首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism responsible for an increased rate of acid production when yogurt starter cultures are grown in milk treated with lactase enzyme was investigated by studying carbohydrate utilization and acid development by a pure culture of Streptococcus thermophilus and a mixed yogurt starter culture consisting of S. thermophilus and Lactobacillus bulgaricus. In milk containing glucose, galactose, and lactose, glucose and lactose (but not free galactose) were fermented. Fermentation of lactose in control milk was accompanied by the release of free galactose, with the result that carbohydrate utilization was less efficient than in treated milk. This phenomenon also occurred when lactose was fermented by S. thermophilus in broth culture. Carbohydrate utilization by the mixed yogurt culture was more rapid when the lactose in milk was partially prehydrolyzed. Our results suggest that the more rapid acid development that took place when a mixed yogurt starter culture was grown in milk containing prehydrolyzed lactose was the result of a more rapid and efficient utilization of carbohydrate by S. thermophilus when free glucose in addition to lactose was available for fermentation. The evidence presented also suggests that uptake and utilization of glucose and lactose by S. thermophilus are different in broth and milk cultures.  相似文献   

2.
The probiotic adjunct Lactobacillus plantarum K25 was inoculated into milk to produce probiotic cheese. The effect of Lb. plantarum K25 on cheese composition, microbiological growth and survival during the manufacturing and ripening period, primary and secondary proteolysis during cheese ripening, and the in vivo cholesterol-lowering ability of the probiotic cheese were investigated. The results showed that the use of adjunct Lb. plantarum K25 in Cheddar cheese did not affect the cheese components including moisture, protein, fat, salt content and the pH value of cheese. During the whole ripening period, the probiotic adjunct maintained its viability, suggesting the effectiveness of Cheddar cheese as a vehicle for delivery of probiotic bacteria. No significant differences were observed in water-soluble nitrogen, 70?% ethanol-soluble nitrogen, 5?% phosphotungstic acid-soluble nitrogen, free amino acids and urea-PAGE patterns between the control and probiotic cheeses. Assessment of the in vivo cholesterol-lowering property of cheese with Lb. plantarum K25 showed that the levels of serum total cholesterol, low-density lipoprotein cholesterol and triglycerides decreased significantly, and the level of serum high-density lipoprotein cholesterol increased in mice fed with the probiotic cheese. The results indicated the potential function as a dietary item of the probiotic cheese with Lb. plantarum K25 to reduce the risk of cardiovascular diseases.  相似文献   

3.
Streptococcus thermophilus is unable to metabolize the galactose moiety of lactose. In this paper, we show that a transformant of S. thermophilus SMQ-301 expressing Streptococcus salivarius galK and galM was able to grow on galactose and expelled at least twofold less galactose into the medium during growth on lactose.  相似文献   

4.
The ability to utilize lactose is requisite for lactic acid bacteria used as starters in the dairy industry. Modern genetic recombination techniques have facilitated the introduction of the lactose-positive phenotype into bacteria such as Pediococcus species, which traditionally have not been used as dairy starters. This study investigated lactose and galactose uptake along with phospho-β-galactosidase activity in pediococci that had been transformed with a Latococcus lactis lactose plasmid. Lactose-positive transformants, Pediococcus acidilactici SAL and Pediococcus pentosaceus SPL-2, demonstrated an ability to accumulate [14C]lactose at a rate greater than the Lactococcus lactis control. Phospho-β-galactosidase activity was also higher in transformants versus Lactococcus lactis. Studies of [3H]galactose uptake suggested that a wild-type galactose transport system and the introduced lactose phosphotransferase system both functioned in galactose uptake by Pediococcus spp. transformants. Significantly lower levels of free galactose were detected in milk fermented with Lactobacillus helveticus LH100 and SAL or SPL-2 than in milk fermented with a LH100 plus Streptococcus thermophilus TA061 control starter blend. Received: 16 September 1997 /  Received revision: 11 November 1997 / Accepted: 21 November 1997  相似文献   

5.
Ethanol production by Kluyveromyces fragilis and Saccharomyces cerevisiae was studied using cottage cheese whey in which 80 to 90% of the lactose present had been prehydrolyzed to glucose and galactose. Complete fermentation of the sugar by K. fragilis required 120 hr at 30°C in lactase-hydrolyzed whey compared to 72 hr in nonhydrolyzed whey. This effect was due to a diauxic fermentation pattern in lactase-hydrolyzed whey with glucose being fermented before galactose. Ethanol yields of about 2% were obtained in both types of whey when K. fragilis was the organism used for fermentation. Saccharomyces cerevisiae produced alcohol from glucose more rapidly than K. fragilis, but galactose was fermented only when S. cerevisiae was pregrown on galactose. Slightly lower alcohol yields were obtained with S. cerevisiae, owing to the presence of some lactose in the whey which was not fermented by this organism. Although prehydrolysis of lactose in whey and whey fractions is advantageous in that microbial species unable to ferment lactose may be utilized, diauxie and galactose utilization problems must be considered.  相似文献   

6.
Biomass and lactic acid production by a Lactobacillus plantarum strain isolated from Serrano cheese, a microorganism traditionally used in foods and recognized as a potent probiotic, was optimized. Optimization procedures were carried out in submerged batch bioreactors using cheese whey as the main carbon source. Sequential experimental Plackett–Burman designs followed by central composite design (CCD) were used to assess the influence of temperature, pH, stirring, aeration rate, and concentrations of lactose, peptone, and yeast extract on biomass and lactic acid production. Results showed that temperature, pH, aeration rate, lactose, and peptone were the most influential variables for biomass formation. Under optimized conditions, the CCD for temperature and aeration rate showed that the model predicted maximal biomass production of 14.30 g l−1 (dw) of L. plantarum. At the central point of the CCD, a biomass of 10.2 g l−1 (dw), with conversion rates of 0.10 g of cell g−1 lactose and 1.08 g lactic acid g−1 lactose (w/w), was obtained. These results provide useful information about the optimal cultivation conditions for growing L. plantarum in batch bioreactors in order to boost biomass to be used as industrial probiotic and to obtain high yields of conversion of lactose to lactic acid.  相似文献   

7.
Lactose-limited fermentations of 49 dairy Streptococcus thermophilus strains revealed four distinct fermentation profiles with respect to galactose consumption after lactose depletion. All the strains excreted galactose into the medium during growth on lactose, except for strain IMDOST40, which also displayed extremely high galactokinase (GalK) activity. Among this strain collection eight galactose-positive phenotypes sensu stricto were found and their fermentation characteristics and Leloir enzyme activities were measured. As the gal promoter seems to play an important role in the galactose phenotype, the galR-galK intergenic region was sequenced for all strains yielding eight different nucleotide sequences (NS1 to NS8). The gal promoter played an important role in the Gal-positive phenotype but did not determine it exclusively. Although GalT and GalE activities were detected for all Gal-positive strains, GalK activity could only be detected for two out of eight Gal-positive strains. This finding suggests that the other six S. thermophilus strains metabolize galactose via an alternative route. For each type of fermentation profile obtained, a representative strain was chosen and four complete Leloir gene clusters were sequenced. It turned out that Gal-positive strains contained more amino acid differences within their gal genes than Gal-negative strains. Finally, the biodiversity regarding lactose-galactose utilization among the different S. thermophilus strains used in this study was shown by RAPD-PCR. Five Gal-positive strains that contain nucleotide sequence NS2 in their galR-galK intergenic region were closely related.  相似文献   

8.
doi: 10.1111/j.1741‐2358.2010.00473.x
Influence of artificial accelerated ageing on the colour stability of paints used for ocular prosthesis iris painting Objectives: To evaluate the colour stability of paints used for ocular prosthesis iris painting submitted for accelerated artificial ageing (AAA). Materials and methods: Forty specimens of acrylic resin for sclera (16 × 2 mm) were made and separated into eight groups (n = 10) according to the type of paint (gouache, GP; oil, OP; acrylic AP; and composite resin for characterisation, CR) and the colours used (blue/brown). After drying (72 h), a new layer of colourless acrylic resin was applied and the initial colour readout was performed (Spectrophotometer PCB 6807). New colour readouts were performed after AAA, and ΔE was calculated. Results: Statistical analysis (two‐way anova –Bonferroni, p < 0.05) demonstrated that the brown colour showed lower ΔE means in comparison with the blue colour, with statistically significant difference for AP only. Blue colour showed no statistically significant difference with regard to the type of paint used. Brown AP showed lower ΔE than the other groups, with significant difference for OP and GP. GP showed greater alteration in ΔE for the brown colour, being statistically similar only to OP. Conclusions: Only the AP group for brown pigment shows clinically acceptable values for colour stability after AAA.  相似文献   

9.
【目的】嗜热链球菌IMAU20246是一株具有良好发酵特性且高产胞外多糖(exopolysaccharides,EPS)的菌株,但其EPS基因簇及合成途径尚不清晰。因此可通过全基因组测序及生物信息学分析菌株基因组序列,探究EPS合成及调控机制。【方法】本实验对嗜热链球菌IMAU20246进行全基因组测序并进行生物信息学分析,解析EPS生物合成相关基因簇及EPS合成途径,同时采用实时荧光定量PCR技术(quantitative real-time PCR,qRT-PCR)对其不同时间点EPS基因簇的表达进行定量分析。【结果】嗜热链球菌IMAU20246基因组中有一个18.1 kb的EPS生物合成基因簇,编码15个与EPS生物合成相关的基因。嗜热链球菌IMAU20246通过转运葡萄糖、甘露糖、果糖、半乳糖、乳糖、海藻糖、纤维二糖及蔗糖合成UDP-葡萄糖、dTDP-葡萄糖、dTDP-鼠李糖、UDP-半乳糖、UDP-呋喃半乳糖、UDP-N-乙酰葡萄糖胺和UDP-N-乙酰半乳糖胺等7种糖核苷酸。qRT-PCR的结果表明,EPS基因簇中的基因在细胞生长阶段均能表达,特别是糖基转移酶基因epsE、epsF、epsH和epsJ在培养6 h时表达量最高,此时EPS产量达到最高。【结论】本研究从基因组解析了嗜热链球菌IMAU20246 EPS基因簇及其合成途径,为菌株的进一步开发提供了理论依据。  相似文献   

10.

Lactose conversion by lactic acid bacteria is of high industrial relevance and consistent starter culture quality is of outmost importance. We observed that Lactococcus lactis using the high-affinity lactose-phosphotransferase system excreted galactose towards the end of the lactose consumption phase. The excreted galactose was re-consumed after lactose depletion. The lacS gene, known to encode a lactose permease with affinity for galactose, a putative galactose–lactose antiporter, was upregulated under the conditions studied. When transferring cells from anaerobic to respiration-permissive conditions, lactose-assimilating strains exhibited a long and non-reproducible lag phase. Through systematic preculture experiments, the presence of galactose in the precultures was correlated to short and reproducible lag phases in respiration-permissive main cultivations. For starter culture production, the presence of galactose during propagation of dairy strains can provide a physiological marker for short culture lag phase in lactose-grown cultures.

  相似文献   

11.
Microbial dynamics during processing and ripening of traditional cheeses such as registered designation of origin Salers cheese, an artisanal cheese produced in France, play an important role in the elaboration of sensory qualities. The aim of the present study was to obtain a picture of the dynamics of the microbial ecosystem of RDO Salers cheese by using culture-independent methods. This included DNA extraction, PCR, and single-strand conformation polymorphism (SSCP) analysis. Bacterial and high-GC% gram-positive bacterial primers were used to amplify V2 or V3 regions of the 16S rRNA gene. SSCP patterns revealed changes during the manufacturing of the cheese. Patterns of the ecosystems of cheeses that were provided by three farmers were also quite different. Cloning and sequencing of the 16S rRNA gene revealed sequences related to lactic acid bacteria (Lactococcus lactis, Streptococcus thermophilus, Enterococcus faecium, Leuconostoc mesenteroides, Leuconostoc pseudomesenteroides, Lactobacillus plantarum, and Lactobacillus pentosus), which were predominant during manufacturing and ripening. Bacteria belonging to the high-GC% gram-positive group (essentially corynebacteria) were found by using specific primers. The present molecular approach can effectively describe the ecosystem of artisanal dairy products.  相似文献   

12.
Black cumin seed oil (BCSO) was tested for its inhibitory effect against some pathogenic bacteria (Staphylococcus aureus ATCC 6538, Escherichia coli ATCC 8739, Listeria monocytogenes Scott A and Salmonella enteritidis PT4) in Domiati cheese during cold storage. Physical, chemical and sensorial changes in cheese during storage were recorded. Pasteurized milk was inoculated before renneting with a mixed culture of bacteria at ca. 4 log CFU mL−1. In vitro and in situ supplementation with BCSO showed antimicrobial impact on the growth of S. aureus, E. coli, L. monocytogenes and S. enteritidis inoculated into media and cheese samples. Supplementing of cheese with BCSO (0.1% or 0.2%, w/w) significantly reduced the counts of the inoculated pathogens by ca. 1.3 log and 1.5 log CFU g−1 after 21 days of storage. In addition, BCSO controlled the development of titratable acidity, limited the changes in ripening indices, flavor components and kept considerable physicochemical and sensorial properties of cheese.  相似文献   

13.
Four different strains ofLactobacillus delbrueckii subsp.bulgaricus (Ss1 and Yop12) andStreptococcus salivarius subsp.thermophilus (Ss2 and Yop9) were isolated from two different yogurt sources in Argentina. In medium containing different carbon sources: lactose, fructose, sucrose or glucose plus fructose, the growth of a mixed culture (Yop12+Ss2) shows stimulation ofS. thermophilus and inhibition ofL. bulgaricus with respect to pure cultures. Both microorganisms in mixed culture grew less well on glucose plus galactose. However, in medium with glucose or galactose, both microorganisms were stimulated.  相似文献   

14.
The production of malolactic starter cultures requires the obtention of suitably large biomass at low-cost. In this work it was possible to obtain a good amount of biomass, at laboratory scale, of two enological strains of Lb. plantarum, by formulating a culture medium based on whey permeate (WP), a by-product of the cheese industry usually disposed as waste, when this was supplemented with yeast extract (Y), salts (S) and Tween 80 (T) (WPYST). Bacteria grown in WPYST medium exhibited good tolerance to stress conditions of synthetic wine (pH 3.5, ethanol 13% vol/vol). However, when WPYST was added with 8% vol/vol ethanol, cultures inoculated in synthetic wine, showed a lower viability and capacity to consume L-malic acid than when they were cultured in WPYST without ethanol. Subsequently, strains grown in WPYST were inoculated in sterile wine samples (final stage of alcoholic fermentation) of the red varietals Merlot and Pinot noir, and incubated at laboratory scale. Cultures from WPYST, inoculated in Pinot noir wine, showed a better performance than bacteria grown in MRS broth, and exhibited a consumption of L-malic acid higher than 90%. However, cultures from WPYST or from MRS broth, inoculated in sterile Merlot wine, showed a lower survival. This study allowed the formulation of a low-cost culture medium, based on a by-product of the food industry, which showed to be adequate for the growth of two enological strains of Lb. plantarum, suggesting their potentiality for application in the elaboration of malolactic starter cultures.  相似文献   

15.

Folate deficiency is a public health concern affecting all age groups worldwide. The available evidence reveals that adding probiotic bacteria to the yoghurt starter cultures during yoghurt production process under fermentation conditions increases the folate content of yoghurt. The present study was conducted to measure two folate derivatives, i.e., 5-methyltetrahydrofolate and 5-formyltetrahydrofolate, in bio-fortified yoghurt samples including (1) yoghurt containing Streptococcus thermophilus and Lactobacillus bulgaricus, (2) probiotic yoghurt containing Lactobacillus acidophilus LA-5 and Bifidobacterium lactis BB-12, (3) probiotic yoghurt containing native strains of Lactobacillus plantarum 15HN, (4) probiotic yoghurt containing native strains of Lactococcus lactis 44Lac, and (5) probiotic yoghurt containing commercial strains of Lactobacillus plantarum LAT BY PL. During storage at 4 °C for 21 days, the highest levels of 5-methyltetrahydrofolate and 5-formyltetrahydrofolate, which were statistically significant, were detected in the yoghurt made using Lact. plantarum 15HN. Moreover, the highest total folate concentration (1487 ± 96.42 μg/L) was specified in the yoghurt containing Lact. plantarum 15HN on the 7th day. It can be conjectured that this product can be suggested as a proper alternative to synthetic folic acid and may not have the side effects of using synthetic folic acid overdoses.

  相似文献   

16.
Conditions required for citrate utilization by Lactobacillus casei ATCC334 were identified. Citrate was utilized by this microorganism in modified Chemically Defined Media (mCDM) as an energy source, solely in the presence of limiting concentrations of galactose. The presence of glucose inhibited citrate utilization by this microorganism even when added in limiting concentrations. Utilization of citrate occurred at pH 6.0 +/- 0.2 and 5.1 +/- 0.2. Together these observations suggest that citrate is an energy source for L. casei in ripening cheese only when the residual levels of carbohydrate post-fermentation are limiting (<2.5 mM), and lactose or glucose are absent. However, citrate utilization by this organism was observed in Cheddar cheese extract (CCE), which naturally contains both lactose and galactose, at the beginning of late-logarithmic phase and regardless of the galactose concentration present in the media.  相似文献   

17.
Aims: To screen the glutamate dehydrogenase (GDH) activity of nonstarter lactic acid bacteria (NSLAB) and to determine the effects of temperature, pH and NaCl values used for cheese ripening on enzyme activity and expression of GDH gene. Methods and Results: A subcellular fractionation protocol and specific enzyme assays were used. The effect of temperature, pH and NaCl on enzyme activity was evaluated. The expression of GDH gene was monitored by real‐time PCR. One selected strain was also used as adjunct starter for cheese making to evaluate the catabolism of free amino acids and the production of volatile organic compounds (VOC) during cheese ripening. The cytoplasm fraction of all strains showed in vitro NADP‐dependent GDH activity. NADP‐GDH activity was markedly strain dependent and varied according to the interactions between temperature, pH and NaCl. Lactobacillus plantarum DPPMA49 showed the highest NADP‐GDH activity under temperature, pH and NaCl values found during cheese ripening. RT‐PCR analysis revealed that GDH expression of Lact. plantarum DPPMA49 was down‐expressed by low temperature (<13°C) and over‐expressed by NaCl (1·87–5·62%). According to NADP‐GDH activity, the highest level of VOC (alcohols, aldehydes, miscellaneous and carboxylic acids) was found in cheeses made with DPPMA49. Conclusions: The results of this study may be considered as an example of the influence of temperature, pH and NaCl on enzyme activity and expression of functional genes, such as GDH, in cheese‐related bacteria. Significance and Impact of the Study: It focuses on the phenotypic and molecular characterization of the NADP‐GDH in lactobacilli under cheese‐ripening conditions. The findings of this study contribute to the knowledge about enzymes involved in the catabolism of amino acids, to be used as an important selection trait for cheese strains.  相似文献   

18.
Galactose-nonfermenting (Gal-) Streptococcus thermophilus TS2 releases galactose into the extracellular medium when grown in medium containing excess lactose. Starved and de-energized Gal- cells, however, could be loaded with galactose to levels approximately equal to the extracellular concentration (0 to 50 mM). When loaded cells were separated from the medium and resuspended in fresh broth containing 5 mM lactose, galactose efflux occurred. De-energized, galactose-loaded cells, resuspended in buffer or medium, accumulated [14C]lactose at a greater rate and to significantly higher intracellular concentrations than unloaded cells. Uptake of lactose by loaded cells was inhibited more than that by unloaded cells in the presence of extracellular galactose, indicating that a galactose gradient was involved in the exchange system. When de-energized, galactose-loaded cells were resuspended in carbohydrate-free medium at pH 6.7, a proton motive force (Δp) of 86 to 90 mV was formed, whereas de-energized, nonloaded cells maintained a Δp of about 56 mV. However, uptake of lactose by loaded cells occurred when the proton motive force was abolished by the addition of an uncoupler or in the presence of a proton-translocating ATPase inhibitor. These results support the hypothesis that galactose efflux in Gal-S. thermophilus is electrogenic and that the exchange reaction (lactose uptake and galactose efflux) probably occurs via an antiporter system.  相似文献   

19.
Continuous mix batch bioreactors were used to study the kinetic parameters of lactic acid fermentation in microaerated-nutrient supplemented, lactose concentrated cheese whey using Lactobacillus helveticus. Four initial lactose concentrations ranging from 50 to 150 g l–1 were first used with no microaeration and no yeast extract added to establish the substrate concentration above which inhibition will occur and then the effects of microaeration and yeast extract on the process kinetic parameters were investigated. The experiments were conducted under controlled pH (5.5) and temperature (42 °C) conditions. The results indicated that higher concentrations of lactose had an inhibitory effect as they increased the lag period and the fermentation time; and decreased the specific growth rate, the maximum cell number, the lactose utilization rate, and the lactic acid production rate. The maximum lactic acid conversion efficiency (75.8%) was achieved with the 75 g l–1 initial lactose concentration. The optimum lactose concentration for lactic acid production was 75 g l–1 although Lactobacillus helveticus appeared to tolerate up to 100 g l–1 lactose concentration. Since the lactic acid productivity is of a minor importance compared to lactic acid concentration when considering the economic feasibility of lactic acid production from cheese whey using Lactobacillus helveticus, a lactose concentration of up to 100 g l–1 is recommended. Using yeast extract and/or microaeration increased the cell number, specific growth rate, cell yield, lactose consumption, lactic acid utilization rate, lactic acid concentration and lactic acid yield; and reduced the lag period, fermentation time and residual lactose. Combined yeast extract and microaeration produced better results than each one alone. From the results it appears that the energy uncoupling of anabolism and catabolism is the major bottleneck of the process. Besides lactic acid production, lactose may also be hydrolysed into glucose and galactose. The -galactosidase activity in the medium is caused by cell lysis during the exponential growth phase. The metabolic activities of Lactobacillus helveticus in the presence of these three sugars need further investigation.  相似文献   

20.
Summary The changes in the number of the starter microorganisms Lb. delbrueckii subsp. bulgaricus and Str. thermophiluswere followed in frozen-stored Kashkaval cheese made from cow’s milk. Kashkaval samples of various aging times were produced industrially, frozen at T=−16 °C and stored at T=−10 to −12 °C for 12 months. It was found that the number of Lb. delbrueckiisubsp. bulgaricus and Str. thermophilusdecreased considerably during frozen storage. The decrease was more substantial for Lb. delbrueckiisubsp. bulgaricus, which was evidence for its greater sensitivity to the impact of low temperatures. The aging time of Kashkaval did not influence the changes in the starter culture during frozen storage but is important for its amount in the product aged after defrosting. There was an increase in the Str. thermophilus: Lb. delbrueckiisubsp. bulgaricus ratio in samples with shorter aging time subjected to frozen storage and aged after defrosting. The changes in the starter culture in frozen stored Kashkaval cheese can be controlled by an appropriate combination of the two factors: aging time and period of frozen storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号