共查询到20条相似文献,搜索用时 15 毫秒
1.
Nucleic acid composition,codon usage,and the rate of synonymous substitution in protein-coding genes
Summary Based on the rates of synonymous substitution in 42 protein-codin gene pairs from rat and human, a correlation is shown to exist between the frequency of the nucleotides in all positions of the codon and the synonymous substitution rate. The correlation coefficients were positive for A and T and negative for C and G. This means that AT-rich genes accumulate more synonymous substitutions than GC-rich genes. Biased patterns of mutation could not account for this phenomenon. Thus, the variation in synonymous substitution rates and the resulting unequal codon usage must be the consequence of selection against A and T in synonymous positions. Most of the varition in rates of synonymous substitution can be explained by the nucleotide composition in synonymous positions. Codon-anticodon interactions, dinucleotide frequencies, and contextual factors influence neither the rates of synonymous substitution nor codon usage. Interestingly, the nucleotide in the second position of codons (always a nonsynonymous position) was found to affect the rate of synonymous substitution. This finding links the rate of nonsynonymous substitution with the synonymous rate. Consequently, highly conservative proteins are expected to be encoded by genes that evolve slowly in terms of synonymous substitutions, and are consequently highly biased in their codon usage. 相似文献
2.
Synonymous codon and amino acid usage biases have been investigated in 903 Mimivirus protein-coding genes in order to understand the architecture and evolution of Mimivirus genome. As expected for an AT-rich genome, third codon positions of the synonymous codons of Mimivirus carry mostly A or T bases. It was found that codon usage bias in Mimivirus genes is dictated both by mutational pressure and translational selection. Evidences show that four factors such as mean molecular weight (MMW), hydropathy, aromaticity and cysteine content are mostly responsible for the variation of amino acid usage in Mimivirus proteins. Based on our observation, we suggest that genes involved in translation, DNA repair, protein folding, etc., have been laterally transferred to Mimivirus a long ago from living organism and with time these genes acquire the codon usage pattern of other Mimivirus genes under selection pressure. 相似文献
3.
It has been proposed that the synonymous codon usage of human tissue-specific genes was under selective pressure to modulate the expression of proteins by codon-mediated translational control (Plotkin, J. B., H. Robins, and A. J. Levine. 2004. Tissue-specific codon usage and the expression of human genes. Proc. Natl. Acad. Sci. USA 101:12588-12591.) To test this model, we analyzed by internal correspondence analysis the codon usage of 2,126 human tissue-specific genes expressed in 18 different tissues. We confirm that synonymous codon usage differs significantly between the tissues. However, the effect is very weak: the variability of synonymous codon usage between tissues represents only 2.3% of the total codon usage variability. Moreover, this variability is directly linked to isochore-scale (>100 kb) variability of GC-content that affect both coding and introns or intergenic regions. This demonstrates that variations of synonymous codon usage between tissue-specific genes expressed in different tissues are due to regional variations of substitution patterns and not to translational selection. 相似文献
4.
Synonymous codon usage and cellular tRNA abundance are thought to be co-evolved in optimizing translational efficiencies in highly expressed genes. Here in this communication by taking the advantage of publicly available gene expression data of rice and Arabidopsis we demonstrated that tRNA gene copy number is not the only driving force favoring translational selection in all highly expressed genes of rice. We found that forces favoring translational selection differ between GC-rich and GC-poor classes of genes. Supporting our results we also showed that, in highly expressed genes of GC-poor class there is a perfect correspondence between majority of preferred codons and tRNA gene copy number that confers translational efficiencies to this group of genes. However, tRNA gene copy number is not fully consistent with models of translational selection in GC-rich group of genes, where constraints on mRNA secondary structure play a role to optimize codon usage in highly expressed genes. 相似文献
5.
6.
昆虫质型多角体病毒(cypovirus,CPV)是害虫种群重要调节因子,可用作生物防治剂。本研究采用多元统计分析方法对7种CPV进行密码子使用模式分析,结果表明:CPV密码子使用偏好性较弱,多数基因密码子使用模式受碱基组成影响,少数基因密码子使用模式除碱基组成外还有其它影响因素;中性绘图分析表明碱基组成主要受选择压力影响,受突变影响较小。同一电泳型CPV之间比同一宿主CPV之间共有的偏好性密码子多。CPV基因组内10个基因组片段之间密码子偏好性存在差异。CPV密码子偏好性与宿主昆虫密码子偏好性存在差异,所有CPV与其宿主昆虫共有的偏好性密码子均较少。对应分析进一步证明碱基组成是影响密码子使用的主要因素,不同电泳型CPV具有不同的密码子使用模式。聚类分析表明同一电泳型CPV密码子使用模式相似,同一宿主CPV密码子使用模式差异较大。 相似文献
7.
Summary Patterns of codon usage in certain coliphages are adapted to expression inEscherichia coli. Bacteriophage T4 may be an exception to test the rule, as it produces eight tRNAs with specificities that are otherwise rare inE. coli. A database of all known T4 DNA sequences has been compiled, comprising 174 genes and a total of 115 kb (approximately 70% of the T4 genome). Codon usage has been examined in all T4 genes; some of these are known to be expressed before, and some after, the production of phage tRNAs. The results show two different patterns of codon usage: by comparison with the early genes, the late genes exhibit a shift in preference toward those codons recognized by the phage-encoded tRNAs. The T4 tRNAs translate A-ending codons, and it is possible that the phage acquired the tRNA genes because the mutation bias of the T4 DNA polymerase forces the T4 genome toward A+T-richness.Presented at the NATO Advanced Workshop on Genome Organization and Evolution, held in Spetses, Greece, September 1990 相似文献
8.
Xian Jia Shuyu Liu Hao Zheng Bo Li Qi Qi Lei Wei Taiyi Zhao Jian He Jingchen Sun 《BMC genomics》2015,16(1)
Background
The analysis of codon usage is a good way to understand the genetic and evolutionary characteristics of an organism. However, there are only a few reports related with the codon usage of the domesticated silkworm, Bombyx mori (B. mori). Hence, the codon usage of B. mori was analyzed here to reveal the constraint factors and it could be helpful to improve the bioreactor based on B. mori.Results
A total of 1,097 annotated mRNA sequences from B. mori were analyzed, revealing there is only a weak codon bias. It also shows that the gene expression level is related to the GC content, and the amino acids with higher general average hydropathicity (GRAVY) and aromaticity (Aromo). And the genes on the primary axis are strongly positively correlated with the GC content, and GC3s. Meanwhile, the effective number of codons (ENc) is strongly correlated with codon adaptation index (CAI), gene length, and Aromo values. However, the ENc values are correlated with the second axis, which indicates that the codon usage in B. mori is affected by not only mutation pressure and natural selection, but also nucleotide composition and the gene expression level. It is also associated with Aromo values, and gene length. Additionally, B. mori has a greater relative discrepancy in codon preferences with Drosophila melanogaster (D. melanogaster) or Saccharomyces cerevisiae (S. cerevisiae) than with Arabidopsis thaliana (A. thaliana), Escherichia coli (E. coli), or Caenorhabditis elegans (C. elegans).Conclusions
The codon usage bias in B. mori is relatively weak, and many influence factors are found here, such as nucleotide composition, mutation pressure, natural selection, and expression level. Additionally, it is also associated with Aromo values, and gene length. Among them, natural selection might play a major role. Moreover, the “optimal codons” of B. mori are all encoded by G and C, which provides useful information for enhancing the gene expression in B. mori through codon optimization.Electronic supplementary material
The online version of this article (doi:10.1186/s12864-015-1596-z) contains supplementary material, which is available to authorized users. 相似文献9.
诺如病毒(Noroviruses,NoVs)是引起非菌型胃肠炎暴发流行的主要病原体之一。为了解我国GII.3型NoVs毒株的变异以及受体结合模式,本研究对来自2015年一起中国广州NoVs胃肠炎暴发的GII.3型毒株GZ31597株进行聚合酶区和完整VP1区基因扩增、序列测定和序列分析,并表达VP1突出区蛋白(P蛋白),通过P蛋白与不同血型唾液样本的酶免疫分析法(EIA)测定实验确定其组织血型抗原(Histo-blood group antigens,HBGAs)结合模式。GZ31597株聚合酶和VP1基因系统进化分析表明,GZ31597株为GII.P12/GII.3-SubD基因型(聚合酶/衣壳区),该毒株较先前的GII.3毒株相比,在既是抗原表位又是HBGAs受体结合位点的氨基酸385残基发生了氨基酸转换。根据Western Blotting结果,证实P蛋白成功表达。唾液结合分析结果显示,该毒株P蛋白与A、B、AB、O型分泌型以及O型非分泌型唾液均可以结合,但结合值相对低。本研究表明该GII.P12/GII.3-SubD亚型的GII.3毒株在长期的流行过程中,通过氨基酸的转换,改变抗原性和受体结合活性,使GII.3型毒株在人群中继续流行。通过探索GII.3型NoVs在人群中长期广泛流行的原因,为GII.3型诺如病毒性胃肠炎的预防和控制提供重要依据。 相似文献
10.
Human Bocavirus (HBoV) is a novel virus which can cause respiratory tract disease in infants or children. In this study, the codon usage bias and the base composition variations in the available 11 complete HBoV genome sequences have been investigated. Although, there is a significant variation in codon usage bias among different HBoV genes, codon usage bias in HBoV is a little slight, which is mainly determined by the base compositions on the third codon position and the effective number of codons (ENC) value. The results of correspondence analysis (COA) and Spearman's rank correlation analysis reveals that the G + C compositional constraint is the main factor that determines the codon usage bias in HBoV and the gene's function also contributes to the codon usage in this virus. Moreover, it was found that the hydrophobicity of each protein and the gene length are also critical in affecting these viruses’ codon usage, although they were less important than that of the mutational bias and the genes’ function. At last, the relative synonymous codon usage (RSCU) of 44 genes from these 11 HBoV isolates is analyzed using a hierarchical cluster method. The result suggests that genes with same function yet from different isolates are classified into the same lineage and it does not depend on geographical location. These conclusions not only can offer an insight into the codon usage patterns and gene classification of HBoV, but also may help in increasing the efficiency of gene delivery/expression systems. 相似文献
11.
Analysis of codon usage in genes for nitrogen fixation from phylogenetically diverse diazotrophs 总被引:1,自引:0,他引:1
Summary A cluster analysis based on codon usage in genes for biological nitrogen fixation (nif genes) grouped diazotrophs into three distinct classes: anaerobes, cyanobacteria, and aerobes. In thenif genes ofKlebsiella pneumoniae there was no evidence for selection pressure in favor of highly translatable codons. However, in the nitrogen regulatory operonglnAntrBntrC of enteric bacteria the stoichiometrically high level of glutamine synthetase may be facilitated by the presence of efficiently translatable codons inglnA. Thenif genes of the cyanobacteriumAnabaena showed codon selection in favor of translational efficiency. Computation of codon adaptation indices for expression in heterologous systems indicated that the reading frames most suitable for expression ofnif genes inEscherichia coli, Bacillus subtilis, andSaccharomyces cerevisiae were present in azotobacters, clostridia, and cyanobacteria, respectively. In codon-usage-based cluster analysis, type 3 nitrogenase genes ofAzotobacter vinelandii grouped along with type 1 and type 2 genes. This is in contrast to the nucleotide sequence-based multiple alignment in which type 3 nitrogenase genes ofA. vinelandii have been reported to cluster with entirely unrelated diazotrophs such as methanogens and clostridia. This may be indicative of lateral transfer ofnif genes among widely divergent taxons. The chromosomal- and plasmid-locatednif genes of rhizobia also cluster separately in nucleotide sequence-based analysis but showed similar codon usage. These analyses suggested that the phylogeny ofnif genes drawn on the basis of nucleotide sequence homology was not masked by the taxon-specific pressure on codon usage. 相似文献
12.
Analysis of codon usage pattern in the radioresistant bacterium Deinococcus radiodurans 总被引:1,自引:0,他引:1
Liu Q 《Bio Systems》2006,85(2):99-106
The main factors shaping codon usage bias in the Deinococcus radiodurans genome were reported. Correspondence analysis (COA) was carried out to analyze synonymous codon usage bias. The results showed that the main trend was strongly correlated with gene expression level assessed by the "Codon Adaptation Index" (CAI) values, a result that was confirmed by the distribution of genes along the first axis. The results of correlation analysis, variance analysis and neutrality plot indicated that gene nucleotide composition was clearly contributed to codon bias. CDS length was also key factor in dictating codon usage variation. A general tendency of more biased codon usage of genes with longer CDS length to higher expression level was found. Further, the hydrophobicity of each protein also played a role in shaping codon usage in this organism, which could be confirmed by the significant correlation between the positions of genes placed on the first axis and the hydrophobicity values (r=-0.100, P<0.01). In summary, gene expression level played a crucial role, nucleotide mutational bias, CDS length and the hydrophobicity of each protein just in a minor way in shaping the codon usage pattern of D. radiodurans. Notably, 19 codons firstly defined as "optimal codons" may provide useful clues for molecular genetic engineering and evolutionary studying. 相似文献
13.
14.
Luciana Damascena da Silva Evandro Leite Rodrigues Maria Silvia Sousa de Lucena Ian Carlos Gomes de Lima Darleise de Sousa Oliveira Luana Silva Soares Joana D'Arc Pereira Mascarenhas Alexandre da Costa Linhares Yvone Benchimol Gabbay 《Memórias do Instituto Oswaldo Cruz》2013,108(8):1068-1070
Noroviruses (NoVs) are important cause of gastroenteritis in humans worldwide.
Genotype GII.4 is responsible for the majority of outbreaks reported to date. This
study describes, for the first time in Brazil, the circulation of NoV GII.4 variant
Sydney 2012 in faecal samples collected from children aged less than or equal to
eight years in Rio Branco, state of Acre, northern Brazil, during July-September
2012. 相似文献
15.
Sheng Zhao Qin Zhang Zhihua Chen Jincheng Zhong 《World journal of microbiology & biotechnology》2008,24(8):1585-1592
Burkholderia pseudomallei is a recognized biothreat agent and the causative agent of melioidosis. Codon usage biases of all protein-coding genes (length
greater than or equal to 300 bp) from the complete genome of B. pseudomallei K96243 have been analyzed. As B. pseudomallei is a GC-rich organism (68.5%), overall codon usage data analysis indicates that indeed codons ending in G and/or C are predominant
in this organism. But multivariate statistical analysis indicates that there is a single major trend in the codon usage variation
among the genes in this organism, which has a strong positively correlation with the expressivities of the genes. The majority
of the lowly expressed genes are scattered towards the negative end of the major axis whereas the highly expressed genes are
clustered towards the positive end. At the same time, from the results that there were two significant correlations between
axis 1 coordinates and the GC, GC3s content at silent sites of each sequence, and clearly significant negatively correlations
between the ‘Effective Number of Codons’ values and GC, GC3s content, we inferred that codon usage bias was affected by gene
nucleotide composition also. In addition, some other factors such as the lengths of the genes as well as the hydrophobicity
of genes also influence the codon usage variation among the genes in this organism in a minor way. At the same time, notably,
21 codons have been defined as ‘optimal codons’ of the B. pseudomallei. In summary, our work have provided a basic understanding of the mechanisms for codon usage bias and some more useful information
for improving the expression of target genes in vivo and in vitro.
Sheng Zhao and Qin Zhang contributed equally to this work. 相似文献
16.
Anupriya Sadhasivam 《Journal of biomolecular structure & dynamics》2018,36(8):1979-2003
Chlamydia trachomatis (C.t) is a Gram-negative obligate intracellular bacteria and is a major causative of infectious blindness and sexually transmitted diseases. Among the varied serovars of this organism, A, B and C are reported as prominent ocular pathogens. Genomic studies of these strains shall aid in deciphering potential drug targets and genomic influence on pathogenesis. Hence, in this study we performed deep statistical profiling of codon usage in these serovars. The overall base composition analysis reveals that these serovars are over biased to AU than GC. Similarly, relative synonymous codon usage also showed preference towards A/U ending codons. Parity Rule 2 analysis inferred unequal distribution of AT and GC, indicative of other unknown factors acting along with mutational pressure to influence codon usage bias (CUB). Moreover, absolute quantification of CUB also revealed lower bias across these serovars. The effect of natural selection on CUB was also confirmed by neutrality plot, reinforcing natural selection under mutational pressure turned to be a pivotal role in shaping the CUB in the strains studied. Correspondence analysis (COA) clarified that, C.t C/TW-3 to show a unique trend in codon usage variation. Host influence analysis on shaping the codon usage pattern also inferred some speculative relativity. In a nutshell, our finding suggests that mutational pressure is the dominating factor in shaping CUB in the strains studied, followed by natural selection. We also propose potential drug targets based on cumulative analysis of strand bias, CUB and human non-homologue screening. 相似文献
17.
High-quality data about protein structures and their gene sequences are essential to the understanding of the relationship between protein folding and protein coding sequences. Firstly we constructed the EcoPDB database, which is a high-quality database of Escherichia coli genes and their corresponding PDB structures. Based on EcoPDB, we presented a novel approach based on information theory to investigate the correlation between cysteine synonymous codon usages and local amino acids flanking cysteines, the correlation between cysteine synonymous codon usages and synonymous codon usages of local amino acids flanking cysteines, as well as the correlation between cysteine synonymous codon usages and the disulfide bonding states of cysteines in the E. coli genome. The results indicate that the nearest neighboring residues and their synonymous codons of the C-terminus have the greatest influence on the usages of the synonymous codons of cysteines and the usage of the synonymous codons has a specific correlation with the disulfide bond formation of cysteines in proteins. The correlations may result from the regulation mechanism of protein structures at gene sequence level and reflect the biological function restriction that cysteines pair to form disulfide bonds. The results may also be helpful in identifying residues that are important for synonymous codon selection of cysteines to introduce disulfide bridges in protein engineering and molecular biology. The approach presented in this paper can also be utilized as a complementary computational method and be applicable to analyse the synonymous codon usages in other model organisms. 相似文献
18.
Rahul R Nair Manivasagam B Nandhini Elango Monalisha Kavitha Murugan Thilaga Sethuraman Sangeetha Nagarajan Nayani Surya Prakash Rao Doss Ganesh 《Bioinformation》2012,8(22):1096-1104
Synonymous codon usage of 53 protein coding genes in chloroplast genome of Coffea arabica was analyzed for the first time to find
out the possible factors contributing codon bias. All preferred synonymous codons were found to use A/T ending codons as
chloroplast genomes are rich in AT. No difference in preference for preferred codons was observed in any of the two strands, viz.,
leading and lagging strands. Complex correlations between total base compositions (A, T, G, C, GC) and silent base contents (A3, T3,
G3, C3, GC3) revealed that compositional constraints played crucial role in shaping the codon usage pattern of C. arabica chloroplast
genome. ENC Vs GC3 plot grouped majority of the analyzed genes on or just below the left side of the expected GC3 curve
indicating the influence of base compositional constraints in regulating codon usage. But some of the genes lie distantly below the
continuous curve confirmed the influence of some other factors on the codon usage across those genes. Influence of compositional
constraints was further confirmed by correspondence analysis as axis 1 and 3 had significant correlations with silent base contents.
Correlation of ENC with axis 1, 4 and CAI with 1, 2 prognosticated the minor influence of selection in nature but exact separation
of highly and lowly expressed genes could not be seen. From the present study, we concluded that mutational pressure combined
with weak selection influenced the pattern of synonymous codon usage across the genes in the chloroplast genomes of C. arabica. 相似文献
19.
Summary We searched the complete 39,936 base DNA sequence of bacteriophage T7 for nonrandomness that might be attributed to natural selection. Codon usage in the 50 genes of T7 is nonrandom, both over the whole code and among groups of synonymous codons. There is a great excess of purineany base-pyrimidine (RNY) codons. Codon usage varies between genes, but from the pooled data for the whole genome (12,145 codons) certain putative selective constraints can be identified. Codon usage appears to be influenced by host tRNA abundance (particularly in highly expressed genes), tRNA-mRNA interactions (one such interaction being perhaps responsible for maintaining the excess of RNY codons) and a lack of short palindromes. This last constraint is probably due to selection against host restriction enzyme recognition sites; this is the first report of an effect of this kind on codon usage. Selection against susceptibility to mutational damage does not appear to have been involved. 相似文献
20.
Kua-Chun Ou Chih-Yang Wang Kuan-Ting Liu Yi-Ling Chen Yi-Chen Chen Ming-Derg Lai Meng-Chi Yen 《Biochemical and biophysical research communications》2014
Transfer RNA (tRNA) abundance is one of the critical factors for the enhancement of protein productivity in prokaryotic and eukaryotic hosts. Gene copy number of tRNA and tRNA codon usage bias are generally used to match tRNA abundance of protein-expressing hosts and to optimize the codons of recombinant proteins. Because sufficient concentration of intracellular tRNA and optimized codons of recombinant proteins enhanced translation efficiency, we hypothesized that sufficient supplement of host’s tRNA improved protein productivity in mammalian cells. First, the small tRNA sequencing results of CHO-K1 cells showed moderate positive correlation with gene copy number and codon usage bias. Modification of human interleukin-2 (IL-2) through codons with high gene copy number and high codon usage bias (IL-2 HH, modified on Leu, Thr, Glu) significantly increased protein productivity in CHO-K1 cells. In contrast, modification through codons with relatively high gene copy number and low codon usage bias (IL-2 HL, modified on Ala, Thr, Val), or relatively low gene copy number and low codon usage bias (IL-2 LH, modified on Ala, Thr, Val) did not increase IL-2 productivity significantly. Furthermore, supplement of the alanine tRNA or threonine tRNA increased IL-2 productivity of IL-2 HL. In summary, we revealed a potential strategy to enhance productivity of recombinant proteins, which may be applied in production of protein drug or design of DNA vaccine. 相似文献