首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Heterocyclic molecules are well-known drugs against various diseases including cancer. Many tyrosine kinase inhibitors including erlotinib, osimertinib, and sunitinib were developed and approved but caused adverse effects among treated patients. Which prevents them from being used as cancer therapeutics. In this study, we strategically developed heterocyclic thiazolo-[2,3-b]quinazolinone derivatives by an organic synthesis approach. These synthesized molecules were assessed against the epidermal growth factor receptor tyrosine kinase domain (EGFR-TKD) by in silico methods. Molecular docking simulations unravel derivative 17 showed better binding energy scores and followed Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) properties. The binding affinity displayed by synthetic congener and reference molecule erlotinib was found to be ?8.26 ± 0.0033 kcal/mol and ?7.54 ± 0.1411 kcal/mol with the kinase domain. Further, molecular dynamic simulations were conducted thrice to validate the molecular docking study and achieved significant results. Both synthetic derivative and reference molecule attained stability in the active site of the TKD. The synthetic congener and erlotinib showed free energy binding (ΔGbind) ?102.975 ± 3.714 kJ/mol and ?130.378 ± 0.355 kJ/mol computed by Molecular Mechanics Poison Boltzmann Surface Area (MM-PBSA) method. In addition, the motions of each sampled system including the Apo complex were determined by the principal component analysis and Gibbs energy landscape analysis. The in-vitro apoptosis study was performed using MCF-7 and H-1299 cancer cell lines. However, thiazolo-[2,3-]-quinazoline derivative 17 showed fair anti-proliferative activity against MCF-7 and H-1299. Further, the in-vivo study is necessary to determine the effectivity of the potent anti-proliferative, non-toxic molecule against TKD.  相似文献   

2.
Noscapine an FDA-approved antitussive agent. With low cytotoxicity with higher concentrations, noscapine and its derivatives have been shown to have exceptional anticancer properties against a variety of cancer cell lines. In order to increase its potency, in this study, we synthesized a series of new amido-thiadiazol coupled noscapinoids and tested their cytotoxicity in vitro. All of the newly synthesised compounds demonstrated potent cytotoxic potential, with IC50 values ranging from 2.1 to 61.2 μM than the lead molecule, noscapine (IC50 value ranges from 31 to 65.5 μM) across all cell lines, without affecting normal cells (IC50 value is>300 μM). Molecular docking of all these molecules with tubulin (PDB ID: 6Y6D, resolution 2.20 Å) also revealed better binding affinity (docking score range from −5.418 to −9.679 kcal/mol) compared to noscapine (docking score is −5.304 kcal/mol). One of the most promising synthetic derivatives 6aa (IC50 value ranges from 2.5 to 7.3 μM) was found to bind tubulin with the highest binding affinity (ΔGbinding is −28.97 kcal/mol) and induced apoptosis in cancer cells more effectively.  相似文献   

3.
Abstract

Inspired by the synergistic effects of hetero-aromatic scaffolds on curcumin, a novel array of pyrazoline substituted curcumin analogs was designed. Multi-scale computational studies were carried out to target the proposed analogs on human kinase β (IKK-β), a potential anti-cancer target. In molecular docking analysis, all the eleven molecules were observed to bind the target site and 4-bromo-4’-chloro analog displayed three hydrogen bond interactions with a docking score of –11.534?kcal/mol higher than parent molecule, curcumin (docking score = –7.12?kcal/mol) as the propellant shaped of analogs aided in proper binding with Kinase Domain binding pocket. The molecular dynamics and simulations studies revealed that the stable complexes of lead molecule were developed as the minimal deviations per residue of protein found within the range of 0.11 to 0.92?Å. The proposed compounds were synthesized, characterized and biologically evaluated against human cervical cancer cell line, HeLa, using standard MTT cell assay. Bio-evaluation studies exhibited superior cytotoxic profile for many analogs as Chloro bromo analog with IC50 value (8.7?µg/mL) exhibited fivefolds improvement in the potency in comparison to curcumin (IC50 = 42.4?µg/mL) but was less potent than the standard drug, paclitaxel (IC50 = 0.008µg/mL). The apoptotic effect was evaluated in the terms of caspase-3 enzyme cleavage and exhibited 70.5% of apoptosis significantly (p?<?0.05) higher than 19.9% induced by curcumin. In short, 4-bromo-4’-chloro analog was the potent cytotoxic agent in this structural class and must be evaluated further under a set of stringent parameters for transforming in to a clinically viable therapeutic molecule.

Communicated by Ramaswamy H. Sarma  相似文献   

4.
5.
Leptospira interrogans is the foremost cause of human leptospirosis. Discovery of novel lead molecules for common drug targets of more than 250 Leptospira serovars is of significant research interest. Lipopolysaccharide (LPS) layer prevent entry of hydrophobic agents into the cell and protect structural integrity of the bacterium. KDO-8-phosphate synthase (KdsA) catalyzes the first step of KDO biosynthesis that leads to formation of inner core of LPS. KdsA was identified as a potential drug target against Leptospira interrogans through subtractive genomic approach, metabolic pathway analysis, and comparative analysis (Amineni et al., 2010). The present study rationalizes a systematic implementation of homology modeling, docking, and molecular dynamics simulations to discover potent KdsA inhibitors (Pradhan et al., 2013; Umamaheswari et al., 2010). A reliable tertiary structure of KdsA in complex with substrate PEP was constructed based on co-crystal structure of Aquifex aeolicus KdsA synthase with PEP using Modeller9v10. Geometry-based analog search for PEP was performed from LigandInfo database to generate an in house library of 352 ligands. The ligand data-set was docked into KdsA active site through three-stage docking technique (HTVS, SP, and XP) using Glidev5.7. Thirteen lead molecules were found to have better binding affinity compared to PEP (XP Gscore?=??7.38?kcal/mol; Figure 1). The best lead molecule (KdsA- lead1 docking complex) showed XP Gscore of ?10.26?kcal/mol and the binding interactions (Figure 2) were correlated favorably with PEP–KdsA interactions (Figure 1). Molecular dynamics simulations of KdsA– lead1 docking complex for 10?ns had revealed that the complex (Figure 3) remained stable in closer to physiological environmental condition. The predicted pharmacological properties of lead1 were well within the range of a drug molecule with good ADME profile, hence, would be intriguing towards development of potent inhibitor molecule against KdsA of Leptospira.  相似文献   

6.
Guanylthiourea (GTU) has been identified as an important antifolate antimalarial pharmacophore unit, whereas, 4-amino quinolones are already known for antimalarial activity. In the present work molecules carrying 4-aminoquinoline and GTU moiety have been designed using molecular docking analysis with PfDHFR enzyme and heme unit. The docking results indicated that the necessary interactions (Asp54 and Ile14) and docking score (−9.63 to −7.36 kcal/mmol) were comparable to WR99210 (−9.89 kcal/mol). From these results nine molecules were selected for synthesis. In vitro analysis of these synthesized compounds reveal that out of the nine molecules, eight show antimalarial activity in the range of 0.61–7.55 μM for PfD6 strain and 0.43–8.04 μM for PfW2 strain. Further, molecular dynamics simulations were performed on the most active molecule to establish comparative binding interactions of these compounds and reference ligand with Plasmodium falciparum dihydrofolate reductase (PfDHFR).  相似文献   

7.
To develop novel antimicrobial agents a series of 2(4)-hydrazone derivatives of quinoline were designed, synthesized and tested. QSAR models of the antibacterial activity of quinoline derivatives were developed by the OCHEM web platform using different machine learning methods. A virtual set of quinoline derivatives was verified with a previously published classification model of anti-E. coli activity and screened using the regression model of anti-S. aureus activity. Selected and synthesized 2(4)-hydrazone derivatives of quinoline exhibited antibacterial activity against the standard and antibiotic-resistant S. aureus and E. coli strains in the range from 15 to 30 mm by the diameter of growth inhibition zones. Molecular docking showed the complex formation of the studied compounds into the catalytic domain of dihydrofolate reductase with an estimated binding affinity from −8.4 to −9.4 kcal/mol.  相似文献   

8.
Human fatty acid synthase (hFASN), a homo dimeric lipogenic enzyme with seven catalytic domains, is an important clinical target in cancer, metabolic syndrome and infections. Here, molecular modelling and docking methods were implemented to examine the inter-molecular interactions of thioesterase (TE) domain in hFASN with its physiological substrate, and to identify potential chemical inhibitors. TE catalyses the hydrolysis of thioester bond between palmitate and the 4’ phosphopantetheine of acyl carrier protein, releasing 16-carbon palmitate. The crystal structure of hFASN TE in two inhibitory conformations (A and B) were geometry-optimized and used for molecular docking with palmitate, orlistat (a known FASN inhibitor) and virtual screening against compounds from National Cancer Institute (NCI) database. Relatively, low binding affinity was observed during the complex formation of palmitate with A (?.164 kcal/mol) and B (?.332 kcal/mol) forms of TE, when compared with orlistat-docked TE (A form: ?5.872 kcal/mol and B form: ?5.484 kcal/mol), clearly indicating that the native inhibited conformation (crystal structure) was unfavourable for substrate binding. We used these orlistat dual binding modes as positive controls for prioritizing the ligands during virtual screening. From 2, 31,617 molecules in the NCI database, 916 high-scoring compounds (hit ligands) were obtained for A-form and 4582 for B-form of the TE-domain, which were then ranked according to glide docking score, XP H bond score, absorption, distribution, metabolism and excretion and binding free energy (Prime/MM-GBSA). Consequently, two top scoring ligands (NSC: 319661 and NSC: 153166) emerged as promising drug candidates that may be tested in FASN-over-expressing diseases.  相似文献   

9.
Designing of rapid, facile, selective, and cost-effective biosensor technology is a growing area for the detection of various classes of pesticides. The biosensor with these features can be achieved only through the various bio-components using different transducers. This study, therefore, focuses on the usage of molecular docking, specificity tendencies, and capabilities of proteins for the detection of pesticides. Accordingly, the four transducers, acetylcholinesterase (ACH), cytochromes P450 (CYP), glutathione S-transferase (GST), and protein kinase C (PKC) were selected based on their applications including neurotransmitter, metabolism, detoxification enzyme, and protein phosphorylation. Then after molecular docking of the pesticides, fenobucarb, dichlorodiphenyltrichloroethane (DDT), and parathion onto each enzyme, the conformational behavior of the most stable complexes was further analyzed using 50 ns Molecular Dynamics (MD) simulations carried out under explicit water conditions. In the case of protein kinase C (PKC) and cytochrome P450 3A4 enzyme (CYP), the fenobucarb complex showed the most suitable combination of free energy of binding and inhibition constant ?4.42 kcal/mol (573.73 μM) and ?5.1 kcal/mol (183.49 μM), respectively. Parathion dominated for acetylcholinesterase (ACH) with ?4.57 kcal/mol (448.09 μM) and lastly dichlorodiphenyltrichloroethane for glutathione S-transferase (GST), ?5.43 kcal/mol (103.88 μM). The RMSD variations were critical for understanding the impact of pesticides as they distinctively influence the energetic attributes of the proteins. Overall, the outcomes from the extensive analysis provide an insight into the structural features of the proteins studied, thereby highlighting their potential use as a substrate in biorecognition sensing of pesticide compounds.  相似文献   

10.
A novel series of imidazole‐linked thiazolidinone hybrid molecules were designed and synthesized through a feasible synthetic protocol. The molecules were characterized with Fourier transform infrared (FT‐IR), 1H nuclear magnetic resonance (NMR), 13C NMR and high‐resolution mass spectrometry (HRMS) techniques. In vitro susceptibility tests against Gram‐positive (S. aureus and B. subtilis ) and Gram‐negative bacteria (E. coli and P. aeruginosa ) gave highly promising results. The most active molecule (3e) gave a minimal inhibitory concentration (MIC) value of 3.125 μg/mL which is on par with the reference drug streptomycin. Structure–activity relationships revealed activity enhancement by nitro and chloro groups when they occupied meta position of the arylidene ring in 2‐((3‐(imidazol‐1‐yl)propyl)amino)‐5‐benzylidenethiazolidin‐4‐ones. DNA‐binding study of the most potent molecule 3e with salmon milt DNA (sm‐DNA) under simulated physiological pH was probed with UV–visible absorption, fluorescence quenching, gel electrophoresis and molecular docking techniques. These studies established that compound 3e has a strong affinity towards DNA and binds at DNA minor groove with a binding constant (Kb) 0.18 × 102 L mol?1. Molecular docking simulations predicted strong affinity of 3e towards DNA with a binding affinity (ΔG) ‐8.5 kcal/mol. Van der Waals forces, hydrogen bonding and hydrophobic interactions were predicted as the main forces of interaction. The molecule 3e exhibited specific affinity towards adenine–thiamine base pairs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.

Glaucoma is a neurodegenerative disease and second leading cause of blindness in western world. The disease is characterized by an elevated intraocular pressure. Carbonic anhydrase plays a major role by forming aqueous humor and its inhibition can reduce intraocular pressure by partially suppressing the secretion of aqueous humor. Thus in this study, we proposed to identify the potential novel compounds targeting the carbonic anhydrase. The diversity set-II molecules library consisting of 1880 compounds from National Cancer Institute were virtually screened (molecular docking) against human carbonic anhydrase protein. For the obtained best compounds, the nature of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), which determine nucleophilic and electrophilic activity, were calculated by using density functional theory (DFT). The in silico screening suggested 5 best compounds that are effective in comparison to the dorzolamide, a widely used carbonic anhydrase inhibitor for glaucoma treatment. Of the five compounds, 4-nitro-7-[(1-oxidopyridin-1-ium-2-yl) thio] benzofurazan (ZINC01757986) exhibited the better binding affinity (??9.2 cal/mol) in comparison to dorzolamide (??7.2 kcal/mol). The DFT studies on novel identified compound, ZINC01757986 exhibited less HOMO–LUMO energy gap, low hardness and more softness (0.2305 eV, 0.1152 eV and 8.6805 eV) when compared to dorzalamide (0.9536 eV, 0.4768 eV and 2.0973 eV). These studies emphasize that ZINC01757986 can be used as potential carbonic anhydrase inhibitor and lead compounds for the development of an effective anti-glaucoma drug. The results emphasize that these compounds could be potential lead molecules for further structure-based discovery of antiglaucoma drugs.

  相似文献   

12.
Two arylderivatives, 3a-Acetoxy-5H-pyrrolo(1,2-a) (3,1)benzoxazin-1,5-(3aH)-dione 3 and cis-N-p-Acetoxy-phenylisomaleimide 4, were synthesized from anthranilic acid and para-aminophenol, respectively. The inhibitory effects of these compounds on acetylcholinesterase (AChE) activity were evaluated in vitro as well as by docking simulations. Both compounds showed inhibition of AChE activity (Ki = 4.72 ± 2.3 μM for 3 and 3.6 ± 1.8 μM for 4) in in vitro studies. Moreover, they behaved as irreversible inhibitors and made π–π interaction with W84 and hydrogen bonded with S200 and Y337 according to experimental data and docking calculations. The docking calculations showed ΔG bind (kcal/mol) of ? 9.22 for 3 and ? 8.58 for 4. These two compounds that can be use as leads for a new family of anti-Alzheimer disease drugs.  相似文献   

13.
The endocannabinoid (eCB) system, consisting of eCB ligands and the type 1 cannabinoid receptor (CB1R), subserves retrograde, activity-dependent synaptic plasticity in the brain. eCB signaling occurs “on-demand,” thus the processes regulating synthesis, mobilization and degradation of eCBs are also primary mechanisms for the regulation of CB1R activity. The eCBs, N-arachidonylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG), are poorly soluble in water. We hypothesize that their aqueous solubility, and, therefore, their intracellular and transcellular distribution, are facilitated by protein binding. Using in silico docking studies, we have identified the nonspecific lipid binding protein, sterol carrier protein 2 (SCP-2), as a potential AEA binding protein. The docking studies predict that AEA and AM404 associate with SCP-2 at a putative cholesterol binding pocket with ?G values of ?3.6 and ?4.6 kcal/mol, respectively. These values are considerably higher than cholesterol (?6.62 kcal/mol) but consistent with a favorable binding interaction. In support of the docking studies, SCP-2-mediated transfer of cholesterol in vitro is inhibited by micromolar concentrations of AEA; and heterologous expression of SCP-2 in HEK 293 cells increases time-related accumulation of AEA in a temperature-dependent fashion. These results suggest that SCP-2 facilitates cellular uptake of AEA. However, there is no effect of SCP-2 transfection on the cellular accumulation of AEA determined at equilibrium or the IC50 values for AEA, AM404 or 2-AG to inhibit steady state accumulation of radiolabelled AEA. We conclude that SCP-2 is a low affinity binding protein for AEA that can facilitate its cellular uptake but does not contribute significantly to intracellular sequestration of AEA.  相似文献   

14.
Abstract

With an endeavor to develop novel curcumin analogs as potential anti-cancer agents, we designed and synthesized a series of Knoevenagel condensates by clubbing pyrazole carbaldehydes at the active methylene carbon atom of the curcumin backbone. Molecular docking studies were carried out to target the proposed derivatives on human kinase β (IKKβ), a potential anti-cancer target. The chloro derivative displayed five hydrogen bond interactions with a docking score of ?11.874?kcal/mol higher than curcumin (docking score =??7.434?kcal/mol). This was supported by the fact that the propellant shaped derivatives fitted aptly into the binding pocket. Molecular simulations studies were also conducted on the lead molecule and the results figured out that the stable complexes were developed as the minimal deviations per residue of protein within the range of 0.11–0.92 Å. The screened compounds were synthesized, characterized and evaluated in vitro for cytotoxicity against cervical cancer cell line, HeLa using standard cell proliferation assay. Chloro derivative and bromo analog demonstrated IC50 (half maximal inhibitory concentration) value of 14.2 and 18.6 µg/ml, respectively, significantly lower than 42.4 µg/ml of curcumin and higher than 0.008 µg/ml of paclitaxel. Induction of apoptosis was evaluated in the terms of cleavage of caspase-3 enzyme and they also exhibited 69.6 and 65.4% of apoptosis significantly higher than 19.9% induced by curcumin. In conclusion, chloro and bromo derivatives must be evaluated under a set of stringent in vitro and in vivo parameters for translating in to a clinically viable product.

Communicated by Ramaswamy H. Sarma  相似文献   

15.
Zoete V  Meuwly M  Karplus M 《Proteins》2004,55(3):568-581
Possible insulin binding sites for D-glucose have been investigated theoretically by docking and molecular dynamics (MD) simulations. Two different docking programs for small molecules were used; Multiple Copy Simultaneous Search (MCSS) and Solvation Energy for Exhaustive Docking (SEED) programs. The configurations resulting from the MCSS search were evaluated with a scoring function developed to estimate the binding free energy. SEED calculations were performed using various values for the dielectric constant of the solute. It is found that scores emphasizing non-polar interactions gave a preferential binding site in agreement with that inferred from recent fluorescence and NMR NOESY experiments. The calculated binding affinity of -1.4 to -3.5 kcal/mol is within the measured range of -2.0 +/- 0.5 kcal/mol. The validity of the binding site is suggested by the dynamical stability of the bound glucose when examined with MD simulations with explicit solvent. Alternative binding sites were found in the simulations and their relative stabilities were estimated. The motions of the bound glucose during molecular dynamics simulations are correlated with the motions of the insulin side chains that are in contact with it and with larger scale insulin motions. These results raise the question of whether glucose binding to insulin could play a role in its activity. The results establish the complementarity of molecular dynamics simulations and normal mode analyses with the search for binding sites proposed with small molecule docking programs.  相似文献   

16.
The increased transmissibility and highly infectious nature of the new variant of concern (VOC) that is severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron and lack of effective therapy need the rapid discovery of therapeutic antivirals against it. The present investigation aimed to identify antiviral compounds that would be effective against SARS-CoV-2 Omicron. In this study, molecular docking experiments were carried out using the recently reported experimental structure of omicron spike protein in complex with human angiotensin-converting enzyme 2 (ACE2) and various antivirals in preclinical and clinical trial studies. Out of 36 tested compounds, Abemaciclib, Dasatinib and Spiperone are the three top-ranked molecules which scored binding energies of ?10.08 kcal/mol, ?10.06 kcal/mol and ?9.54 kcal/mol respectively. Phe338, Asp339, and Asp364 are crucial omicron receptor residues involved in hydrogen bond interactions, while other residues were mostly involved in hydrophobic interactions with the lead molecules. The identified lead compounds also scored well in terms of drug-likeness. Molecular dynamics (MD) simulation, essential dynamics (ED) and entropic analysis indicate the ability of these molecules to modulate the activity of omicron spike protein. Therefore, Abemaciclib, Dasatinib and Spiperone are likely to be viable drug-candidate molecules that can block the interaction between the omicron spike protein and the host cellular receptor ACE2. Though our findings are compelling, more research into these molecules is needed before they can be employed as drugs to treat SARS-CoV-2 omicron infections.  相似文献   

17.
A new series of 1,3,5-triaryl-4,5-dihydro-1H-pyrazole derivatives 13ap were synthesized via aldol condensation of 3/4-nitroacetophenones with appropriately substituted aldehydes followed by cyclization of the formed chalcones with 4-methanesulfonylphenylhydrazine hydrochloride. All the synthesized compounds were evaluated for their cyclooxygenase (COX) inhibition, anti-inflammatory activity and ulcerogenic liability. All compounds were more potent inhibitors for COX-2 than COX-1. While most compounds showed good anti-inflammatory activity, compounds 13d, 13f, 13k and 13o were the most potent derivatives (ED50?=?66.5, 73.4, 79.8 and 70.5?μmol/kg, respectively) in comparison with celecoxib (ED50?=?68.1?μmol/kg). Compounds 13d, 13f, 13k and 13o (ulcer index?=?3.89, 4.86, 4.96 and 3.92, respectively) were 4–6 folds less ulcerogenic than aspirin (ulcer index?=?22.75) and showed approximately ulceration effect similar to celecoxib (ulcer index?=?3.35). In addition, molecular docking studies were performed for compounds 13d, 13f, 13k and 13o inside COX-2 active site which showed acceptable binding interactions (affinity in kcal/mol ?2.1774, ?6.9498) in comparison with celecoxib (affinity in kcal/mol ?6.5330).  相似文献   

18.
Abstract

Cardiotonic steroids (CTS) are steroidal drugs, processed from the seeds and dried leaves of the genus Digitalis as well as from the skin and parotid gland of amphibians. The most commonly known CTS are ouabain, digoxin, digoxigenin and bufalin. CTS can be used for safer medication of congestive heart failure and other related conditions due to promising pharmacological and medicinal properties. Ouabain isolated from plants is widely utilized in in vitro studies to specifically block the sodium potassium (Na+/K+-ATPase) pump. For checking, whether ouabain derivatives are robust inhibitors of Na+/K+-ATPase pump, molecular docking simulation was performed between ouabain and its derivatives using YASARA software. The docking energy falls within the range of 8.470?kcal/mol to 7.234?kcal/mol, in which digoxigenin was found to be the potential ligand with the best docking energy of 8.470?kcal/mol. Furthermore, pharmacophore modeling was applied to decipher the electronic features of CTS. Molecular dynamics simulation was also employed to determine the conformational properties of Na+/K+-ATPase-ouabain and Na+/K+-ATPase-digoxigenin complexes with the plausible structural integrity through conformational ensembles for 100?ns which promoted digoxigenin as the most promising CTS for treating conditions of congestive heart failure patients.  相似文献   

19.
Hormonal regulation of cell growth and development, tissue morphology, metabolism and physiological function in animals and man is a well‐established knowledge domain in modern biological science. The present study was carried out to investigate the structural stability of hexokinase when exposed to diabetic levels of glucose and its binding efficiency. The fluorescence study indicated that 28‐homobrassinolide was able to protect or restore the native structure of hexokinase. Proteins are synthesized and fold into the native form to become active. The inability of a protein molecule to remain in its native form is called as protein misfolding and this is because of several factors. Protein aggregation and misfolding are known to play a critical role in several human diseases including diabetes. Homobrassinolide interaction with hexokinase was studied by UV–Vis spectrophotometer and fluorescence spectrophotometer. Results were suggested that the denatured hexokinase was renatured upon binding with homobrassinolide. In silico, docking study was performed to recognize the binding activity of homobrassinolide against a subunit of the glucokinase, and homobrassinolide was able to bind to the drug binding pocket of glucokinase. The glide energy is ?7.1 kcal/mol, suggesting the high binding affinity of homobrassinolide to glucokinase. Overall, these studies predict that the phytohormone 28‐homobrassinolide would function as an anti‐diabetic when present in human and animal diet by augmenting the hexokinase enzyme activity in the animal cell. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
DNA gyrase is a validated target of fluoroquinolones which are key components of multidrug resistance tuberculosis (TB) treatment. Most frequent occurring mutations associated with high level of resistance to fluoroquinolone in clinical isolates of TB patients are A90V, D94G, and A90V–D94G (double mutant [DM]), present in the larger subunit of DNA Gyrase. In order to explicate the molecular mechanism of drug resistance corresponding to these mutations, molecular dynamics (MD) and mechanics approach was applied. Structure-based molecular docking of complex comprised of DNA bound with Gyrase A (large subunit) and Gyrase C (small subunit) with moxifloxacin (MFX) revealed high binding affinity to wild type with considerably high Glide XP docking score of ?7.88 kcal/mol. MFX affinity decreases toward single mutants and was minimum toward the DM with a docking score of ?3.82 kcal/mol. Docking studies were also performed against 8-Methyl-moxifloxacin which exhibited higher binding affinity against wild and mutants DNA gyrase when compared to MFX. Molecular Mechanics/Generalized Born Surface Area method predicted the binding free energy of the wild, A90V, D94G, and DM complexes to be ?55.81, ?25.87, ?20.45, and ?12.29 kcal/mol, respectively. These complexes were further subjected to 30 ns long MD simulations to examine significant interactions and conformational flexibilities in terms of root mean square deviation, root mean square fluctuation, and strength of hydrogen bond formed. This comparative drug interaction analysis provides systematic insights into the mechanism behind drug resistance and also paves way toward identifying potent lead compounds that could combat drug resistance of DNA gyrase due to mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号