-2, respectively, suggesting that these derivatives bind strongly to HSA. Also these molecules bind to AGP with binding constants of KUmb-1-AGP=3.1 ± .01 × 103 M?1 and KUmb-2-AGP = 4.6 ± .01 × 103 M?1. Further, the distance, r between the donor (HSA) and acceptor (Umb-1/Umb-2) was calculated based on the Forster’s theory of non-radiation energy transfer and the values were observed to be 1.14 and 1.29 nm in Umb-1–HSA and Umb-2–HSA system, respectively. The protein secondary structure of HSA was partially unfolded upon binding of Umb-1 and Umb-2. Furthermore, site displacement experiments with lidocaine, phenylbutazone (IIA), and ibuprofen (IIIA) proves that Umb derivatives significantly bind to subdomain IIIA of HSA which is further supported by docking studies. Furthermore, Umb-1 binds to LYS402 with one hydrogen bond distance of 2.8 Å and Umb-2 binds to GLU354 with one hydrogen bond at a distance of 2.0 Å. Moreover, these molecules are stabilized by hydrophobic interactions and hydrogen bond between the hydroxyl groups of carbon-3 of coumarin derivatives.  相似文献   

20.
The present case of constitutional thrombasthenia is unique. It demonstrates the importance of the three major steps of human platelet aggregation: 1. binding of agonists to their respective membrane sites; 2. transmission of a message probably membrane Ca++ dependent, 3. exposure of the preformed GP IIb-III a complex allowing fibrinogen binding. We postulate that in this case the second step is impaired while in the classical thrombasthenia, the third one is abnormal by absence, strong reduction or functional abnormality of the GP II b-III a complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号