共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel subtype of influenza A virus 09H1N1 has rapidly spread across the world. Evolutionary analyses of this virus have
revealed that 09H1N1 is a triple reassortant of segments from swine, avian and human influenza viruses. In this study, we
investigated factors shaping the codon usage bias of 09H1N1 and carried out cluster analysis of 60 strains of influenza A
virus from different subtypes based on their codon usage bias. We discovered that more preferentially used codons of 09H1N1
are A-ended or U-ended, and the intra-genomic codon usage bias of 09H1N1 is quite low. Base composition constraint, dinucleotide
biases and translational selection are the main factors influencing the codon usage bias of 09H1N1. At the genome level, we
find that the codon usage bias of 09H1N1 is similar to H1N1 (A/swine/Kansas/77778/2007H1N1), H9N2 from Asia, H1N2 from Asia
and North America and H3N2 from North America. Our results provide insight for understanding the processes governing evolution,
regulation of gene expression, and revealing the evolution of 09H1N1. 相似文献
2.
Nucleic acid composition,codon usage,and the rate of synonymous substitution in protein-coding genes
Summary Based on the rates of synonymous substitution in 42 protein-codin gene pairs from rat and human, a correlation is shown to exist between the frequency of the nucleotides in all positions of the codon and the synonymous substitution rate. The correlation coefficients were positive for A and T and negative for C and G. This means that AT-rich genes accumulate more synonymous substitutions than GC-rich genes. Biased patterns of mutation could not account for this phenomenon. Thus, the variation in synonymous substitution rates and the resulting unequal codon usage must be the consequence of selection against A and T in synonymous positions. Most of the varition in rates of synonymous substitution can be explained by the nucleotide composition in synonymous positions. Codon-anticodon interactions, dinucleotide frequencies, and contextual factors influence neither the rates of synonymous substitution nor codon usage. Interestingly, the nucleotide in the second position of codons (always a nonsynonymous position) was found to affect the rate of synonymous substitution. This finding links the rate of nonsynonymous substitution with the synonymous rate. Consequently, highly conservative proteins are expected to be encoded by genes that evolve slowly in terms of synonymous substitutions, and are consequently highly biased in their codon usage. 相似文献
3.
Synonymous codon and amino acid usage biases have been investigated in 903 Mimivirus protein-coding genes in order to understand the architecture and evolution of Mimivirus genome. As expected for an AT-rich genome, third codon positions of the synonymous codons of Mimivirus carry mostly A or T bases. It was found that codon usage bias in Mimivirus genes is dictated both by mutational pressure and translational selection. Evidences show that four factors such as mean molecular weight (MMW), hydropathy, aromaticity and cysteine content are mostly responsible for the variation of amino acid usage in Mimivirus proteins. Based on our observation, we suggest that genes involved in translation, DNA repair, protein folding, etc., have been laterally transferred to Mimivirus a long ago from living organism and with time these genes acquire the codon usage pattern of other Mimivirus genes under selection pressure. 相似文献
4.
It has been proposed that the synonymous codon usage of human tissue-specific genes was under selective pressure to modulate the expression of proteins by codon-mediated translational control (Plotkin, J. B., H. Robins, and A. J. Levine. 2004. Tissue-specific codon usage and the expression of human genes. Proc. Natl. Acad. Sci. USA 101:12588-12591.) To test this model, we analyzed by internal correspondence analysis the codon usage of 2,126 human tissue-specific genes expressed in 18 different tissues. We confirm that synonymous codon usage differs significantly between the tissues. However, the effect is very weak: the variability of synonymous codon usage between tissues represents only 2.3% of the total codon usage variability. Moreover, this variability is directly linked to isochore-scale (>100 kb) variability of GC-content that affect both coding and introns or intergenic regions. This demonstrates that variations of synonymous codon usage between tissue-specific genes expressed in different tissues are due to regional variations of substitution patterns and not to translational selection. 相似文献
5.
Meili Li Zhiyao Zhao Jianhong Chen Bingyun Wang Zi Li Jian Li Mingsheng Cai 《中国病毒学》2012,27(5):303-315
In the present study, we examined the codon usage bias between pseudorabies virus (PRV) US1 gene and the US1-like genes of 20 reference alphaherpesviruses. Comparative analysis showed noticeable disparities of the synonymous codon usage bias in the 21 alphaherpesviruses, indicated by codon adaptation index, effective number of codons (ENc) and GC3s value. The codon usage pattern of PRV US1 gene was phylogenetically conserved and similar to that of the US1-like genes of the genus Varicellovirus of alphaherpesvirus, with a strong bias towards the codons with C and G at the third codon position. Cluster analysis of codon usage pattern of PRV US1 gene with its reference alphaherpesviruses demonstrated that the codon usage bias of US1-like genes of 21 alphaherpesviruses had a very close relation with their gene functions. ENc-plot revealed that the genetic heterogeneity in PRV US1 gene and the 20 reference alphaherpesviruses was constrained by G+C content, as well as the gene length. In addition, comparison of codon preferences in the US1 gene of PRV with those of E. coli, yeast and human revealed that there were 50 codons showing distinct usage differences between PRV and yeast, 49 between PRV and human, but 48 between PRV and E. coli. Although there were slightly fewer differences in codon usages between E.coli and PRV, the difference is unlikely to be statistically significant, and experimental studies are necessary to establish the most suitable expression system for PRV US1. In conclusion, these results may improve our understanding of the evolution, pathogenesis and functional studies of PRV, as well as contributing to the area of herpesvirus research or even studies with other viruses. 相似文献
6.
Synonymous codon usage and cellular tRNA abundance are thought to be co-evolved in optimizing translational efficiencies in highly expressed genes. Here in this communication by taking the advantage of publicly available gene expression data of rice and Arabidopsis we demonstrated that tRNA gene copy number is not the only driving force favoring translational selection in all highly expressed genes of rice. We found that forces favoring translational selection differ between GC-rich and GC-poor classes of genes. Supporting our results we also showed that, in highly expressed genes of GC-poor class there is a perfect correspondence between majority of preferred codons and tRNA gene copy number that confers translational efficiencies to this group of genes. However, tRNA gene copy number is not fully consistent with models of translational selection in GC-rich group of genes, where constraints on mRNA secondary structure play a role to optimize codon usage in highly expressed genes. 相似文献
7.
Factors influencing the synonymous codon and amino acid usage bias in AT-rich Pseudomonas aeruginosa phage PhiKZ 总被引:3,自引:0,他引:3
To reveal how the AT-rich genome of bacteriophage PhiKZ has been shaped in order to carryout its growth in the GC-rich host Pseudomonas aeruginosa,synonymous codon and amino acid usage bias ofPhiKZ was investigated and the data were compared with that of P.aeruginosa.It was found that synonymouscodon and amino acid usage of PhiKZ was distinct from that of P.aeruginosa.In contrast to P.aeruginosa,the third codon position of the synonymous codons of PhiKZ carries mostly A or T base;codon usage biasin PhiKZ is dictated mainly by mutational bias and,to a lesser extent,by translational selection.A clusteranalysis of the relative synonymous codon usage values of 16 myoviruses including PhiKZ shows that PhiKZis evolutionary much closer to Escherickia coli phage T4.Further analysis reveals that the three factors ofmean molecular weight,aromaticity and cysteine content are mostly responsible for the variation of aminoacid usage in PhiKZ proteins,whereas amino acid usage of P.aeruginosa proteins is mainly governed bygrand average of hydropathicity,aromaticity and cysteine content.Based on these observations,we suggestthat codons of the phage-like PhiKZ have evolved to preferentially incorporate the smaller amino acid residuesinto their proteins during translation,thereby economizing the cost of its development in GC-rich P.aeruginosa. 相似文献
8.
9.
昆虫质型多角体病毒(cypovirus,CPV)是害虫种群重要调节因子,可用作生物防治剂。本研究采用多元统计分析方法对7种CPV进行密码子使用模式分析,结果表明:CPV密码子使用偏好性较弱,多数基因密码子使用模式受碱基组成影响,少数基因密码子使用模式除碱基组成外还有其它影响因素;中性绘图分析表明碱基组成主要受选择压力影响,受突变影响较小。同一电泳型CPV之间比同一宿主CPV之间共有的偏好性密码子多。CPV基因组内10个基因组片段之间密码子偏好性存在差异。CPV密码子偏好性与宿主昆虫密码子偏好性存在差异,所有CPV与其宿主昆虫共有的偏好性密码子均较少。对应分析进一步证明碱基组成是影响密码子使用的主要因素,不同电泳型CPV具有不同的密码子使用模式。聚类分析表明同一电泳型CPV密码子使用模式相似,同一宿主CPV密码子使用模式差异较大。 相似文献
10.
Summary Patterns of codon usage in certain coliphages are adapted to expression inEscherichia coli. Bacteriophage T4 may be an exception to test the rule, as it produces eight tRNAs with specificities that are otherwise rare inE. coli. A database of all known T4 DNA sequences has been compiled, comprising 174 genes and a total of 115 kb (approximately 70% of the T4 genome). Codon usage has been examined in all T4 genes; some of these are known to be expressed before, and some after, the production of phage tRNAs. The results show two different patterns of codon usage: by comparison with the early genes, the late genes exhibit a shift in preference toward those codons recognized by the phage-encoded tRNAs. The T4 tRNAs translate A-ending codons, and it is possible that the phage acquired the tRNA genes because the mutation bias of the T4 DNA polymerase forces the T4 genome toward A+T-richness.Presented at the NATO Advanced Workshop on Genome Organization and Evolution, held in Spetses, Greece, September 1990 相似文献
11.
流感病毒基因的密码子偏好性及聚类分析 总被引:1,自引:0,他引:1
流行性感冒病毒是一种造成人类及动物患流行性感冒的RNA病毒,它造成急性上呼吸道感染,并由空气迅速传播,在世界各地常有周期性的大流行。根据该病毒的基因组CDS序列,探讨了基因组序列密码子的使用模式和特性,并进行了病毒间的聚类分析。结果表明:流感病毒的G+C含量均低于A+U含量,偏向使用以A、U结尾的密码子的程度比使用以G、C结尾的较高,CUG、UCA、AGU、AGC、AGA、AGG、GUG、CCA、ACA、GGA、GCA、AUU、UGA、CAU、CAA、AAU、AAA、GAA等18个密码子为流感病毒共有的偏好性密码子,且以A结尾的居多,尤其偏爱AGA、GGA。聚类结果表明首先亚洲流感病毒H2N2和香港流感病毒H2N2聚为一类,亚洲流感病毒H1N1和俄罗斯流感病毒H1N1聚为一类,1997年和2003年~2004年发生的人禽流感聚为一类,说明它们的密码子使用的偏好性相似;而2009年爆发的甲型H1N1流感和任何一个流感的距离都比较远,说明甲型H1N1流感病毒是一种新型的病毒,不同于以往任何一种流感病毒。 相似文献
12.
Xian Jia Shuyu Liu Hao Zheng Bo Li Qi Qi Lei Wei Taiyi Zhao Jian He Jingchen Sun 《BMC genomics》2015,16(1)
Background
The analysis of codon usage is a good way to understand the genetic and evolutionary characteristics of an organism. However, there are only a few reports related with the codon usage of the domesticated silkworm, Bombyx mori (B. mori). Hence, the codon usage of B. mori was analyzed here to reveal the constraint factors and it could be helpful to improve the bioreactor based on B. mori.Results
A total of 1,097 annotated mRNA sequences from B. mori were analyzed, revealing there is only a weak codon bias. It also shows that the gene expression level is related to the GC content, and the amino acids with higher general average hydropathicity (GRAVY) and aromaticity (Aromo). And the genes on the primary axis are strongly positively correlated with the GC content, and GC3s. Meanwhile, the effective number of codons (ENc) is strongly correlated with codon adaptation index (CAI), gene length, and Aromo values. However, the ENc values are correlated with the second axis, which indicates that the codon usage in B. mori is affected by not only mutation pressure and natural selection, but also nucleotide composition and the gene expression level. It is also associated with Aromo values, and gene length. Additionally, B. mori has a greater relative discrepancy in codon preferences with Drosophila melanogaster (D. melanogaster) or Saccharomyces cerevisiae (S. cerevisiae) than with Arabidopsis thaliana (A. thaliana), Escherichia coli (E. coli), or Caenorhabditis elegans (C. elegans).Conclusions
The codon usage bias in B. mori is relatively weak, and many influence factors are found here, such as nucleotide composition, mutation pressure, natural selection, and expression level. Additionally, it is also associated with Aromo values, and gene length. Among them, natural selection might play a major role. Moreover, the “optimal codons” of B. mori are all encoded by G and C, which provides useful information for enhancing the gene expression in B. mori through codon optimization.Electronic supplementary material
The online version of this article (doi:10.1186/s12864-015-1596-z) contains supplementary material, which is available to authorized users. 相似文献13.
随着基因组学和转录组学在不同生物体遗传和细胞生物学领域的广泛应用,同义密码子使用的偏嗜性逐渐被接受,并且在研究生物进化与生物表型之间的深层联系时,同义密码子使用模式受到相关领域研究人员的重视。信使RNA(messenger RNA,mRNA)最终表达出具有正常生物活性的蛋白产物是生命活动的重要环节。被称为“第二遗传密码”的同义密码子使用模式,可以通过精微调控翻译选择压力等分子机制,从转录调控、翻译调控及代谢活动等水平表达其承载的遗传信息。研究表明,mRNA半衰期的长短对mRNA活性以及转录和翻译过程有显著的影响。因此,系统地归纳同义密码子使用模式在基因转录、翻译调控及翻译后修饰等生命活动中所扮演的角色,将有助于全方位审视生物体如何巧妙利用密码子使用模式所产生的遗传效应来精准合成不同种类蛋白质,并以此保障生长或分化的特定基因表达程序顺利执行、维持正常的生命周期。 相似文献
14.
诺如病毒(Noroviruses,NoVs)是引起非菌型胃肠炎暴发流行的主要病原体之一。为了解我国GII.3型NoVs毒株的变异以及受体结合模式,本研究对来自2015年一起中国广州NoVs胃肠炎暴发的GII.3型毒株GZ31597株进行聚合酶区和完整VP1区基因扩增、序列测定和序列分析,并表达VP1突出区蛋白(P蛋白),通过P蛋白与不同血型唾液样本的酶免疫分析法(EIA)测定实验确定其组织血型抗原(Histo-blood group antigens,HBGAs)结合模式。GZ31597株聚合酶和VP1基因系统进化分析表明,GZ31597株为GII.P12/GII.3-SubD基因型(聚合酶/衣壳区),该毒株较先前的GII.3毒株相比,在既是抗原表位又是HBGAs受体结合位点的氨基酸385残基发生了氨基酸转换。根据Western Blotting结果,证实P蛋白成功表达。唾液结合分析结果显示,该毒株P蛋白与A、B、AB、O型分泌型以及O型非分泌型唾液均可以结合,但结合值相对低。本研究表明该GII.P12/GII.3-SubD亚型的GII.3毒株在长期的流行过程中,通过氨基酸的转换,改变抗原性和受体结合活性,使GII.3型毒株在人群中继续流行。通过探索GII.3型NoVs在人群中长期广泛流行的原因,为GII.3型诺如病毒性胃肠炎的预防和控制提供重要依据。 相似文献
15.
Human Bocavirus (HBoV) is a novel virus which can cause respiratory tract disease in infants or children. In this study, the codon usage bias and the base composition variations in the available 11 complete HBoV genome sequences have been investigated. Although, there is a significant variation in codon usage bias among different HBoV genes, codon usage bias in HBoV is a little slight, which is mainly determined by the base compositions on the third codon position and the effective number of codons (ENC) value. The results of correspondence analysis (COA) and Spearman's rank correlation analysis reveals that the G + C compositional constraint is the main factor that determines the codon usage bias in HBoV and the gene's function also contributes to the codon usage in this virus. Moreover, it was found that the hydrophobicity of each protein and the gene length are also critical in affecting these viruses’ codon usage, although they were less important than that of the mutational bias and the genes’ function. At last, the relative synonymous codon usage (RSCU) of 44 genes from these 11 HBoV isolates is analyzed using a hierarchical cluster method. The result suggests that genes with same function yet from different isolates are classified into the same lineage and it does not depend on geographical location. These conclusions not only can offer an insight into the codon usage patterns and gene classification of HBoV, but also may help in increasing the efficiency of gene delivery/expression systems. 相似文献
16.
Rajkumari Sanjukta Mohammad Samir Farooqi Naveen Sharma Anil Rai Dwijesh Chandra Mishra Dhananjaya P Singh 《Bioinformation》2012,8(22):1087-1095
Chromohalobacter salexigens, a Gammaproteobacterium belonging to the family Halomonadaceae, shows a broad salinity range for
growth. In order to reveal the factors influencing architecture of protein coding genes in C. salexigens, pattern of synonymous codon
usage bias has been investigated. Overall codon usage analysis of the microorganism revealed that C and G ending codons are
predominantly used in all the genes which are indicative of mutational bias. Multivariate statistical analysis showed that the genes
are separated along the first major explanatory axis according to their expression levels and their genomic GC content at the
synonymous third positions of the codons. Both NC plot and correspondence analysis on Relative Synonymous Codon Usage
(RSCU) indicates that the variation in codon usage among the genes may be due to mutational bias at the DNA level and natural
selection acting at the level of mRNA translation. Gene length and the hydrophobicity of the encoded protein also influence the
codon usage variation of genes to some extent. A comparison of the relative synonymous codon usage between 10% each of highly
and lowly expressed genes determines 23 optimal codons, which are statistically over represented in the former group of genes and
may provide useful information for salt-stressed gene prediction and gene-transformation. Furthermore, genes for regulatory
functions; mobile and extrachromosomal element functions; and cell envelope are observed to be highly expressed. The study
could provide insight into the gene expression response of halophilic bacteria and facilitate establishment of effective strategies to
develop salt-tolerant crops of agronomic value. 相似文献
17.
Analysis of codon usage in genes for nitrogen fixation from phylogenetically diverse diazotrophs 总被引:1,自引:0,他引:1
Summary A cluster analysis based on codon usage in genes for biological nitrogen fixation (nif genes) grouped diazotrophs into three distinct classes: anaerobes, cyanobacteria, and aerobes. In thenif genes ofKlebsiella pneumoniae there was no evidence for selection pressure in favor of highly translatable codons. However, in the nitrogen regulatory operonglnAntrBntrC of enteric bacteria the stoichiometrically high level of glutamine synthetase may be facilitated by the presence of efficiently translatable codons inglnA. Thenif genes of the cyanobacteriumAnabaena showed codon selection in favor of translational efficiency. Computation of codon adaptation indices for expression in heterologous systems indicated that the reading frames most suitable for expression ofnif genes inEscherichia coli, Bacillus subtilis, andSaccharomyces cerevisiae were present in azotobacters, clostridia, and cyanobacteria, respectively. In codon-usage-based cluster analysis, type 3 nitrogenase genes ofAzotobacter vinelandii grouped along with type 1 and type 2 genes. This is in contrast to the nucleotide sequence-based multiple alignment in which type 3 nitrogenase genes ofA. vinelandii have been reported to cluster with entirely unrelated diazotrophs such as methanogens and clostridia. This may be indicative of lateral transfer ofnif genes among widely divergent taxons. The chromosomal- and plasmid-locatednif genes of rhizobia also cluster separately in nucleotide sequence-based analysis but showed similar codon usage. These analyses suggested that the phylogeny ofnif genes drawn on the basis of nucleotide sequence homology was not masked by the taxon-specific pressure on codon usage. 相似文献
18.
Analysis of codon usage pattern in the radioresistant bacterium Deinococcus radiodurans 总被引:1,自引:0,他引:1
Liu Q 《Bio Systems》2006,85(2):99-106
The main factors shaping codon usage bias in the Deinococcus radiodurans genome were reported. Correspondence analysis (COA) was carried out to analyze synonymous codon usage bias. The results showed that the main trend was strongly correlated with gene expression level assessed by the "Codon Adaptation Index" (CAI) values, a result that was confirmed by the distribution of genes along the first axis. The results of correlation analysis, variance analysis and neutrality plot indicated that gene nucleotide composition was clearly contributed to codon bias. CDS length was also key factor in dictating codon usage variation. A general tendency of more biased codon usage of genes with longer CDS length to higher expression level was found. Further, the hydrophobicity of each protein also played a role in shaping codon usage in this organism, which could be confirmed by the significant correlation between the positions of genes placed on the first axis and the hydrophobicity values (r=-0.100, P<0.01). In summary, gene expression level played a crucial role, nucleotide mutational bias, CDS length and the hydrophobicity of each protein just in a minor way in shaping the codon usage pattern of D. radiodurans. Notably, 19 codons firstly defined as "optimal codons" may provide useful clues for molecular genetic engineering and evolutionary studying. 相似文献
19.
20.
Luciana Damascena da Silva Evandro Leite Rodrigues Maria Silvia Sousa de Lucena Ian Carlos Gomes de Lima Darleise de Sousa Oliveira Luana Silva Soares Joana D'Arc Pereira Mascarenhas Alexandre da Costa Linhares Yvone Benchimol Gabbay 《Memórias do Instituto Oswaldo Cruz》2013,108(8):1068-1070
Noroviruses (NoVs) are important cause of gastroenteritis in humans worldwide.
Genotype GII.4 is responsible for the majority of outbreaks reported to date. This
study describes, for the first time in Brazil, the circulation of NoV GII.4 variant
Sydney 2012 in faecal samples collected from children aged less than or equal to
eight years in Rio Branco, state of Acre, northern Brazil, during July-September
2012. 相似文献