首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background/objectivesLiquid fructose associates with prevalence of type 2 diabetes mellitus and obesity. Intervention studies suggest that metabolically unfit individuals are more responsive than healthy individuals to liquid fructose. We determined whether mice consuming an obesogenic Western diet were more responsive than chow-fed mice to the alterations induced by liquid fructose supplementation (LFS).MethodsC57BL/6N mice were fed chow or Western diet±ad libitum 15% fructose solution for 12 weeks. Food and liquid intake and body weight were monitored. Plasma analytes and liver lipids, histology and the expression of genes related to lipid handling, endoplasmic reticulum stress, inflammation and insulin signaling were analyzed.ResultsWestern diet increased energy intake, visceral adipose tissue (vWAT), body weight, plasma and liver triglycerides and cholesterol, and inflammatory markers in vWAT vs. chow-fed mice. LFS did not change energy intake, vWAT or body weight. LFS significantly increased plasma and liver triglycerides and cholesterol levels only in Western-diet-fed mice. These changes associated with a potentiation of the increased liver expression of PPARγ and CD36 that was observed in Western-fed mice and related to the increased liver mTOR phosphorylation induced by LFS. Furthermore, LFS in Western-diet-fed mice induced the largest reduction in liver IRS2 protein and a significant decrease in whole-body insulin sensitivity.ConclusionsLFS in mice, in a background of an unhealthy diet that already induces fatty liver visceral fat accretion and obesity, increases liver lipid burden, hinders hepatic insulin signaling and diminishes whole-body insulin sensitivity without changing energy intake.  相似文献   

2.
3.
4.
5.
6.
ObjectiveLiver fibrosis is part of the non-alcoholic fatty liver disease (NAFLD) spectrum, which currently has no approved pharmacological treatment. In this study, we investigated whether supplementation of nicotinamide riboside (NR), a nicotinamide adenine dinucleotide (NAD+) precursor, can reduce the development of liver fibrosis in a diet-induced mouse model of liver fibrosis.MethodsMale C57BL/6 J mice were fed a low-fat control (LF), a high-fat/high-sucrose/high-cholesterol control (HF) or a HF diet supplemented with NR at 400 mg/kg/day (HF-NR) for 20 weeks. Features of liver fibrosis were assessed by histological and biochemical analyses. Whole-body energy metabolism was also assessed using indirect calorimetry. Primary mouse and human hepatic stellate cells were used to determine the anti-fibrogenic effects of NR in vitro.ResultsNR supplementation significantly reduced body weight of mice only 7 weeks after mice were on the supplementation, but did not attenuate serum alanine aminotransferase levels, liver steatosis, or liver inflammation. However, NR markedly reduced collagen accumulation in the liver. RNA-Seq analysis suggested that the expression of genes involved in NAD+ metabolism is altered in activated hepatic stellate cells (HSCs) compared to quiescent HSCs. NR inhibited the activation of HSCs in primary mouse and human HSCs. Indirect calorimetry showed that NR increased energy expenditure, likely by upregulation of β-oxidation in skeletal muscle and brown adipose tissue.ConclusionNR attenuated HSC activation, leading to reduced liver fibrosis in a diet-induced mouse model of liver fibrosis. The data suggest that NR may be developed as a potential preventative for human liver fibrosis.  相似文献   

7.
Inappropriate eating habits such as skipping breakfast and eating late at night are associated with risk for abnormal weight-gain and adiposity. We previously reported that time-imposed feeding during the daytime (inactive phase) induces obesity and metabolic disorders accompanied by physical inactivity in mice. The present study compares metabolic changes induced in mice by time-imposed feeding under voluntary wheel-running (RW) and sedentary (SED) conditions to determine the effects of voluntary wheel-running activity on obesity induced in mice by feeding at inappropriate times. Mice were individually housed in cages with or without running-wheels. We compared food consumption, core body temperature, hormonal and metabolic variables in the blood, lipid accumulation in the liver, circadian expression of clock and metabolic genes in peripheral tissues, and gains in body weight between mice allowed access to food only during the sleep phase (daytime feeding; DF) or only during the active phase (nighttime feeding; NF) under SED or RW conditions. Only a high-fat high-sucrose diet was available to the mice throughout restricted feeding. Nocturnal activity was maintained in both NF and DF mice under RW conditions, but significantly suppressed during the latter half of the dark phase in DF mice. Nocturnal fluctuations in core body temperature were maintained in DF and NF mice under both SED and RW conditions, although DF attenuated the day–night amplitude more under SED, than RW conditions. The degrees of DF-induced increases in body weight gain, food efficiency, adipose tissue mass, lipogenic gene expression in metabolic tissues, and hepatic lipid accumulation were essentially identical between SED and RW conditions. Daytime feeding also induced hyperinsulinemia and hyperleptinemia under both SED and RW conditions, although DF-induced hyperleptinemia was slightly attenuated by wheel-running. The temporal expression of circadian clock genes became synchronized to feeding cycles in the liver but not in the skeletal muscle of mice under both SED and RW conditions. Chronic voluntary exercise on running-wheels minimally affected obesity and adiposity in mice caused by daily feeding at unusual times. The timing of food intake might be more important than physical exercise for preventing metabolic disorders.

Abbreviations: ANOVA: analysis of variance; DF: daytime feeding; FFA: free fatty acid; GLP-1: glucagon-like peptide-1; HOMA-IR: homeostasis model assessment of insulin resistance; NEAT: non-exercise activity thermogenesis; NF: nighttime feeding; RF: restricted feeding; RW: running-wheel; SCN: suprachiasmatic nucleus; SE: standard error of the mean; SED: sedentary; SPA: spontaneous physical activity; T-Cho: total cholesterol; TG: triglyceride; WAT: white adipose tissues  相似文献   


8.
ABSTRACT

Depressive disorders are partly caused by chronic inflammation through the kynurenine (KYN) pathway. Preventive intervention using anti-inflammatory reagents may be beneficial for alleviating the risk of depression. In this study, we focused on the Japanese local citrus plant, Citrus tumida hort. ex Tanaka (C. tumida; CT), which contains flavonoids such as hesperidin that have anti-inflammatory actions. The dietary intake of 5% immature peels of CT fruits slightly increased stress resilience in a subchronic and mild social defeat (sCSDS) model in mice. Moreover, the dietary intake of 0.1% hesperidin significantly increased stress resilience and suppressed KYN levels in the hippocampus and prefrontal cortex in these mice. In addition, KYN levels in the hippocampus and prefrontal cortex were significantly correlated with the susceptibility to stress. In conclusion, these results suggest that dietary hesperidin increases stress resilience by suppressing the augmentation of KYN signaling under sCSDS.  相似文献   

9.
The red-toothed shrews (genus Sorex) are one of the smallest mammals. The amount of food they consume a day exceeds their own weight, and without food they can survive for only few hours. Representatives of this genus have extremely high metabolic rates. This study addressed the effect of 8-h fasting and 13-h refeeding on the body weight, blood glucose level, liver glycogen and lipid levels, and relative weight of inguinal and interscapular adipose tissues in the even-toothed shrews (S. isodon). Fasting led to a decrease in the body weight, blood glucose and liver glycogen levels. The relative weight of adipose tissue also decreased, while the liver lipid level increased significantly. After refeeding, blood glucose and liver glycogen levels were considerably higher than in control, while other parameters remained almost the same as in control. Physiological response to fasting develops in S. isodon quite rapidly, promoted by the high metabolic rate.  相似文献   

10.
Dietary methionine restriction (MR) extends lifespan, an effect associated with reduction of body weight gain, and improvement of insulin sensitivity in mice and rats as a result of metabolic adaptations in liver, adipose tissue and skeletal muscle. To test whether MR confers resistance to adiposity and insulin resistance, C57BL/6J mice were fed a high fat diet (HFD) containing either 0.86% methionine (control fed; CF) or 0.12% methionine (methionine-restricted; MR). MR mice on HFD had lower body weight gain despite increased food intake and absorption efficiency compared to their CF counterparts. MR mice on HFD were more glucose tolerant and insulin sensitive with reduced accumulation of hepatic triglycerides. In plasma, MR mice on HFD had higher levels of adiponectin and FGF21 while leptin and IGF-1 levels were reduced. Hepatic gene expression showed the downregulation of Scd1 while Pparg, Atgl, Cd36, Jak2 and Fgf21 were upregulated in MR mice on HFD. Restriction of growth rate in MR mice on HFD was also associated with lower bone mass and increased plasma levels of the collagen degradation marker C-terminal telopeptide of type 1 collagen (CTX-1). It is concluded that MR mice on HFD are metabolically healthy compared to CF mice on HFD but have decreased bone mass. These effects could be associated with the observed increase in FGF21 levels.  相似文献   

11.
The American marten (Martes americana) is a boreal forest marten with low body adiposity throughout the year. The aim of this study was to investigate the adaptations of this lean-bodied species to fasting for an ecologically relevant duration (48 h) by exposing eight farm-bred animals to total food deprivation with seven control animals. Selected morphological and hematological parameters, plasma and serum biochemistry, endocrinological variables and liver and white adipose tissue (WAT) enzyme activities were determined. After 48 h without food, the marten were within phase II of fasting with depleted liver and muscle glycogen stores, but with active lipid mobilization indicated by the high lipase activities in several WAT depots. The plasma ghrelin concentrations were higher due to food deprivation, possibly increasing appetite and enhancing foraging behavior. The lower plasma insulin and higher cortisol concentrations could mediate augmented lipolysis and the lower triiodothyronine levels could suppress the metabolic rate. Fasting did not affect the plasma levels of stress-associated catecholamines or variables indicating tissue damage. In general, the adaptations to short-term fasting exhibited some differences compared to the related farm-bred American mink (Mustela vison), an example of which was the better ability of the marten to hydrolyze lipids despite its significantly lower initial fat mass.  相似文献   

12.
In diet-induced obesity, adipose tissue (AT) is in a chronic state of inflammation predisposing the development of metabolic syndrome. Cocoa (Theobroma cacao) is a polyphenol-rich food with putative anti-inflammatory activities. Here, we examined the impact and underlying mechanisms of action of cocoa on AT inflammation in high fat-fed mice. In the present study, male C57BL/6 J mice were fed a high fat diet (HF), a HF diet with 8% (w/w) unsweetened cocoa powder (HFC), or a low-fat diet (LF) for 18 weeks. Cocoa supplementation decreased AT mRNA levels of tumor necrosis factor-α, interleukin-6, inducible nitric oxide synthase, and EGF-like module-containing mucin-like hormone receptor-like 1 by 40–60% compared to HF group, and this was accompanied by decreased nuclear protein levels of nuclear factor-κB. Cocoa treatment reduced the levels of arachidonic acid in the AT by 33% compared to HF controls. Moreover, cocoa treatment also reduced protein levels of the eicosanoid-generating enzymes, adipose-specific phospholipase A2 and cycloxygenase-2 by 53% and 55%, respectively, compared to HF-fed mice. Finally, cocoa treatment ameliorated metabolic endotoxemia (40% reduction in plasma endotoxin) and improved gut barrier function (as measured by increased plasma levels of glucagon-like peptide-2). In conclusion, the present study has shown for the first time that long-term cocoa supplementation can reduce AT inflammation in part by modulating eicosanoid metabolism and metabolic endotoxemia.  相似文献   

13.
Many studies have investigated the effect of crude tomato peel in vivo, but no studies have determined the dose-effect of dry tomato peel (DTP) on glucose intolerance, insulin resistance, and atherogenic dyslipidemia induced by a high-saturated-fat (HSF) diet in vivo. The aim of this study was to investigate the effects of different doses of DTP on the levels of oxidative stress in mice fed an HSF and cholesterol-rich diet for 12 weeks. The main outcomes are glucose and insulin tolerance, plasma lipids, and hepatic steatosis and inflammation. BALB/c male mice (n=40) (8 weeks old, weighing 22.2±1.0 g) were divided into four treatment groups (10 mice/group): (a) high-fat control diet (HF Ctrl), which contains sunflower oil as a sole source of fat; (b) HSF/high-cholesterol (HC) diet; (c) HSF/HC diet supplemented with 9% DTP and (d) HSF/HC diet supplemented with 17% DTP. The HSF/HC diet significantly increased body weight gain, adipose tissue weight, fasting plasma glucose, fasting plasma insulin and lipid peroxidation and caused the development of liver steatosis and inflammation. Supplementation with DTP increased plasma lycopene concentration and reduced the development of indicators of metabolic syndrome, with no consistent effect of the DTP dose. Hepatic steatosis and inflammation were not reversed with DTP supplementation. Among mice fed the HSF/HC diet, DTP supplementation appears to have a beneficial effect on insulin resistance, which confirms the antiatherogenic effect of DTP.  相似文献   

14.
Objective: To understand the possible role of chronic dietary high vitamin A supplementation in body weight regulation and obesity using a novel WNIN/Ob obese rat model developed at the National Centre for Laboratory Animal Sciences of National Institute of Nutrition, India. Research Methods and Procedures: Thirty‐six 7‐month‐old male rats of lean, carrier, and obese phenotypes were broadly divided into two groups; each group was subdivided into three subgroups consisting of six lean, six carrier, and six obese rats and received diets containing either 2.6 or 129 mg vitamin A/kg of diet for 2 months. Body weight gain, food intake, and weights of various organs were recorded. Adiposity index and BMI were calculated. Serum and liver retinol and brown adipose tissue (BAT)‐uncoupling protein1 (UCP1) mRNA expression levels were quantified. Results: Chronic feeding of high but non‐toxic doses of vitamin A through diet significantly reduced (P ≤ 0.05) body weight gain, adiposity index, and retroperitoneal white adipose tissue mass (without affecting food intake) in obese rats compared with their lean and carrier counterparts. In general, vitamin A treatment significantly improved hepatic retinol stores (P ≤ 0.05) in all phenotypes without affecting serum free retinol levels. However, augmented BAT‐UCP1 expression was observed only in carrier and obese rats (whose basal expression was low). Discussion: Our data suggest that chronic dietary vitamin A supplementation at high doses effectively regulates obesity in obese phenotype of the WNIN/Ob strain, possibly through up‐regulation of the BAT‐UCP1 gene and associated adipose tissue loss. However, in vitamin A‐supplemented lean and carrier rats, changes in adiposity could not be related to BAT‐UCP1 expression levels.  相似文献   

15.
The impact of chronic excessive energy intake on protein metabolism is still controversial. Male Wistar rats were fed ad libitum during 5 weeks with either a high‐fat high‐sucrose diet (HF: n = 9) containing 45% of total energy as lipids (protein 14%; carbohydrate 40% with 83.5% sucrose) or a standard diet (controls: n = 10). Energy intake and body weight were recorded. At the end of the experiment, we measured body composition, metabolic parameters (plasma amino acid, lipid, insulin, and glucose levels), inflammatory parameter (plasma α2‐macroglobulin), oxidative stress parameters (antioxidant enzyme activities, lipoperoxidation (LPO), protein carbonyl content in liver and muscle), and in vivo fed–state fractional protein synthesis rates (FSRs) in muscle and liver. Energy intake was significantly higher in HF compared with control rats (+28%). There were significant increases in body weight (+8%), body fat (+21%), renal (+41%), and epidydimal (+28%) fat pads in HF compared with control rats. No effect was observed in other tissue weights (liver, muscle, spleen, kidneys, intestine). Liver and muscle FSRs, plasma levels of lipids, glucose, insulin and α2‐macroglobulin, soleus and liver glutathione reductase and peroxidase acitivities, MnSOD activity, LPO, and protein carbonyl content were not altered by the HF diet. Only soleus muscle and liver Cu/ZnSOD activity and soleus muscle catalase activities were reduced in HF rats compared with control rats. Thus, chronic excessive energy intake and increased adiposity, in the absence of other metabolic alterations, do not stimulate fed‐state tissue protein synthesis rates.  相似文献   

16.
We have examined the metabolic effects of daily administration of carbenoxolone (CBX), a naturally occurring 11beta-hydroxysteroid dehydrogenase (11beta-HSD1) inhibitor, in mice with high fat diet-induced insulin resistance and obesity. Eight-week-old male Swiss TO mice placed on a synthetic high fat diet received daily intraperitoneal injections of either saline vehicle or CBX over a 16-day period. Daily administration of CBX had no effect on food intake, but significantly lowered body weight (1.1- to 1.2-fold) compared to saline-treated controls. Non-fasting plasma glucose levels were significantly decreased (1.6-fold) by CBX treatment on day 4 and remained lower throughout the treatment period. Circulating plasma corticosterone levels were not significantly altered by CBX treatment. Plasma glucose concentrations of CBX-treated mice were significantly reduced (1.4-fold) following an intraperitoneal glucose load compared with saline controls. Similarly, after 16-day treatment with CBX, exogenous insulin evoked a significantly greater reduction in glucose concentrations (1.4- to 1.8-fold). 11beta-HSD1 gene expression was significantly down-regulated in liver, whereas glucocorticoid receptor gene expression was increased in both liver and adipose tissue following CBX treatment. The reduced body weight and improved metabolic control in mice with high fat diet-induced obesity upon daily CBX administration highlights the potential value of selective 11beta-HSD1 inhibition as a new route for the treatment of type 2 diabetes and obesity.  相似文献   

17.
Effects of astaxanthin in obese mice fed a high-fat diet   总被引:2,自引:0,他引:2  
Astaxanthin is a natural antioxidant carotenoid that occurs in a wide variety of living organisms. We investigated the effects of astaxanthin supplementation in obese mice fed a high-fat diet. Astaxanthin inhibited the increases in body weight and weight of adipose tissue that result from feeding a high-fat diet. In addition, astaxanthin reduced liver weight, liver triglyceride, plasma triglyceride, and total cholesterol. These results suggest that astaxanthin might be of value in reducing the likelihood of obesity and metabolic syndrome in affluent societies.  相似文献   

18.
Objective: The purpose of the present study was to examine the metabolic effects of a specific histamine H3 receptor antagonist, the cinnamic amide NNC 0038‐0000‐1202 (NNC 38‐1202). Research Methods and Procedures: Effects of NNC 38‐1202 on paraventricular levels of histamine and acute effects on food intake were followed in normal rats, whereas effects on body weight homeostasis and lipid metabolism were studied in a rat model of diet‐induced obesity (DIO). Results: NNC 38‐1202, administered as single oral doses of 15 and 30 mg/kg, significantly (p < 0.01) increased paraventricular histamine by 339 ± 54% and 403 ± 105%, respectively, compared with basal levels. The same doses produced significant (p < 0.01) reductions in food intake. In DIO rats receiving NNC 38‐1202 in a daily dose of 5 mg/kg for 22 days, a decrease in food intake was associated with a significant (p < 0.001) net loss of body weight (?11.0 ± 4.8 grams), compared with rats receiving vehicle, which gained 13.6 ± 3.0 grams. Also, NNC 38‐1202 significantly (p < 0.05) reduced plasma triglycerides by ~42%, in parallel with increases in plasma free fatty acids and β‐hydroxybutyrate levels. Despite reductions in food intake and body weight following administration of NNC 38‐1202, no sign of a decrease in energy expenditure was observed, and whole‐body lipid oxidation was significantly (p < 0.05) increased in the period after dosing. Discussion: The present study suggests that antagonistic targeting of the histamine H3 receptor decreases food intake, body weight, and plasma TG levels and, thus, represents an interesting approach to treatment of obesity and associated hyperlipidemia.  相似文献   

19.
This study investigated the effects of mild calorie restriction (CR) (5%) on body weight, body composition, energy expenditure, feeding behavior, and locomotor activity in female C57BL/6J mice. Mice were subjected to a 5% reduction of food intake relative to baseline intake of ad libitum (AL) mice for 3 or 4 weeks. In experiment 1, body weight was monitored weekly and body composition (fat and lean mass) was determined at weeks 0, 2, and 4 by dual energy X‐ray absorptiometry. In experiment 2, body weight was measured every 3 days and body composition was determined by quantitative magnetic resonance weekly, and energy expenditure, feeding behavior, and locomotor activity were determined over 3 weeks in a metabolic chamber. At the end of both experiments, CR mice had greater fat mass (P < 0.01) and less lean mass (P < 0.01) compared with AL mice. Total energy expenditure (P < 0.05) and resting energy expenditure (P < 0.05) were significantly decreased in CR mice compared with AL mice over 3 weeks. CR mice ate significantly more food than AL mice immediately following daily food provisioning at 1600 hours (P < 0.01). These findings showed that mild CR caused increased fat mass, decreased lean mass and energy expenditure, and altered feeding behavior in female C57BL/6J mice. Locomotor activity or brown adipose tissue (BAT) thermogenic capacity did not appear to contribute to the decrease in energy expenditure. The increase in fat mass and decrease in lean mass may be a stress response to the uncertainty of food availability.  相似文献   

20.
β‐Aminoisobutyric acid (BAIBA), a thymine catabolite, increases fatty acid oxidation (FAO) in liver and reduces the gain of body fat mass in Swiss (lean) mice fed a standard chow. We determined whether BAIBA could prevent obesity and related metabolic disorders in different murine models. To this end, BAIBA (100 or 500 mg/kg/day) was administered for 4 months in mice totally deficient in leptin (ob/ob). BAIBA (100 mg/kg/day) was also given for 4 months in wild‐type (+/+) mice and mice partially deficient in leptin (ob/+) fed a high‐calorie (HC) diet. BAIBA did not limit obesity and hepatic steatosis in ob/ob mice, but reduced liver cytolysis and inflammation. In ob/+ mice fed the HC diet, BAIBA fully prevented, or limited, the gain of body fat, steatosis and necroinflammation, glucose intolerance, and hypertriglyceridemia. Plasma β‐hydroxybutyrate was increased, whereas expression of carnitine palmitoyltransferase‐1 was augmented in liver and white adipose tissue. Acetyl‐CoA carboxylase was more phosphorylated, and de novo lipogenesis was less induced in liver. These favorable effects of BAIBA in ob/+ mice were associated with a restoration of plasma leptin levels. The reduction of body adiposity afforded by BAIBA was less marked in +/+ mice. Finally, BAIBA significantly stimulated the secretion of leptin in isolated ob/+ adipose cells, but not in +/+ cells. Thus, BAIBA could limit triglyceride accretion in tissues through a leptin‐dependent stimulation of FAO. As partial leptin deficiency is not uncommon in the general population, supplementation with BAIBA may help to prevent diet‐induced obesity and related metabolic disorders in low leptin secretors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号