首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding the penetration mechanisms of carbon nanotube (CNTs)-encapsulated drugs through the phospholipid bilayer cell membrane is an important issue for the development of intracellular drug delivery systems. In the present work, steered molecular dynamics (SMD) simulation was used to explore the possibility of penetration of a polar drug, paclitaxel (PTX), encapsulated inside the CNT, through a dipalmitoylphosphatidylcholine bilayer membrane. The interactions between PTX and CNT and between PTX and the confined water molecules inside the CNT had a significant effect on the penetration process of PTX. The results reveal that the presence of a PTX molecule increases the magnitude of the pulling force. The effect of pulling velocity on the penetration mechanism was also investigated by a series of SMD simulations, and it is shown that the pulling velocity had a significant effect on pulling force and the interaction between lipid bilayer and drug molecule.  相似文献   

2.
Abstract

In this study, the adsorption of Hydroxyurea (HU) onto the inner and outer surfaces of boron nitride and carbon nanotubes (CNTs) was investigated using the density functional theory calculations and molecular dynamics (MDs) simulations in aqueous solution. The values of the adsorption energy show that HU molecule is preferentially adsorbed inside of boron nitride and CNTs with the molecular axis parallel to the tubes axis, which means that the cavity of nanotubes is favorable for encapsulation of this drug. Also, it was found that the HU/boron nitride nanotube (BNNT) system is more stable than the HU/CNT system. The stability of the complexes of HU/ BNNT attributed to the formation of the intermolecular hydrogen bonds between the H atoms of HU molecule and the N atoms of BNNT, which is confirmed by Bader’s quantum theory of atoms in molecules. The natural bond orbital analysis shows the charge transfers occur from HU molecule to nanotubes in all complexes. Moreover, the adsorption of HU molecule on the surfaces of the nanotubes was investigated by explicit water models. Also, the adsorption behavior of HU on the functionalized boron nitride and CNTs is investigated to design and develop new nanocarriers for biomedical applications. Furthermore, MDs simulations are examined in the presence of one and two drug molecules. The obtained results illustrate that the lowest value of Lennard–Jones (L–J) energy between drug and nanotubes exist in the simulation system with two drug molecules.  相似文献   

3.
Abstract

The present study focuses on the prediction and investigation of binding properties of penicillamine with pure (5,5) single-walled carbon nanotube (SWCNT) and functionalized SWCNT (f-SWCNT) through the B3LYP and M06-2X functionals using the 6-31G** basis set. The electronic and structural properties, adsorption energy and frontier molecular orbitals of various configurations are examined. Our theoretical results indicated that the interaction of the nanotubes with penicillamine molecule is weak so that the drug adsorption process is typically physisorption. Also, results of theoretical calculations show that the adsorption of the drug molecule on f-SWCNT is stronger with shorter intermolecular distances in comparison to pure SWCNT. The natural bond orbital (NBO) analysis of studied systems demonstrates that the charge is transferred from penicillamine molecule to the nanotubes. Furthermore, molecular dynamics (MD) simulation is employed to evaluate the dynamic and diffusion behavior of drug molecule on SWCNT and f-SWCNT. Energy results show that drug molecule spontaneously moves toward the carriers, and the van der Waals energy contributions in drug adsorption are more than electrostatic interaction. The obtained results from MD simulation confirm that the functionalization of SWCNT leads to increase in the solubility of the carrier in aqueous solution.

Communicated by Ramaswamy H. Sarma  相似文献   

4.
Liposomal cytarabine, DepoCyt, is a chemotherapy agent which is used in cancer treatment. This form of cytarabine has more efficacy and fewer side effects relative to the other forms. Since DepoCyt contains the cytarabine encapsulated within phosphatidylcholine and the sterol molecules, we modeled dioleoylphosphatidylcholine (DOPC)/cholesterol bilayer membrane as a carrier for cytarabine to study drug–bilayer interactions. For this purpose, we performed a series of united-atom molecular dynamics (MD) simulations for 25?ns to investigate the interactions between cytarabine and cholesterol-containing DOPC lipid bilayers. Only the uncharged form of cytarabine molecule was investigated. In this study, different levels of the cholesterol content (0, 20, and 40%) were used. MD simulations allowed us to determine dynamical and structural properties of the bilayer membrane and to estimate the preferred location and orientation of the cytarabine molecule inside the bilayer membrane. Properties such as membrane thickness, area per lipid, diffusion coefficient, mass density, bilayer packing, order parameters, and intermolecular interactions were examined. The results show that by increasing the cholesterol concentration in the lipid bilayers, the bilayer thickness increases and area per lipid decreases. Moreover, in accordance with the experiments, our calculations show that cholesterol molecules have ordering effect on the hydrocarbon acyl chains. Furthermore, the cytarabine molecule preferentially occupies the polar region of the lipid head groups to form specific interactions (hydrogen bonds). Our results fully support the experimental data. Our finding about drug–bilayer interaction is crucial for the liposomal drug design.  相似文献   

5.
Doxorubicin (DOX) is one of the most efficient antitumor drugs employed in numerous cancer therapies. Its incorporation into lipid-based nanocarriers, such as liposomes, improves the drug targeting into tumor cells and reduces drug side effects. The carriers' lipid composition is expected to affect the interactions of DOX and its partitioning into liposomal membranes. To get a rational insight into this aspect and determine promising lipid compositions, we use numerical simulations, which provide unique information on DOX-membrane interactions at the atomic level of resolution. In particular, we combine classical molecular dynamics simulations and free energy calculations to elucidate the mechanism of penetration of a protonated Doxorubicin molecule (DOX+) into potential liposome membranes, here modeled as lipid bilayers based on mixtures of phosphatidylcholine (PC), sphingomyelin (SM) and cholesterol lipid molecules, of different compositions and lipid phases. Moreover, we analyze DOX+ partitioning into relevant regions of SM-based lipid bilayer systems using a combination of free energy methods. Our results show that DOX+ penetration and partitioning are facilitated into less tightly packed SM-based membranes and are dependent on lipid composition. This work paves the way to further investigations of optimal formulations for lipid-based carriers, such as those associated with pH-responsive membranes.  相似文献   

6.
Abstract

We report a quantum mechanics calculation and molecular dynamics simulation study of Carmustine drug (BNU) adsorption on the surface of nitrogen (N) and boron (B) doped-functionalized single-walled carbon nanotubes. The stability of the optimized complexes is determined on the basis of relative adsorption energy (ΔEads). The ΔEads results claim that drug molecule tends to adsorb on the nitrogen and boron doped functionalized tubes with the energy values in the range of ?61.177 to ?95.806?kJ/mol. Based on the obtained results, it is observed that N-doping compared with B-doping has improved more effectively drug absorption on the surface of functionalized nanotube. The results of Atoms in Molecule calculations indicate that drug adsorbs molecularly via hydrogen bonds interactions on the surface doped-functionalized carbon nanotubes. Moreover, molecular dynamics simulation is performed to investigate the dynamics behavior of the drug molecules on the nitrogen-doped functionalized carbon nanotube (f-NNT) and functionalized carbon nanotube (f-CNT). The higher average calculated electrostatic and van der Waals energies as well as higher number of intermolecular hydrogen bonds in BNU-f-NNT in comparison with BNU-f-CNT model suggest the more effectual interaction between drug molecules and nitrogen-doped functionalized carbon nanotube.

Communicated by Ramaswamy H. Sarma  相似文献   

7.
Abstract

The structural stability and transport properties of the cyclic peptide nanotube (CPN) 8?×?[Cys–Gly–Met–Gly]2 in different phospholipid bilayers such as POPA (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidic acid), POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine), POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine), POPG (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol) and POPS (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine) with water have been investigated using molecular dynamics (MD) simulation. The hydrogen bonds and non-bonded interaction energies were calculated to study the stability in different bilayers. One µs MD simulation in POPA lipid membrane reveals the stability of the cyclic peptide nanotube, and the simulations at various temperatures manifest the higher stability of 8?×?[Cys–Gly–Met–Gly]2. We demonstrated that the presence of sulphur-containing amino acids in CPN enhances the stability through disulphide bonds between the adjacent rings. Further, the water permeation coefficient of the CPN is calculated and compared with human aquaporin-2 (AQP2) channel protein. It is found that the coefficients are highly comparable to the AQP2 channel though the mechanism of water transport is not similar to AQP 2; the flow of water in the CPN is taking place as a two-line 1–2–1–2 file fashion. In addition to that, the transport behavior of Na+ and K+ ions, single water molecule, urea and anti-cancer drug fluorouracil were investigated using pulling simulation and potential of mean force calculation. The above transport behavior shows that Na+ is trapped in CPN for a longer time than other molecules. Also, the interactions of the ions and molecules in Cα and mid-Cα plane were studied to understand the transport behavior of the CPN. Abbreviations AQP2 Aquaporin-2

CPN Cyclic peptide nanotube

MD Molecular dynamics

POPA 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphatidic acid

POPE 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine

POPG 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol

POPS 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine

Communicated by Ramaswamy H. Sarma  相似文献   

8.
The study of interactions between carbon nanotubes and cellular components, such as membranes and biomolecules, is fundamental for the rational design of nanodevices interfacing with biological systems. In this work, we use molecular dynamics simulations to study the electrophoretic transport of RNA through carbon nanotubes embedded in membranes. Decorated and naked carbon nanotubes are inserted into a dodecane membrane and a dimyristoylphosphatidylcholine lipid bilayer, and the system is subjected to electrostatic potential differences. The transport properties of this artificial pore are determined by the structural modifications of the membrane in the vicinity of the nanotube openings and they are quantified by the nonuniform electrostatic potential maps at the entrance and inside the nanotube. The pore is used to transport electrophoretically a short RNA segment and we find that the speed of translocation exhibits an exponential dependence on the applied potential differences. The RNA is transported while undergoing a repeated stacking and unstacking process, affected by steric interactions with the membrane headgroups and by hydrophobic interaction with the walls of the nanotube. The RNA is structurally reorganized inside the nanotube, with its backbone solvated by water molecules near the axis of the tube and its bases aligned with the nanotube walls. Upon exiting the pore, the RNA interacts with the membrane headgroups and remains attached to the dodecane membrane while it is expelled into the solvent in the case of the lipid bilayer. The results of the simulations detail processes of molecular transport into cellular compartments through manufactured nanopores and they are discussed in the context of applications in biotechnology and nanomedicine.  相似文献   

9.
The influence of the single-walled carbon nanotubes on the phospholipid bilayer has been studied using steered molecular dynamics (SMD) simulations. The impact of different nanotubes on the phospholipid bilayer structure is discussed as well as the speed of indentation. Additionally, a series of simulations with pulling out of the nanotubes from the membrane were performed. The deflection of the membrane in both nanoindenation and extraction processes is also discussed. The self-sealing ability of membrane during this process is examined. Complete degradation of the bilayer was not observed even for the most invasive nanoindentation process studied. The obtained results show that carbon nanotubes can be regarded as potential drug carriers for targeted therapy.  相似文献   

10.
《Biophysical journal》2022,121(22):4271-4279
To design drug-delivery agents for therapeutic and diagnostic applications, understanding the mechanisms by which covalently functionalized carbon nanotubes penetrate and interact with cell membranes is of great importance. Here, we report all-atom molecular dynamics results from polystyrene and carboxyl-terminated polystyrene-modified carbon nanotubes and show their translocation behavior across a model lipid bilayer together with their potential to deliver a molecule of the drug ibuprofen into the cell. Our results indicate that functionalized carbon nanotubes are internalized by the membrane in hundreds of nanoseconds and that drug loading increases the internalization speed further. Both loaded and unloaded tubes cross the closest leaflet of the bilayer by nonendocytic pathways, and for the times studied, the drug molecule remains trapped inside the pristine tube while remaining attached at the end of polystyrene-modified tube. On the other hand, carboxyl-terminated polystyrene functionalization allows the drug to be completely released into the lower leaflet of the bilayer without imposing damage to the membrane. This study shows that polystyrene functionalization is a promising alternative and facilitates drug delivery as a benchmark case.  相似文献   

11.
Successful use of fluorescence sensing in elucidating the biophysical properties of lipid membranes requires knowledge of the distribution and location of an emitting molecule in the bilayer. We report here that 2,6-bis(1H-benzimidazol-2-yl)pyridine (BBP), which is almost non-fluorescent in aqueous solutions, reveals a strong emission enhancement in a hydrophobic environment of a phospholipid bilayer, making it interesting for fluorescence probing of water content in a lipid membrane. Comparing the fluorescence behavior of BBP in a wide variety of solvents with those in phospholipid vesicles, we suggest that the hydrogen bonding interactions between a BBP fluorophore and water molecules play a crucial role in the observed “light switch effect”. Therefore, the loss of water-induced fluorescence quenching inside a membrane are thought to be due to deep penetration of BBP into the hydrophobic, water-free region of a bilayer. Characterized by strong quenching by transition metal ions in solution, BBP also demonstrated significant shielding from the action of the quencher in the presence of phospholipid vesicles. We used the increase in fluorescence intensity, measured upon titration of probe molecules with lipid vesicles, to estimate the partition constant and the Gibbs free energy (ΔG) of transfer of BBP from aqueous buffer into a membrane. Partitioning BBP revealed strongly favorable ΔG, which depends only slightly on the lipid composition of a bilayer, varying in a range from − 6.5 to − 7.0 kcal/mol. To elucidate the binding interactions of the probe with a membrane on the molecular level, a distribution and favorable location of BBP in a POPC bilayer were modeled via atomistic molecular dynamics (MD) simulations using two different approaches: (i) free, diffusion-driven partitioning of the probe molecules into a bilayer and (ii) constrained umbrella sampling of a penetration profile of the dye molecule across a bilayer. Both of these MD approaches agreed with regard to the preferred location of a BBP fluorophore within the interfacial region of a bilayer, located between the hydrocarbon acyl tails and the initial portion of the lipid headgroups. MD simulations also revealed restricted permeability of water molecules into this region of a POPC bilayer, determining the strong fluorescence enhancement observed experimentally for the membrane-partitioned form of BBP.  相似文献   

12.
Abstract

Molecular dynamics (MD) simulations at 37°C have been performed on three phospholipid bilayer systems composed of the lipids DLPE, DOPE, and DOPC. The model used included 24 explicit lipid molecules and explicit waters of solvation in the polar head group regions, together with constant-pressure periodic boundary conditions in three dimensions. Using this model, a MD simulation samples part of an infinite planar lipid bilayer. The lipid dynamics and packing behavior were characterized. Furthermore, using the results of the simulations, a number of diverse properties including bilayer structural parameters, hydrocarbon chain order parameters, dihedral conformations, electron density profile, hydration per lipid, and water distribution along the bilayer normal were calculated. Many of these properties are available for the three lipid systems chosen, making them well suited for evaluating the model and protocols used in these simulations by direct comparisons with experimental data. The calculated MD behavior, chain disorder, and lipid packing parameter, i.e. the ratio of the effective areas of hydrocarbon tails and head group per lipid (at/ah), correctly predict the aggregation preferences of the three lipids observed experimentally at 37°C, namely: a gel bilayer for DLPE, a hexagonal tube for DOPE, and a liquid crystalline bilayer for DOPC. In addition, the model and conditions used in the MD simulations led to good agreement of the calculated properties of the bilayers with available experimental results, demonstrating the reliability of the simulations. The effects of the cis unsaturation in the hydrocarbon chains of DOPE and DOPC, compared to the fully saturated one in DLPE, as well as the effects of the different polar head groups of PC and PE with the same unsaturated chains on the lipid packing and bilayer structure have been investigated. The results of these studies indicate the ability of MD methods to provide molecular-level insights into the structure and dynamics of lipid assemblies.  相似文献   

13.
Molecular simulations were used to examine the adsorption of diatomic molecules (nitrogen and oxygen) and similarly sized gases (argon and methane) in pores with van der Waals diameters similar in size to the gas diameters. Idealised carbon nanotubes were used to model generic pores, to better understand the effect of pore diameter on guest adsorption in the absence of defects, specific adsorption sites, or variations in pore diameter that often complicate studies of gas adsorption in other porous materials. Molecular dynamics simulations of open nanotubes show that argon and methane are able to enter tubes whose diameters are slightly smaller than the gas diameters. Diatomic gases are able to enter tubes that are significantly smaller than their kinetic diameters with the molecular axis aligned parallel to the nanotube. The results indicate that size-selective adsorption of these gases is theoretically possible, although differences in pore diameters of only a few tenths of an Angstrom are required. Grand canonical Monte Carlo simulations of a 3.38 Å nanotube indicate significant uptake by argon and oxygen, but not nitrogen or methane. The adsorption of nitrogen and methane gradually increases as the nanotube diameter approaches 4.07 Å, and all gases fully saturate a 4.54 Å nanotube. Of the nanotubes studied, the largest adsorption enthalpy for any gas corresponds to the 4.54 Å nanotube, with significantly lower enthalpies seen in the 5.07 Å nanotube. These results suggest an ideal pore diameter for each gas based on the gas–pore van der Waals interaction energies. Trends in the ideal diameter correlate with the minimum tube diameter accessible to each gas.  相似文献   

14.
In this work, molecular dynamics (MD) simulations with atomistic details were performed to examine the influence of the cholesterol on the interactions and the partitioning of the hydrophobic drug ibuprofen in a fully hydrated 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) bilayer. Analysis of MD simulations indicated that ibuprofen molecules prefer to be located in the hydrophobic acyl chain region of DMPC/cholesterol bilayers. This distribution decreases the lateral motion of lipid molecules. The presence of ibuprofen molecules in the bilayers with 0 and 25 mol% cholesterol increases the ordering of hydrocarbon tails of lipids whereas for the bilayers with 50 mol% cholesterol, ibuprofen molecules perturb the flexible chains of DMPC lipids which leads to the reduction of the acyl chain order parameter. The potential of the mean force (PMF) method was used to calculate the free energy profile for the transferring of an ibuprofen molecule from the bulk water into the DMPC/cholesterol membranes. The PMF studies indicated that the presence of 50 mol% cholesterol in the bilayers increases the free energy barrier and slows down the permeation of the ibuprofen drug across the DMPC bilayer. This can be due to the condensing and ordering effects of the cholesterol on the bilayer.  相似文献   

15.
BackgroundThe use of functionalized iron oxide nanoparticles of various chemical properties and architectures offers a new promising direction in theranostic applications. The increasing applications of nanoparticles in medicine require that these engineered nanomaterials will contact human cells without damaging essential tissues. Thus, efficient delivery must be achieved, while minimizing cytotoxicity during passage through cell membranes to reach intracellular target compartments.MethodsDifferential Scanning Calorimetry (DSC), molecular modeling, and atomistic Molecular Dynamics (MD) simulations were performed for two magnetite nanoparticles coated with polyvinyl alcohol (PVA) and polyarabic acid (ARA) in order to assess their interactions with model DPPC membranes.ResultsDSC experiments showed that both nanoparticles interact strongly with DPPC lipid head groups, albeit to a different degree, which was further confirmed and quantified by MD simulations. The two systems were simulated, and dynamical and structural properties were monitored. A bimodal diffusion was observed for both nanoparticles, representing the diffusion in the water phase and in the proximity of the lipid bilayer. Nanoparticles did not enter the bilayer, but caused ordering of the head groups and reduced the area per lipid compared to the pure bilayer, with MAG-PVA interacting more strongly and being closer to the lipid bilayer.ConclusionsResults of DSC experiments and MD simulations were in excellent agreement. Our findings demonstrate that the external coating is a key factor that affects nanoparticle-membrane interactions. Magnetite nanoparticles coated with PVA and ARA did not destabilize the model membrane and can be considered promising platforms for biomedical applications.General significanceUnderstanding the physico-chemical interactions of different nanoparticle coatings in contact with model cell membranes is the first step for assessing toxic response and could lead to predictive models for estimating toxicity. DSC in combination with MD simulations is an effective strategy to assess physico-chemical interactions of coated nanoparticles with lipid bilayers.  相似文献   

16.
Due to their nanoscale size and special features, carbon nanotubes could enter the human body via certain way. The growing use of carbon nanotubes in practical applications, hence, prompts a necessity to study the potential health risks of carbon nanotubes. A numerical study is performed in this paper to investigate the size effect of carbon nanotubes on the bulk modulus of a lipid bilayer by using the constant surface tension molecular dynamics simulation procedure. It is found that the size effect is not monotonic with the increase of nanotube length. An explanation is given on the basis of the atomic interaction between the nanotube and bilayer involved in the model system.  相似文献   

17.
We have applied a new equilibration procedure for the atomic level simulation of a hydrated lipid bilayer to hydrated bilayers of dioleyl-phosphatidylcholine (DOPC) and palmitoyl-oleyl phosphatidylcholine (POPC). The procedure consists of alternating molecular dynamics trajectory calculations in a constant surface tension and temperature ensemble with configurational bias Monte Carlo moves to different regions of the configuration space of the bilayer in a constant volume and temperature ensemble. The procedure is applied to bilayers of 128 molecules of POPC with 4628 water molecules, and 128 molecules of DOPC with 4825 water molecules. Progress toward equilibration is almost three times as fast in central processing unit (CPU) time compared with a purely molecular dynamics (MD) simulation. Equilibration is complete, as judged by the lack of energy drift in 200-ps runs of continuous MD. After the equilibrium state was reached, as determined by agreement between the simulation volume per lipid molecule with experiment, continuous MD was run in an ensemble in which the lateral area was restrained to fluctuate about a mean value and a pressure of 1 atm applied normal to the bilayer surface. Three separate continuous MD runs, 200 ps in duration each, separated by 10,000 CBMC steps, were carried out for each system. Properties of the systems were calculated and averaged over the three separate runs. Results of the simulations are presented and compared with experimental data and with other recent simulations of POPC and DOPC. Analysis of the hydration environment in the headgroups supports a mechanism by which unsaturation contributes to reduced transition temperatures. In this view, the relatively horizontal orientation of the unsaturated bond increases the area per lipid, resulting in increased water penetration between the headgroups. As a result the headgroup-headgroup interactions are attenuated and shielded, and this contributes to the lowered transition temperature.  相似文献   

18.
Abstract

Doxorubicin (DOX) has been encapsulated with high efficiency in the water phase of small-sized lipid vesicles. Plasma-induced drug leakage from these vesicles is minimal when hydrogenated phosphatidylcholine is present as the main component. A prolonged circulation time of liposome-encapsulated DOX is observed in animal models when a small fraction of polyethyleneglycol-derivatized phospholipid (PEG) is present in the liposome bilayer. Using these PEG-coated liposomes, we found that the concentration of DOX in tumor implants of the mouse M-109 carcinoma is significantly enhanced by liposome delivery. The antitumor activity of liposome-encapsulated DOX in a lung metastases model of the M-109 carcinoma is superior to that of free DOX. The minimal lethal dose of DOX to tumor-free mice was substantially increased by encapsulation in PEG-coated liposomes, indicating that toxicity is reduced. We also found that the vesicant of DOX after intradermal injection is prevented by liposome encapsulation. These preclinical observations, suggesting that encapsulation of DOX in PEG-coated liposomes may lead to a significant improvement of the therapeutic index of DOX, have led to the initiation of clinical trials in cancer patients.  相似文献   

19.
Liposomes are well known lipid carriers for drug delivery of bioactive molecules encapsulated inside their membrane. Liposomes as skin drug delivery systems were initially promoted primarily for localized effects with minimal systemic delivery. Subsequently, a novel vesicular system, transferosomes was reported for transdermal delivery with efficiency similar to subcutaneous injection. The multiple bilayered organizations of lipids applied in these vesicles structure are somewhat similar to complex nature of stratum corneal intercellular lipids domains. The incorporation of novel agents into these lipid vesicles results in the loss of entrapped markers but it is similar to fluidization of stratum corneum lipids on treatment with a penetration enhancer. This approach generated the utility of penetration enhancers/fluidizing agents in lipids vesicular systems for skin delivery. For the transdermal and topical applications of liposomes, fluidity of bilayer lipid membrane is rate limiting which governs the permeation. This article critically reviews the relevance of using different types of vesicles as a model for skin in permeation enhancement studies. This study has also been designed to encompass all enhancement measurements and analytical tools for characterization of permeability in liposomal vesicular system.  相似文献   

20.
The stability of gemcitabine anticancer drug on the functionalized (8,0) zigzag carbon nanotube as a drug delivery vehicle is studied within the formalism of the density functional theory calculations to understand the role of the pyrrolidine functional group in binding the adsorbed molecule to the drug delivery system as well as improving water solubility. The binding energies, natural bond orbital calculations, and the quantum theory of atoms in molecules results are obtained to provide more evidences related to the intermolecular interaction between gemcitabine drug and the functionalized nanotube. The negative binding energy corresponds to favorable binding of gemcitabine drug to the functionalized nanotube and presence of the active sites available for hydrogen bond formation facilitates better drug binding to the nanotube sidewall. The results presented in this article indicate that pyrrolidine functionalized carbon nanotube seems to be a novel material for drug delivery applications.

Communicated by Heidar Moradnia  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号