首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The RecA protein of Deinococcus radiodurans (DrRecA) has a central role in genome reconstitution after exposure to extreme levels of ionizing radiation. When bound to DNA, filaments of DrRecA protein exhibit active and inactive states that are readily interconverted in response to several sets of stimuli and conditions. At 30 °C, the optimal growth temperature, and at physiological pH 7.5, DrRecA protein binds to double-stranded DNA (dsDNA) and forms extended helical filaments in the presence of ATP. However, the ATP is not hydrolyzed. ATP hydrolysis of the DrRecA-dsDNA filament is activated by addition of single-stranded DNA, with or without the single-stranded DNA-binding protein. The ATPase function of DrRecA nucleoprotein filaments thus exists in an inactive default state under some conditions. ATPase activity is thus not a reliable indicator of DNA binding for all bacterial RecA proteins. Activation is effected by situations in which the DNA substrates needed to initiate recombinational DNA repair are present. The inactive state can also be activated by decreasing the pH (protonation of multiple ionizable groups is required) or by addition of volume exclusion agents. Single-stranded DNA-binding protein plays a much more central role in DNA pairing and strand exchange catalyzed by DrRecA than is the case for the cognate proteins in Escherichia coli. The data suggest a mechanism to enhance the efficiency of recombinational DNA repair in the context of severe genomic degradation in D. radiodurans.  相似文献   

2.
Hsu HF  Ngo KV  Chitteni-Pattu S  Cox MM  Li HW 《Biochemistry》2011,50(39):8270-8280
With the aid of an efficient, precise, and almost error-free DNA repair system, Deinococcus radiodurans can survive hundreds of double-strand breaks inflicted by high doses of irradiation or desiccation. RecA of D. radiodurans (DrRecA) plays a central role both in the early phase of repair by an extended synthesis-dependent strand annealing process and in the later more general homologous recombination phase. Both roles likely require DrRecA filament formation on duplex DNA. We have developed single-molecule tethered particle motion experiments to study the assembly dynamics of RecA proteins on individual duplex DNA molecules by observing changes in DNA tether length resulting from RecA binding. We demonstrate that DrRecA nucleation on double-stranded DNA is much faster than that of Escherichia coli RecA protein (EcRecA), but the extension is slower. This combination of attributes would tend to increase the number and decrease the length of DrRecA filaments relative to those of EcRecA, a feature that may reflect the requirement to repair hundreds of genomic double-strand breaks concurrently in irradiated Deinococcus cells.  相似文献   

3.
Abstract

The TrkB protein tyrosine kinase is a high affinity receptor for brain derived neurotrophic factor (BDNF) and neurotrophin-4 (NT-4). TrkB autophosphorylation occurs on five cytoplasmic tyrosines: Y484, Y670, Y674, Y675, and Y785. Using site directed mutagenesis, we have assessed the importance of TrkB tyrosines 484 and 785 in affecting TrkB-mediated signaling events leading to NIH 3T3 cell mitogenesis and survival. Mutation of TrkB tyrosine 484, while having no affect on BDNF-inducible PLCγ and Cbl tyrosine phosphorylation, is essential for the phosphorylation of Shc, the complete activation of extracellular regulated kinase 1/2 (ERK1/2) and the induction of c-fos protein synthesis. In contrast, mutation of Y785 does not significantly affect BDNF-inducible Shc phosphorylation, ERK1/2 activation, or c-fos protein synthesis, but completely inhibits the tyrosine phosphorylation of PLCγ and Cbl. These data indicate that both ERK-dependent and ERK-independent signaling pathways lead to BDNF-inducible mitogenesis and survival.  相似文献   

4.
5.
Abstract

The insulin receptor is a hormone-dependent protein tyrosine kinase that belongs to the family of tyrosine kinases associated with growth factor receptors and oncogene products. The activity of the insulin receptor kinase is regulated by the phosphorylation state of specific domains of the protein. Phosphorylation of the receptor on tyrosine residues activates its kinase activity whereas phosphorylation on serine and/or threonine residues inhibits it. In this review, we discuss the evidence that supports a role of the kinase activity of the receptor in the molecular mechanism of insulin action.  相似文献   

6.
Oxoguanine DNA glycosylase (OGG1) initiates the repair of 8-oxoguanine (8-oxoG), a major oxidative DNA base modification that has been directly implicated in cancer and aging. OGG1 functions in the base excision repair pathway, for which a molecular hand-off mechanism has been proposed. To date, only one functional and a few physical protein interactions have been reported for OGG1. Using the yeast two-hybrid system and a protein array membrane, we identified two novel protein interactions of OGG1, with two different protein kinases: Cdk4, a serine-threonine kinase, and c-Abl, a tyrosine kinase. We confirmed these interactions in vitro using recombinant proteins and in vivo by co-immunoprecipitation from whole cell extracts. OGG1 is phosphorylated in vitro by Cdk4, resulting in a 2.5-fold increase in the 8-oxoG/C incision activity of OGG1. C-Abl tyrosine phosphorylates OGG1 in vitro; however, this phosphorylation event does not affect OGG1 8-oxoG/C incision activity. These results provide the first evidence that a post-translational modification of OGG1 can affect its catalytic activity. The distinct functional outcomes from serine/threonine or tyrosine phosphorylation may indicate that activation of different signal transduction pathways modulate OGG1 activity in different ways.  相似文献   

7.
Eukaryotic organisms use conserved checkpoint mechanisms that regulate Cdk1 by inhibitory phosphorylation to prevent mitosis from interfering with DNA replication or repair. In metazoans, this checkpoint mechanism is also used for coordinating mitosis with dynamic developmental processes. Inhibitory phosphorylation of Cdk1 is catalyzed by Wee1 kinases that phosphorylate tyrosine 15 (Y15) and dual-specificity Myt1 kinases found only in metazoans that phosphorylate Y15 and the adjacent threonine (T14) residue. Despite partially redundant roles in Cdk1 inhibitory phosphorylation, Wee1 and Myt1 serve specialized developmental functions that are not well understood. Here, we expressed wild-type and phospho-acceptor mutant Cdk1 proteins to investigate how biochemical differences in Cdk1 inhibitory phosphorylation influence Drosophila imaginal development. Phosphorylation of Cdk1 on Y15 appeared to be crucial for developmental and DNA damage-induced G2-phase checkpoint arrest, consistent with other evidence that Myt1 is the major Y15-directed Cdk1 inhibitory kinase at this stage of development. Expression of non-inhibitable Cdk1 also caused chromosome defects in larval neuroblasts that were not observed with Cdk1(Y15F) mutant proteins that were phosphorylated on T14, implicating Myt1 in a novel mechanism promoting genome stability. Collectively, these results suggest that dual inhibitory phosphorylation of Cdk1 by Myt1 serves at least two functions during development. Phosphorylation of Y15 is essential for the premitotic checkpoint mechanism, whereas T14 phosphorylation facilitates accumulation of dually inhibited Cdk1–Cyclin B complexes that can be rapidly activated once checkpoint-arrested G2-phase cells are ready for mitosis.  相似文献   

8.
《Fly》2013,7(3):140-147
ABSTRACT

Cell cycle checkpoints prevent mitosis from occurring before DNA replication and repair are completed during S and G2 phases. The checkpoint mechanism involves inhibitory phosphorylation of Cdk1, a conserved kinase that regulates the onset of mitosis. Metazoans have two distinct Cdk1 inhibitory kinases with specialized developmental functions: Wee1 and Myt1. Ayeni et al used transgenic Cdk1 phospho-acceptor mutants to analyze how the distinct biochemical properties of these kinases affected their functions. They concluded from their results that phosphorylation of Cdk1 on Y15 was necessary and sufficient for G2/M checkpoint arrest in imaginal wing discs, whereas phosphorylation on T14 promoted chromosome stability by a different mechanism. A curious relationship was also noted between Y15 inhibitory phosphorylation and T161 activating phosphorylation. These unexpected complexities in Cdk1 inhibitory phosphorylation demonstrate that the checkpoint mechanism is not a simple binary “off/on” switch, but has at least three distinct states: “Ready”, to prevent chromosome damage and apoptosis, “Set”, for developmentally regulated G2 phase arrest, and “Go”, when Cdc25 phosphatases remove inhibitory phosphates to trigger Cdk1 activation at the G2/M transition.  相似文献   

9.
《Epigenetics》2013,8(2):153-160
Histones were discovered over a century ago and have since been found to be the most extensively posttranslationally modified proteins, although tyrosine phosphorylation of histones had remained elusive until recently. The year 2009 proved to be a landmark year for histone tyrosine (Y) phosphorylation as five research groups independently discovered this modification. Three groups describe phosphorylation of Y142 in the variant histone H2A.X, where it may be involved in the cellular decision making process to either undergo DNA repair or apoptosis in response to DNA damage. Further, one group suggests that phosphorylation of histone H3 on Y99 is crucial for its regulated proteolysis in yeast, while another found that Y41 phosphorylation modulates chromatin architecture and oncogenesis in mammalian cells. These pioneering studies provide the initial conceptual framework for further analyses of the diverse roles of tyrosine phosphorylation on different histones, with far reaching implications for human health and disease.

Erratum to: Singh R.K. and Gunjan A. Histone tyrosine phosphorylation comes of age. Epigenetics 2011; 6:153-60.  相似文献   

10.

Background  

Enzymes involved in DNA metabolic events of the highly radioresistant bacterium Deinococcus radiodurans are currently examined to understand the mechanisms that protect and repair the Deinococcus radiodurans genome after extremely high doses of γ-irradiation. Although several Deinococcus radiodurans DNA repair enzymes have been characterised, no biochemical data is available for DNA ligation and DNA endhealing enzymes of Deinococcus radiodurans so far. DNA ligases are necessary to seal broken DNA backbones during replication, repair and recombination. In addition, ionizing radiation frequently leaves DNA strand-breaks that are not feasible for ligation and thus require end-healing by a 5'-polynucleotide kinase or a 3'-phosphatase. We expect that DNA ligases and end-processing enzymes play an important role in Deinococcus radiodurans DNA strand-break repair.  相似文献   

11.
12.
Histones were discovered over a century ago and have since been found to be the most extensively post-translationally modified proteins, although tyrosine phosphorylation of histones had remained elusive until recently. The year 2009 proved to be a landmark year for histone tyrosine (Y) phosphorylation as five research groups independently discovered this modification. Three groups describe phosphorylation of Y142 in the variant histone H2A.X, where it may be involved in the cellular decision making process to either undergo DNA repair or apoptosis in response to DNA damage. Further, one group suggests that phosphorylation of histone H3 on Y99 is crucial for its regulated proteolysis in yeast, while another found that Y41 phosphorylation modulates chromatin architecture and oncogenesis in mammalian cells. These pioneering studies provide the initial conceptual framework for further analyses of the diverse roles of tyrosine phosphorylation on different histones, with far reaching implications for human health and disease.Key words: histones, chromatin, tyrosine phosphorylation, genomic instability, DNA damage, DNA repair, apoptosis, ubiquitylation, proteolysis, cancer  相似文献   

13.
The DevR (DosR) response regulator initiates the bacterial adaptive response to a variety of signals, including hypoxia in in vitro models of dormancy. Its receiver domain works as a phosphorylation-mediated switch to activate the DNA binding property of its output domain. Receiver domains are characterized by the presence of several highly conserved residues, and these sequence features correlate with structure and hence function. In response regulators, interaction of phosphorylated aspartic acid at the active site with the conserved threonine is believed to be crucial for phosphorylation-mediated conformational change. DevR contains all the conserved residues, but the structure of its receiver domain in the unphosphorylated protein is strikingly different, and key threonine (T82), tyrosine (Y101), and lysine (K104) residues are placed uncharacteristically far from the D54 phosphorylation site. In view of the atypical location of T82 in DevR, the present study aimed to examine the importance of this residue in the activation mechanism. Mycobacterium tuberculosis expressing a DevR T82A mutant protein is defective in autoregulation and supports hypoxic induction of the DevR regulon only very weakly. These defects are ascribed to slow and partial phosphorylation and the failure of T82A mutant protein to bind cooperatively with DNA. Our results indicate that the T82 residue is crucial in implementing conformational changes in DevR that are essential for cooperative binding and for subsequent gene activation. We propose that the function of the T82 residue in the activation mechanism of DevR is conserved in spite of the unusual architecture of its receiver domain.  相似文献   

14.
Mitogen‐activated protein (MAP) kinase signaling is critical for various cellular responses, including cell proliferation, differentiation, and cell death. The MAP kinase cascade is conserved in the eukaryotic kingdom as a three‐tiered kinase module—MAP kinase kinase kinase, MAP kinase kinase, and MAP kinase—that transduces signals via sequential phosphorylation upon stimulation. Dual phosphorylation of MAP kinase on the conserved threonine‐glutamic acid‐tyrosine (TEY) motif is essential for its catalytic activity and signal activation; however, the molecular mechanism by which the two residues are phosphorylated remains elusive. In the present study, the pattern of dual phosphorylation of extracellular signal‐regulated kinase (ERK) is profiled on the TEY motif using stable isotope dilution (SID)‐selective reaction monitoring (SRM) mass spectrometry (MS) to elucidate the order and magnitude of endogenous ERK phosphorylation in cellular model systems. The SID‐SRM‐MS analysis of phosphopeptides demonstrates that tyrosine phosphorylation in the TEY motif is dynamic, while threonine phosphorylation is static. Analyses of the mono‐phosphorylatable mutants ERKT202A and ERKY204F indicate that phosphorylation of tyrosine is not affected by the phosphorylation state of threonine, while threonine phosphorylation depends on tyrosine phosphorylation. The data suggest that dual phosphorylation of ERK is a highly ordered and restricted mechanism determined by tyrosine phosphorylation.  相似文献   

15.
16.
Honda M  Okuno Y  Yoo J  Ha T  Spies M 《The EMBO journal》2011,30(16):3368-3382
RAD52 protein has an important role in homology-directed DNA repair by mediating RAD51 nucleoprotein filament formation on single-stranded DNA (ssDNA) protected by replication protein-A (RPA) and annealing of RPA-coated ssDNA. In human, cellular response to DNA damage includes phosphorylation of RAD52 by c-ABL kinase at tyrosine 104. To address how this phosphorylation modulates RAD52 function, we used an amber suppressor technology to substitute tyrosine 104 with chemically stable phosphotyrosine analogue (p-Carboxymethyl-L-phenylalanine, pCMF). The RAD52(Y104pCMF) retained ssDNA-binding activity characteristic of unmodified RAD52 but showed lower affinity for double-stranded DNA (dsDNA) binding. Single-molecule analyses revealed that RAD52(Y104pCMF) specifically targets and wraps ssDNA. While RAD52(Y104pCMF) is confined to ssDNA region, unmodified RAD52 readily diffuses into dsDNA region. The Y104pCMF substitution also increased the ssDNA annealing rate and allowed overcoming the inhibitory effect of dsDNA. We propose that phosphorylation at Y104 enhances ssDNA annealing activity of RAD52 by attenuating dsDNA binding. Implications of phosphorylation-mediated activation of RAD52 annealing activity are discussed.  相似文献   

17.
Different CD95 (Fas/APO-1) isoforms and phosphory lated CD95 species were identified in human T and B cell lines. We had shown previously that the CD95 intracellular domain (IC), expressed as a glutathione S-transferase (GST) fusion protein in murine L929 fibroblasts, was phosphorylatedin vivo. GST-CD95IC was phosphorylatedin vitro by a kinase present in extracts from the human lymphocytic cell lines Jurkat and MP-1 and from murine L929 cells. Phosphoamino acid analysis indicated that phosphorylation occurred at multiple threonine residues and also at tyrosine (Tyr232 and Tyr291) and serine. Amino acids 191 to 275 of CD95 were sufficient for phosphorylation at threonine, tyrosine and serine and also mediated interaction with a 35 kDa cellular protein. Immuno-precipitation of CD95 and chemical cross-linking revealed CD95-associated proteins of approximately 35, 45 and 75 kDa. GST-CD95IC affinity chromatography detected binding of the 35 and 75 kDa protein species. The 75 kDa species may correspond to the CD95-associated proteins RIP or FAF1 and the 35 kDa protein may represent a TRADD analogue. These data indicate that several cellular proteins interact with CD95, possibly in a multi-protein complex, and that a kinase activity is associated with CD95 not onlyin vitro but alsoin vivo. Therefore, receptor phosphorylation may play a role in CD95 signal transduction. This work was in part supported by a grant from the Health Research Council of New Zealand (to JW).  相似文献   

18.
RecF, together with the recombination mediators RecO and RecR, is required in the RecFOR homologous recombination repair pathway in bacteria. In this study, a recF‐dr1088 operon, which is highly conserved in the Deinococcus‐Thermus phylum, was identified in Deinococcus radiodurans. Interaction between DRRecF and DR1088 was confirmed by yeast two‐hybrid and pull‐down assays. DR1088 exhibited some RecO‐like biochemical properties including single/double‐stranded DNA binding activity, ssDNA binding protein (SSB) replacement ability and ssDNA (with or without SSB) annealing activity. However, unlike other recombination proteins, dr1088 is essential for cell viability. These results indicate that DR1088 might play a role in DNA replication and DNA repair processes.  相似文献   

19.
Bacillus subtilis Mrp family protein SalA has been shown to indirectly promote the production of the exoprotease AprE by inhibiting the expression of scoC, which codes for a repressor of aprE. The exact mechanism by which SalA influences scoC expression has not been clarified previously. We demonstrate that SalA possesses a DNA‐binding domain (residues 1–60), which binds to the promoter region of scoC. The binding of SalA to its target DNA depends on the presence of ATP and is stimulated by phosphorylation of SalA at tyrosine 327. The B. subtilis protein‐tyrosine kinase PtkA interacts specifically with the C‐terminal domain of SalA in vivo and in vitro and is responsible for activating its DNA binding via phosphorylation of tyrosine 327. In vivo, a mutant mimicking phosphorylation of SalA (SalA Y327E) exhibited a strong repression of scoC and consequently overproduction of AprE. By contrast, the non‐phosphorylatable SalA Y327F and the ΔptkA exhibited the opposite effect, stronger expression of scoC and lower production of the exoprotease. Interestingly, both SalA and PtkA contain the same ATP‐binding Walker domain and have thus presumably arisen from the common ancestral protein. Their regulatory interplay seems to be conserved in other bacteria.  相似文献   

20.
Trypanosoma cruzi is the etiologic agent of Chagas disease, which affects millions of people in Latin America and has become a public health concern in the United States and areas of Europe. The possibility that kinase inhibitors represent novel anti‐parasitic agents is currently being explored. However, fundamental understanding of the cell‐signaling networks requires the detailed analysis of the involved phosphorylated proteins. Here, we have performed a comprehensive MS‐based phosphorylation mapping of phosphoproteins from T. cruzi epimastigote forms. Our LC‐MS/MS, dual‐stage fragmentation, and multistage activation analysis has identified 237 phosphopeptides from 119 distinct proteins. Furthermore, 220 phosphorylation sites were unambiguously mapped: 148 on serine, 57 on threonine, and 8 on tyrosine. In addition, immunoprecipitation and Western blotting analysis confirmed the presence of at least seven tyrosine‐phosphorylated proteins in T. cruzi. The identified phosphoproteins were subjected to Gene Ontology, InterPro, and BLAST analysis, and categorized based on their role in cell structure, motility, transportation, metabolism, pathogenesis, DNA/RNA/protein turnover, and signaling. Taken together, our phosphoproteomic data provide new insights into the molecular mechanisms governed by protein kinases and phosphatases in T. cruzi. We discuss the potential roles of the identified phosphoproteins in parasite physiology and drug development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号