首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rise of antibiotic resistance as a public health concern has led to increased interest in studying the ways in which bacteria avoid the effects of antibiotics. Enzymatic inactivation by several families of enzymes has been observed to be the predominant mechanism of resistance to aminoglycoside antibiotics such as kanamycin and gentamicin. Despite the importance of acetyltransferases in bacterial resistance to aminoglycoside antibiotics, relatively little is known about their structure and mechanism. Here we report the three-dimensional atomic structure of the aminoglycoside acetyltransferase AAC(6')-Ii in complex with coenzyme A (CoA). This structure unambiguously identifies the physiologically relevant AAC(6')-Ii dimer species, and reveals that the enzyme structure is similar in the AcCoA and CoA bound forms. AAC(6')-Ii is a member of the GCN5-related N-acetyltransferase (GNAT) superfamily of acetyltransferases, a diverse group of enzymes that possess a conserved structural motif, despite low sequence homology. AAC(6')-Ii is also a member of a subset of enzymes in the GNAT superfamily that form multimeric complexes. The dimer arrangements within the multimeric GNAT superfamily members are compared, revealing that AAC(6')-Ii forms a dimer assembly that is different from that observed in the other multimeric GNAT superfamily members. This different assembly may provide insight into the evolutionary processes governing dimer formation.  相似文献   

2.
It has recently been shown that paromomycin, an antibiotic of the aminoglycoside family, is also active on eukaryotic cytoplasmic ribosomes. In the fungus Podospora anserina, genetic analysis of ten mutants resistant to high doses of paromomycin shows that this resistance is caused by mutations in two different nuclear genes. These mutants display pleiotropic phenotypes (cold sensitivity, mycelium and spore appearance and coloration, cross-resistance to other antibiotics). Double mutants are either lethal or very altered and unstable. Moreover, the cytochrome spectra of these mutants seem to indicate that cytoplasmic protein synthesis is affected. The mutants also display a slight suppressor effect. We can therefore assume that these mutations affect cytoplasmic ribosomes.This work was supported by a C.N.R.S. Grant (ATP Microbiologie No. 3052) and by a NATO Grant.  相似文献   

3.
Summary An examination of the effect of the aminoglycoside antibiotics paromomycin and neomycin on mitochondrial ribosome function in yeast has been made. Both antibiotics are potent inhibitors of protein synthesis in isolated mitochondria. With isolated mitochondrial ribosomes programmed with polyuridylic acid (poly U), the drugs are shown to inhibit polyphenylalanine synthesis at moderately high concentrations (above 100 g/ml). At lower concentrations (about 10 g/ml), paromomycin and neomycin cause a 2–3 fold stimulation in the extent of misreading of the UUU codons in poly U, over and above the significant level of misreading catalyzed by the ribosomes in the absence of drugs.Comparative studies have been made between a paromomycin sensitive strain D585-11C and a mutant strain 4810P carrying the parl-r mutation in mtDNA, which leads tohigh resistance to both paromomycin and neomycin in vivo. A high level of resistance to these antibiotics is observed in strain 4810P at the level of mitochondrial protein synthesis in vitro. Whilst the degree of resistance of isolated mitochondrial ribosomes from strain 4810P judged by the inhibition of polyphenylalanine synthesis by paromomycin and neomycin is not extensive, studies on misreading of the poly U message promoted by these drugs demonstrate convincingly the altered properties of mitochondrial ribosomes from the mutant strain 4810P. These ribosomes show resistance to the stimulation of misreading of the codon UUU brought about by paromomycin and neomycin in wild-type mitochondrial ribosomes. Although strain 4810P was originally isolated as being resistant to paromomycin, in all the in vitro amino acid incorporation systems tested here, the 4810P mitochondrial ribosomes show a higher degree of resistance to neomycin than to paromomycin.It is concluded that the parl-r mutation in strain 4810P affects a component of the mitochondrial ribosome, possibly by altering the 15S rRNA or a protein of the small ribosomal subunit. The further elucidation of the functions in the ribosomes that are modified by the parl-r mutation was hampered by the inability of current preparations of yeast mitochondrial ribosomes to translate efficiently natural messenger RNAs from the several sources tested.  相似文献   

4.
Summary In Saccharomyces cerevisiae, mutants were isolated which show high resistance to the aminoglycoside paromomycin. Amino acid incorporation of mitochondria isolated from such mutant strains proved also to be paromomycin resistant. All of them are cross-resistant to the structurally related antibiotic neomycin. Three independent methods revealed the resistance to be extrachromosomally, presumably mitochondrially inherited.  相似文献   

5.
Some strains of Nocardia were found to contain weak activities to phosphorylate aminoglycoside antibiotics in cell-free extracts. Properties of butirosin A resistant mutants derived from N. asteroides IFO 3423 were examined. An increase in their resistance to aminoglycoside antibiotics and their aminoglycoside 3′-phosphotransferase [APh(3′)] contents were shown to be well closely comparable. The findings indicate that APh(3′) of N. asteroides can be a biochemical mechanism in resistance to aminoglycoside antibiotics.

The mutant, BUR-38 with the largest increase in APh(3′) was examined for preparation of 3′-phosphate derivatives of aminoglycoside antibiotics. The derivatives were known to be useful intermediates in the chemical transformation of aminoglycoside antibiotics to more potent 3′-deoxy forms against resistant clinically-isolated bacteria. A nonionic detergent, sodium dodecyl sulfate was found to be very effective on 3′-phosphorylation of xylostasin and butirosin A by intact cells.  相似文献   

6.
The enzymes of the GCN5-related N-acetyltransferase (GNAT) superfamily count more than 870 000 members through all kingdoms of life and share the same structural fold. GNAT enzymes transfer an acyl moiety from acyl coenzyme A to a wide range of substrates including aminoglycosides, serotonin, glucosamine-6-phosphate, protein N-termini and lysine residues of histones and other proteins. The GNAT subtype of protein N-terminal acetyltransferases (NATs) alone targets a majority of all eukaryotic proteins stressing the omnipresence of the GNAT enzymes. Despite the highly conserved GNAT fold, sequence similarity is quite low between members of this superfamily even when substrates are similar. Furthermore, this superfamily is phylogenetically not well characterized. Thus functional annotation based on sequence similarity is unreliable and strongly hampered for thousands of GNAT members that remain biochemically uncharacterized. Here we used sequence similarity networks to map the sequence space and propose a new classification for eukaryotic GNAT acetyltransferases. Using the new classification, we built a phylogenetic tree, representing the entire GNAT acetyltransferase superfamily. Our results show that protein NATs have evolved more than once on the GNAT acetylation scaffold. We use our classification to predict the function of uncharacterized sequences and verify by in vitro protein assays that two fungal genes encode NAT enzymes targeting specific protein N-terminal sequences, showing that even slight changes on the GNAT fold can lead to change in substrate specificity. In addition to providing a new map of the relationship between eukaryotic acetyltransferases the classification proposed constitutes a tool to improve functional annotation of GNAT acetyltransferases.  相似文献   

7.
8.
9.
Antibiotic-resistance genes of bacterial origin are invaluable markers for plant genetic engineering. However, these genes are feared to pose possible risk to human health by horizontal gene transfer from transgenic plants to bacteria, potentially resulting in antibiotic-resistant pathogenic bacteria; this is a considerable regulatory concern in some countries. The Atwbc19 gene, encoding an Arabidopsis thaliana ATP-binding cassette transporter, has been reported to confer resistance to kanamycin specifically as an alternative to bacterial antibiotic-resistance genes. In this report, we transformed hybrid aspen (Populus canescens × P. grandidentata) with the Atwbc19 gene. Unlike Atwbc19-transgenic tobacco that was only resistant to kanamycin, the transgenic Populus plants also showed resistance to three other aminoglycoside antibiotics (neomycin, geneticin, and paromomycin) at comparable levels to plants containing a CaMV35S-nptII cassette. Although it is unknown why the transgenic Populus with the Atwbc19 gene is resistant to all aminoglycoside antibiotics tested, the broad utility of the Atwbc19 gene as a reporter gene is confirmed here in a second dicot species. Because the Atwbc19 gene is plant-ubiquitous, it might serve as an alternative selectable marker to current bacterial antibiotic-resistance marker genes and alleviate the potential risk for horizontal transfer of bacterial-resistance genes in transgenic plants.  相似文献   

10.
An important cause of bacterial resistance to aminoglycoside antibiotics is the enzymatic acetylation of their amino groups by acetyltransferases, which abolishes their binding to and inhibition of the bacterial ribosome. Enhanced intracellular survival (Eis) protein from Mycobacterium tuberculosis (Mt) is one of such acetyltransferases, whose upregulation was recently established as a cause of resistance to aminoglycosides in clinical cases of drug-resistant tuberculosis. The mechanism of aminoglycoside acetylation by MtEis is not completely understood. A systematic analysis of steady-state kinetics of acetylation of kanamycin A and neomycin B by Eis as a function of concentrations of these aminoglycosides and the acetyl donor, acetyl coenzyme A, reveals that MtEis employs a random-sequential bisubstrate mechanism of acetylation and yields the values of the kinetic parameters of this mechanism. The implications of these mechanistic properties for the design of inhibitors of Eis and other aminoglycoside acetyltransferases are discussed.  相似文献   

11.
Summary The effect of selected aminoglycoside antibiotics on the translational accuracy of poly(U) programmed ribosomes derived from the thermophilic archaebacteria Thermoplasma acidophilum, Sulfolobus solfataricus, Thermococcus celer and Desulfurococcus mobilis has been determined. Under optimum temperature and ionic conditions for polyphenylalanine synthesis, the four species investigated are found to be markedly diverse in their response to the miscoding-inducing action of aminoglycoside antibiotics. T. acidophilum is sensitive to all of the compounds tested except streptomycin; S. solfataricus responds to paromomycin and to hygromycin B; T. celer is only affected by neomycin, and D. mobilis is refractory to all drugs. The only feature shared by the four species under study, and by all archaebacteria so far investigated, is their complete insensitivity to streptomycin. The structural and phylogenetic implications of the remarkable diversity encountered among archaebacterial ribosomes in their susceptibility to aminoglycosides are discussed.  相似文献   

12.
Chloramphenicol acetyltransferases (CATs) were among the first antibiotic resistance enzymes identified and have long been studied as model enzymes for examining plasmid‐mediated antibiotic resistance. These enzymes acetylate the antibiotic chloramphenicol, which renders it incapable of inhibiting bacterial protein synthesis. CATs can be classified into different types: Type A CATs are known to be important for antibiotic resistance to chloramphenicol and fusidic acid. Type B CATs are often called xenobiotic acetyltransferases and adopt a similar structural fold to streptogramin acetyltransferases, which are known to be critical for streptogramin antibiotic resistance. Type C CATs have recently been identified and can also acetylate chloramphenicol, but their roles in antibiotic resistance are largely unknown. Here, we structurally and kinetically characterized three Vibrio CAT proteins from a nonpathogenic species (Aliivibrio fisheri) and two important human pathogens (Vibrio cholerae and Vibrio vulnificus). We found all three proteins, including one in a superintegron (V. cholerae), acetylated chloramphenicol, but did not acetylate aminoglycosides or dalfopristin. We also determined the 3D crystal structures of these CATs alone and in complex with crystal violet and taurocholate. These compounds are known inhibitors of Type A CATs, but have not been explored in Type B and Type C CATs. Based on sequence, structure, and kinetic analysis, we concluded that the V. cholerae and V. vulnificus CATs belong to the Type B class and the A. fisheri CAT belongs to the Type C class. Ultimately, our results provide a framework for studying the evolution of antibiotic resistance gene acquisition and chloramphenicol acetylation in Vibrio and other species.  相似文献   

13.
Neomycin and paromomycin are aminoglycoside antibiotics that specifically stimulate the misreading of mRNA by binding to the decoding site of 16S rRNA in the 30S ribosomal subunit. Recent work has shown that both antibiotics also inhibit 30S subunit assembly in Escherichia coli and Staphylococcus aureus cells. This work describes the characteristics of an assembly intermediate produced in E. coli cells grown with neomycin or paromomycin. Antibiotic treatment stimulated the accumulation of a 30S assembly precursor with a sedimentation coefficient of 21S. The particle was able to bind radio-labeled antibiotics in vivo and in vitro. Hybridization experiments showed that the 21S precursor particle contained unprocessed 16S rRNA with both 5′ and 3′ extensions. Ten 30S ribosomal proteins were found in the precursor after inhibition by each drug. In addition, cell free reconstitution assays generated a 21S particle after incubation with either aminoglycoside. This work helps to define the features of the ribosome structure as a target for antimicrobial agents and may provide information needed for the design of more effective antibiotics.  相似文献   

14.
The predicted shortage in new antibiotics has prompted research for chemicals that could act as adjuvant and enhance efficacy of available antibiotics. In this study, we tested the effects of combining metals with aminoglycosides on Escherichia coli survival. The best synergizing combination resulted from mixing aminoglycosides with silver. Using genetic and aminoglycoside uptake assays, we showed that silver potentiates aminoglycoside action in by‐passing the PMF‐dependent step, but depended upon protein translation. We showed that oxidative stress or Fe–S cluster destabilization were not mandatory factors for silver potentiating action. Last, we showed that silver allows aminoglycosides to kill an E. coli gentamicin resistant mutant as well as the highly recalcitrant anaerobic pathogen Clostridium difficile. Overall this study delineates the molecular basis of silver's potentiating action on aminoglycoside toxicity and shows that use of metals might offer solutions for battling against increased bacterial resistance to antibiotics.  相似文献   

15.
16.
The bacterial ribosome is an important target for many antimicrobial agents. Aminoglycoside antibiotics bind to both 30S and 50S ribosomal subunits, inhibiting translation and subunit formation. During ribosomal subunit biogenesis, ribonucleases (RNases) play an important role in rRNA processing. E. coli cells deficient for specific processing RNases are predicted to have an increased sensitivity to neomycin and paromomycin. Four RNase mutant strains showed an increased growth sensitivity to both aminoglycoside antibiotics. E. coli strains deficient for the rRNA processing enzymes RNase III, RNase E, RNase G or RNase PH showed significantly reduced subunit amounts after antibiotic treatment. A substantial increase in a 16S RNA precursor molecule was observed as well. Ribosomal RNA turnover was stimulated, and an enhancement of 16S and 23S rRNA fragmentation was detected in E. coli cells deficient for these enzymes. This work indicates that bacterial RNases may be novel antimicrobial targets.  相似文献   

17.

Antibiotic resistance in 40 Staphylococcus aureus clinical isolates from 110 diabetic patients (36%) was evaluated. Of these, 32 (80%) of the isolates showed multidrug-resistance to more than eight antibiotics and 35% isolates were found to be methicillin resistant S. aureus (MRSA). All 40 S. aureus strains (100%) screened from diabetic clinical specimens were resistant to penicillin, 63% to ampicillin, 55% to streptomycin, 50% to tetracycline and 50% to gentamicin. Where as low resistance rate was observed to ciprofloxacin (20%) and rifampicin (8%). In contrast, all (100%) S. aureus strains recorded susceptibility to teicoplanin, which was followed by vancomycin (95%). Genotypical examination revealed that 80% of the aminoglycoside resistant S. aureus (ARSA) have aminoglycoside modifying enzyme (AME) coding genes; however, 20% of ARSA which showed non-AME mediated (adaptive) aminoglycoside resistance lacked these genes in their genome. In contrast all MRSA isolates possessed mecA, femA genetic determinants in their genome.

  相似文献   

18.
The aminoglycoside modifying enzyme (AME) ANT(2″)‐Ia is a significant target for next generation antibiotic development. Structural studies of a related aminoglycoside‐modifying enzyme, ANT(3″)(9), revealed this enzyme contains dynamic, disordered, and well‐defined segments that modulate thermodynamically before and after antibiotic binding. Characterizing these structural dynamics is critical for in situ screening, design, and development of contemporary antibiotics that can be implemented in a clinical setting to treat potentially lethal, antibiotic resistant, human infections. Here, the first NMR structural ensembles of ANT(2″)‐Ia are presented, and suggest that ATP‐aminoglycoside binding repositions the nucleotidyltransferase (NT) and C‐terminal domains for catalysis to efficiently occur. Residues involved in ligand recognition were assessed by site‐directed mutagenesis. In vitro activity assays indicate a critical role for I129 toward aminoglycoside modification in addition to known catalytic D44, D46, and D48 residues. These observations support previous claims that ANT aminoglycoside sub‐class promiscuity is not solely due to binding cleft size, or inherent partial disorder, but can be controlled by ligand modulation on distinct dynamic and thermodynamic properties of ANTs under cellular conditions. Hydrophobic interactions in the substrate binding cleft, as well as solution dynamics in the C‐terminal tail of ANT(2″)‐Ia, advocate toward design of kanamycin‐derived cationic lipid aminoglycoside analogs, some of which have already shown antimicrobial activity in vivo against kanamycin and gentamicin‐resistant P. aeruginosa. This data will drive additional in silico, next generation antibiotic development for future human use to combat increasingly prevalent antimicrobial resistance.  相似文献   

19.
Acyl‐coenzyme A‐dependent N‐acetyltransferases (AACs) catalyze the modification of aminoglycosides rendering the bacteria carrying such enzymes resistant to this class of antibiotics. Here we present the crystal structure of AAC(3)‐Ia enzyme from Serratia marcescens in complex with coenzyme A determined to 1.8 Å resolution. This enzyme served as an architype for the AAC enzymes targeting the amino group at Position 3 of aminoglycoside main aminocyclitol ring. The structure of this enzyme has been previously determined only in truncated form and was interpreted as distinct from subsequently characterized AACs. The reason for the unusual arrangement of secondary structure elements of AAC(3)‐Ia was not further investigated. By determining the full‐length structure of AAC(3)‐Ia we establish that this enzyme adopts the canonical AAC fold conserved across this family and it does not undergo through significant rearrangement of secondary structure elements upon ligand binding as was proposed previously. In addition, our results suggest that the C‐terminal tail in AAC(3)‐Ia monomer forms intramolecular hydrogen bonds that contributes to formation of stable dimer, representing the predominant oligomeric state for this enzyme.  相似文献   

20.
氨基糖苷类抗生素在治疗感染性疾病尤其是革兰氏阴性菌引起的严重感染方面起着重要作用 ,但是耐药菌株的出现较大地限制了此类抗生素的发展 ,因此 ,如何控制耐药性已经成为一项迫切需要解决的任务。细菌对氨基糖苷类抗生素产生抗性的机制很多 ,目前普遍接受的主要有三种 :1. 通过减少对氨基糖苷类抗生素的摄取或减少药物在体内的累积而产生抗性。 2. 通过改变核糖体结合位点而产生抗性。 3. 通过表达氨基糖苷类抗生素修饰酶而产生抗性。目前细菌耐药性的控制主要集中在对原有氨基糖苷类抗生素进行改造或合成新的抗生素 ,开发氨基糖苷类抗生素修饰酶抑制剂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号