首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
【目的】从污染土壤中分离筛选一株多环芳烃降解菌,并探究其与Pseudomonas aeruginosa B6-2构建的混菌体系对菲-镉复合污染的修复效能,以及微生物代谢特性对不同镉浓度赋存的响应特性,以期为复合污染的生物修复提供优良菌株资源及应用技术参考。【方法】采用富集驯化、筛选纯化方法得到一株多环芳烃降解菌,通过生理生化特征和16S rRNA基因序列分析进行鉴定。利用高效液相色谱法和电感耦合等离子体质谱法评估不同镉浓度赋存下各反应体系对菲和镉的去除效能;通过菌体细胞形态的扫描电镜观测及菌株代谢活性检测,探讨镉胁迫对菲生物降解过程的影响机制。【结果】筛选得到一株具有重金属耐受性和多环芳烃高效降解菌SZ-3,经鉴定为节杆菌属;降解菌协同体系(M)具有良好的菲降解效能和抗镉胁迫优势。镉胁迫浓度为0.5、10 mg/L时,M对菲和镉的去除率分别高于85%、80%;镉胁迫浓度为25、50 mg/L时,2种污染物的去除率均大于65%。扫描电镜分析表明,镉胁迫导致菌体表面粗糙且出现不同程度变形,菌体间黏附性和聚集性提高。反应周期内,邻苯二酚1,2-双加氧酶活性与电子传递体系活性随镉浓度增加而降低,两者变化与菲降解速率变化一致。【结论】Arthrobacter sp.SZ-3是一株PAHs高效降解菌,能与Pseudomonas aeruginosa B6-2协同高效修复菲-镉复合污染,随着初始镉胁迫浓度增加,混菌协同对目标污染物去除的优势显著。  相似文献   

2.
Response surface methodology (RSM) under Box–Behnken design (BBD) was applied to evaluate the effect of the influencing parameters including surfactant concentration, liquid/soil ratio, Humic Acid concentration, and washing time on phenanthrene removal efficiency in soil washing process by using the nonionic surfactant Tween 80 and find an optimal operational conditions to achieve the highest removal efficiency. A polynomial quadratic model was used to correlate phenanthrene removal efficiency and four independent variables (R2 = 0.9719). Based on the obtained results the most influential parameter on phenanthrene removal efficiency was surfactant concentration with an impact value of 69.519%. Liquid/soil ratio was also another factor that significantly influenced on removal efficiency with an impact value of 25.014%. The interaction between surfactant concentration and liquid/soil ratio was also shown to have a positive significant effect on removal efficiency (pvalue = 0.0027). However, the other independent variables Humic Acid concentration and time were not significant in the ranges selected in this study. Based on the optimization results maximum removal efficiency of 70.692 ± 3.647% was achieved under the conditions of surfactant concentration 5000 mg L?1, liquid/soil ratio 30 v/w, HA concentration 9.88 mg L?1, and washing time 2 h, which was in good agreement with predicted value (66.643%).  相似文献   

3.
Soil contamination due to polycyclic aromatic hydrocarbons is often associated with the presence of high levels of potentially toxic metals. Bioremediation is an important option for the clean up of this type of contamination. Changes of chromium fluxes and concentrations during the phenanthrene removal by Penicillium frequentans in soil were investigated. During the bioremediation process, changes in chromium behavior were monitored by Diffusive Gradients in Thin-films (DGT) and by filtration in both sterilized and non-sterilized soils. DGT provided absolute data on fluxes from the solid phase and relative trends of concentrations of the most labile metal species. Filtration provided data on the concentrations of Cr in the solution phase. Together the data provided information about the physical and chemical metal behavior. Results showed that the highest phenanthrene removal was observed in non-sterilized soil (which included the autochthonous microorganisms and P. frequentans inoculum), with a phenanthrene removal of 73 ± 3.2%. However, in all cases microbial activity increased chromium fluxes and chromium soil solution concentration. The bioremediation of soil by P. frequentans increased the lability and mobility of chromium in soil, with potential consequences for plant uptake and for increased movement of metals into the human food chain. Published online December 2004  相似文献   

4.
【目的】研究恶臭假单胞菌B6-2和克雷伯氏菌CW-D3T构建的混合功能菌对多环芳烃的协同修复效能,并探究非离子表面活性剂吐温-80对混菌降解多环芳烃的影响,以期为芳烃化合物的生物修复提供技术参考和理论依据。【方法】通过生长曲线及平板菌落计数法反映混菌生长情况及比例,从而评估混菌降解体系的可行性;通过高效液相色谱法探究各体系以及不同吐温-80浓度下混培体系对多环芳烃的降解效能;最后通过烷烃吸附法测定细胞表面疏水性,以探究吐温-80对混合功能菌降解多环芳烃的影响机制。【结果】等比例混合的2株菌共培养生长状态优于纯培体系,对混合多环芳烃(菲、荧蒽、芘)的降解率分别为33.4%、30.1%、28.6%(7 d),相较于菌CW-D3T,分别提高了1.31倍、1.46倍、1.42倍。混培体系中加入500 mg/L的吐温-80对菲、荧蒽、芘的降解率分别为47.7%、43.2%、38.8%(7 d),相较于对照组各提高了1.55倍、1.38倍、1.31倍,而更高浓度的吐温-80无明显促进作用或轻微抑制。添加吐温-80使菌CW-D3T和混菌的表面疏水性提高,而菌B6-2表面疏水性降低。结合细菌生长量分析...  相似文献   

5.
吴涓  刘俊  陈婕 《微生物学报》2020,60(12):2734-2746
[目的] 针对菲、蒽、荧蒽多环芳烃(PAHs)污染物,利用乳白耙齿菌F17,研究单一和复合PAHs污染物的生物降解规律。[方法] 采用气相色谱-质谱法(GC-MS)分析降解过程中PAHs的浓度,并采用准一级反应动力学模型对降解结果进行拟合。[结果] 对于单一PAHs,第15天时菲、蒽、荧蒽的降解率由高到低依次为菲(97.8%) > 蒽(89.3%) > 荧蒽(81.5%)。菲、蒽和荧蒽的降解过程具有准一级反应动力学特征,菲的生物降解速率最快,其次是蒽,荧蒽的降解速率最慢。与单一PAHs的降解相比,在复合PAHs的降解过程中,乳白耙齿菌F17的生长和锰过氧化物酶的合成均表现出不同的特征。此外,水溶性极可能是复合污染物降解的重要控制因子,三者水溶性为:菲 > 荧蒽 > 蒽。因此,在菲或荧蒽加入条件下,微生物能优先降解这些污染物,抑制了污染物蒽的降解;同时,蒽或菲的存在对荧蒽的降解也有抑制作用;然而外源加入水溶性较差的蒽和荧蒽,则对菲的生物降解无显著影响。[结论] 复合PAHs的生物降解主要表现为相互竞争的特点,通过GC-MS分析了PAHs的生物降解途径。  相似文献   

6.
[目的]土壤中的多环芳烃(polycyclic aromatic hydrocarbons, PAHs)可被蔬菜根系吸收并在可食部分积累进而通过食物链威胁人群健康。接种功能内生细菌能有效减低蔬菜中PAHs的积累,而关于其对蔬菜亚细胞组分中PAHs积累的影响却鲜有报道。[方法]采用体外实验,研究了接种具有菲降解功能的菌株Diaphorobacter sp. Phe15对空心菜茎叶亚细胞组分中菲积累的影响及PAHs代谢相关酶活性的响应。[结果]接种Phe15可以可加速空心菜茎叶亚细胞中菲的降解,显著削减空心菜亚细胞组分中菲的含量,接菌后空心菜亚细胞组分中菲降解率达90%以上。此外,接种功能菌Phe15可以影响空心菜亚细胞组分中PAHs代谢相关酶系的活性,空心菜亚细胞水平POD、PPO、C230活性整体得到提高,且酶系活性与空心菜体内菲积累呈负相关关系。[结论]接种具有菲降解功能的菌株Phe15增加了空心菜亚细胞水平PAHs代谢相关酶系活性,进而降低空心菜体内菲的积累,研究结果为利用功能内生细菌削减蔬菜中多环芳烃污染提供了一定的参考和理论依据。  相似文献   

7.
Rhizoremediation is a potential technique for polycyclic aromatic hydrocarbon (PAH) remediation; however, the catabolic pathways of in situ rhizosphere PAH degraders and the main factors driving PAH rhizoremediation remain unclear. To address these issues, stable-isotope-probing coupled with metagenomics and molecular ecological network analyses were first used to investigate the phenanthrene rhizoremediation by three different prairie grasses in this study. All rhizospheres exhibited a significant increase in phenanthrene removal and markedly modified the diversity of phenanthrene degraders by increasing their populations and interactions with other microbes. Of all the active phenanthrene degraders, Marinobacter and Enterobacteriaceae dominated in the bare and switchgrass rhizosphere respectively; Achromobacter was markedly enriched in ryegrass and tall fescue rhizospheres. Metagenomes of 13C-DNA illustrated several complete pathways of phenanthrene degradation for each rhizosphere, which clearly explained their unique rhizoremediation mechanisms. Additionally, propanoate and inositol phosphate of carbohydrates were identified as the dominant factors that drove PAH rhizoremediation by strengthening the ecological networks of soil microbial communities. This was verified by the results of rhizospheric and non-rhizospheric treatments supplemented with these two substances, further confirming their key roles in PAH removal and in situ PAH rhizoremediation. Our study offers novel insights into the mechanisms of in situ rhizoremediation at PAH-contaminated sites.  相似文献   

8.
Surfactants and inorganic ligands are pointed as efficient to simultaneous removal of heavy metals and hydrophobic organic pollutants from soil. However, the biosurfactants are potentially less toxic to soil organisms than other chemical agents. Thus, in this study the efficiency of combinations of iodide (I) ligand and surfactants produced by different bacterial species in the simultaneous removal of cadmium (Cd2+) and phenanthrene in a Haplustox soil sample was investigated. Four microbial surfactants and the synthetic surfactant Triton X-100 were tested with different concentrations of ligand. Soil samples contaminated with Cd2+ and phenanthrene underwent consecutive washings with a surfactant/ligand solution. The removal of Cd2+ increased with increased ligand concentration, particularly in solutions containing biosurfactants produced by the bacterial strains Bacillus subtilis LBBMA155 (lipopeptide) and Flavobacterium sp. LBBMA168 (mixture of flavolipids) and Triton X-100. Maximum Cd2+ removal efficiency was 99.2% for biosurfactant produced by Arthrobacter oxydans LBBMA 201 (lipopeptide) and 99.2% for biosurfactant produced by Bacillus sp. LBBMA111A (mixed lipopeptide) in the presence of 0.336 mol iodide l−1, while the maximum efficiency of Triton X-100 removal was 65.0%. The biosurfactant solutions removed from 80 to 88.0% of phenanthrene in soil, and the removal was not influenced by the presence of the ligand. Triton X-100 removed from 73 to 88% of the phenanthrene and, differently from the biosurfactants, iodide influenced the removal efficiency. The results indicate that the use of a single washing agent, called surfactant-ligand, affords simultaneous removal of organic contaminants and heavy metals.  相似文献   

9.
Environmental pollution by petroleum hydrocarbons from contaminated groundwater and soils is a serious threat to human health. Microbial fuel cells (MFCs) could be employed in the treatment of these recalcitrant pollutants with concomitant bioelectricity generation. In this study, the use of MFCs in biodegradation of phenanthrene, a model hydrocarbon, was investigated with respect to its biodegradation rate, biodegradation efficiency, and power production using a range of inocula (Shewanella oneidensis MR1 14063, Pseudomonas aeruginosa NCTC 10662, mixed cultures, and combinations thereof). All the inocula showed high potentials for phenanthrene degradation with a minimum degradation efficiency of 97%. The best overall performing inoculum was anaerobically digested sludge supplemented with P. aeruginosa NCTC 10662, having a degradation rate, maximum power density and chemical oxygen demand removal efficiency of 27.30 μM/d, 1.25 mW/m2 and 65.6%, respectively. Adsorption of phenanthrene on the carbon anode was also investigated; it conformed to a Type II adsorption isotherm and could be modelled using a modified Brunauer, Emmett and Teller model with a maximum monolayer capacity of 0.088 mg/cm2. This work highlights the possibility of using MFCs to achieve high degradation rates of phenanthrene through co‐metabolism and could potentially be used as a replacement of permeable reactive barriers for remediation of hydrocarbon‐contaminated groundwater.  相似文献   

10.
The present study describes the phenanthrene-degrading activity of Sphingomonas paucimobilis 20006FA and its ability to promote the bioavailability of phenanthrene. S. paucimobilis 20006FA was isolated from a phenanthrene-contaminated soil microcosm. The strain was able to grow in liquid mineral medium saturated with phenanthrene as the sole carbon source, showing high phenanthrene elimination (52.9% of the supplied phenanthrene within 20 days). The accumulation of 1-hydroxy-2-naphthoic acid and salicylic acid as major phenanthrene metabolites and the capacity of the strain to grow with sodium salicylate as the sole source of carbon and energy indicated that the S. paucimobilis 20006FA possesses a complete phenanthrene degradation pathway. However, under the studied conditions, the strain was able to mineralize only the 10% of the consumed phenanthrene. Investigations on the cell ability to promote bioavailability of phenanthrene showed that the S. paucimobilis strain 20006FA exhibited low cell hydrophobicity (0.13), a pronounced chemotaxis toward phenanthrene, and it was able to reduce the surface tension of mineral liquid medium supplemented with phenanthrene as sole carbon source. Scanning electron micrographs revealed that: (1) in suspension cultures, cells formed flocks and showed small vesicles on the cell surface and (2) cells were also able to adhere to phenanthrene crystals and to produce biofilms. Clearly, the strain seems to exhibit two different mechanisms to enhance phenanthrene bioavailability: biosurfactant production and adhesion to the phenanthrene crystals.  相似文献   

11.
In published literature there are limited studies on the estimation of kinetic parameters of polycyclic aromatic hydrocarbons (PAHs) in soil. In addition, neither the kinetic studies were performed with Gram-positive bacteria nor conducted under non-indigenous condition in order to understand their removal performance. Thus, a mathematical model describing biodegradation of phenanthrene-contaminated soil by Corynebacterium urealyticum, bacterium isolated from municipal sludge, was developed in this study. The model includes three kinetic parameters that were determined using TableCurve 2D software, namely qmax (maximum substrate utilization rate per unit mass of bacteria), X (biomass concentration) and Ks (substrate concentration at one half the maximum substrate utilization rate). These parameters were evaluated and verified in five different initial phenanthrene concentrations. Highest degradation rate was determined to be 79.24 mg kg?1 day?1 at 500 mg kg?1 initial phenanthrene concentrations. This high concentration shows that bacteria perform better in contaminated sand compared to liquid media. High r2 values, ranging from 0.92 to 0.99, were obtained excluding 1000 mg/kg phenanthrene. The kinetic parameters, i.e., qmax and Ks, increased with the phenanthrene concentration and thus suggest that bacteria degrade at a higher degradation rate. This model successfully described the biodegradation profiles observed at different initial phenanthrene concentrations. The established model can be used to simulate the duration of phenanthrene degradation using only the value of the initial PAHs concentration.  相似文献   

12.
Alfalfa (Medicago sativa L.) and other plants bearing an important root system have been shown to be effective in the removal of organic compounds, including polycyclic aromatic hydrocarbons (PAHs). Phenanthrene is one of the main contaminants arising from the petrochemical industry and is included in the USEPA's list of priority toxic pollutants. Hydroponic cultures of alfalfa were employed as a model system to evaluate their capability of removing phenanthrene and to study the plant-pollutant interaction without the interference of a soil matrix. The removal of phenanthrene was followed over a period of 30 days. The half-life of phenanthrene in hydroponics (initial concentration 50 mg L-1) was reduced 2.7 times when plants were present. Growth index, chlorophyll content of leaves, and peroxidase activity of the roots of plants exposed to phenanthrene were lower than the corresponding values of nonexposed plants. Phenanthrene produced an acute negative effect on the total bacterial counts but also caused an increase in degraders/total bacteria ratio. The Ames Salmonella plate incorporation assay was employed to screen for potential genotoxic metabolites, which could be generated by metabolic activation of the parent compound. None of the samples exhibited a positive response. While lack of a positive response to this test is not a definitive evidence of the absence of genotoxic substances, these results suggest that the plant-assisted removal of phenanthrene merits further investigation.  相似文献   

13.
Background and aims

Legumes respond to PAH-contamination in a systemic manner and influence the overall rhizosphere microbial community structure, but the effect on the functional microbial community is unknown. In this study, plant-mediated PAH effects on specific bacterial taxa and the PAH-degraders in the rhizosphere were examined.

Methods

White clover was cultivated using a split-root system, with one side exposed to phenanthrene or pyrene, and the other side uncontaminated. Rhizosphere microbial diversity and activity were assessed with DGGE and qPCR, and changes in the root exudation were analyzed with GC-MS and HPLC.

Results

PAH contamination of one side of the rhizosphere significantly influenced the community structure of Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes, Firmicutes and Verrucomicrobia in the uncontaminated side of the rhizosphere. This indirect PAH-effect also influenced the diversity of bacterial PAH dioxygenase genes present, though the expression levels of these genes was not affected. No significant difference in the root exudation of general metabolites (amino acids, organic acids, sugars and sugar alcohols) and a flavonoid was observed.

Conclusions

In response to PAH-stress, white clover specifically influenced the diversity of the PAH-degrading community in its rhizosphere, but the abundance and activity of these PAH-degraders was not enhanced by the indirect PAH-effect. The plant-mediated response therefore does not appear to be directed towards enhanced removal of PAH for plant protection.

  相似文献   

14.
Aims: The objective of this study was to apply the knowledge‐based approach to the selection of an inoculum to be used in bioaugmentation processes to facilitate phenanthrene degradation in phenanthrene‐ and Cr(VI)‐co‐contaminated soils. Methods and Results: The bacterial community composition of phenanthrene and phenanthrene‐ and Cr(VI)‐co‐contaminated microcosms, determined by denaturing gradient gel electrophoresis analysis, showed that members of the Sphingomonadaceae family were the predominant micro‐organisms. However, the Cr(VI) contamination produced a selective change of predominant Sphingomonas species, and in co‐contaminated soil microcosms, a population closely related to Sphingomonas paucimobilis was naturally selected. The bioaugmentation process was carried out using the phenanthrene‐degrading strain S. paucimobilis 20006FA, isolated and characterized in our laboratory. Although the strain showed a low Cr(VI) resistance (0·250 mmol l?1); in liquid culture, it was capable of reducing chromate and degrading phenanthrene simultaneously. Conclusion: The inoculation of this strain managed to moderate the effect of the presence of Cr(VI), increasing the biological activity and phenanthrene degradation rate in co‐contaminated microcosm. Significance and Impact of the Study: In this study, we have applied a novel approach to the selection of the adequate inoculum to enhance the phenanthrene degradation in phenanthrene‐ and Cr(VI)‐co‐contaminated soils.  相似文献   

15.
Five naphthalene- and salicylate-utilizing Pseudomonas putida strains cultivated for a long time on phenanthrene produced mutants capable of growing on this substrate and 1-hydroxy-2-naphthoate as the sole sources of carbon and energy. The mutants catabolize phenanthrene with the formation of 1-hydroxy-2-naphthoate, 2-hydroxy-1-naphthoate, salicylate, and catechol. The latter products are further metabolized by the meta- and ortho-cleavage pathways. In all five mutants, naphthalene and phenanthrene are utilized with the involvement of plasmid-born genes. The acquired ability of naphthalene-degrading strains to grow on phenanthrene is explained by the fact that the inducible character of the synthesis of naphthalene dioxygenase, the key enzyme of naphthalene and phenanthrene degradation, becomes constitutive.  相似文献   

16.
The purpose of this study was to determine the ability of the nonbasidiomycete, filamentous fungi Penicillium frequentans, isolated and grown on sugar cane bagasse pith, to remove phenanthrene in a solidstate culture. Additionally, the study investigated whether phenanthrene removal could be enhanced by manipulating the carbon-to-nitrogen ratio (C:N) and moisture content over a relatively short-term period (29 days). To evaluate the combined effect of moisture content and the C:N ratio, a combined experimental design, composed with a 22 factorial and both central and axial points, was used. It was shown that the moisture content (p < 0.0003) and the combined effect of moisture content and C:N ratio have a significant (p < 0.002) positive effect on the phenanthrene removal. It was also found that heterotrophic activity was not correlated to phenanthrene removal. An optimum phenanthrene removal efficiency of 74% was realized at a moisture content of 40% and a C:N ratio of 60. This suggests that Penicillium frequentans was able to effectively remove phenanthrene in a solidstate culture and that the combination of nutrient addition and moisture adjustment could enhance the phenanthrene removal activity.  相似文献   

17.
Enhanced bioremediation of phenanthrene-contaminated soil with Mycobacterium pallens was conducted. Kaolinite was used in the tests as a soil matrix and was artificially contaminated with phenanthrene at a concentration of 2 mg phenanthrene per gram dry soil. Mycobacterim pallens at concentration of 108 colony-forming units (CFU) per milliliter was used as a potential microorganism to degrade phenanthrene. Aspects of the study included evaluating efficacy of using Mycobacterium pallens for degrading phenanthrene, electrokinetics for delivering nutrients and microorganisms to contaminated soil, and solar panels for generating power for electrokinetic bioremediation. A novel anode-cathode configuration, in which the anode and cathode are placed in the same compartment, was implemented to control/minimize changes in pH during electrokinetic bioremediation. The nutrients (NO3?), electrical current, temperature, Mycobacterium pallens (CFU), and phenatherene concentration were evaluated. The results showed that solar panels generated sufficient power for electrokinetic bioremediation. The highest current obtained was generated when bacteria and nutrients were added to the soil. This was associated with the highest phenanthrene removal from the soil (50% of the initial concentration). Additionally, we determined that the novel anode-cathode configuration in the electrokinetic bioremediation cell was successful in delivering the bacteria and nutrients to the contaminated soil and in maintaining a relatively neutral pH around the electrode compartments, which improved the remediation. Overall, this study showed that the use of solar power with electrokinetic bioremediation can provide a cost-effective approach to reduce and remove hydrocarbon contaminations in soil.  相似文献   

18.
Shipping operations produce oily wastes that must be managed properly to avoid environmental pollution. The aim of this study was to characterize microorganisms occurring in ship bilge wastes placed in open lagoons and, particularly, to assess their potential to degrade polycyclic aromatic hydrocarbons (PAHs). A first-order kinetic was suitable for describing hydrocarbon biodegradation after 17 days of treatment. The calculated rate constants were 0.0668 and 0.0513 day–1 with a corresponding half-life of 10.3 and 13.5 days for the aliphatic and aromatic hydrocarbon fractions, respectively. At day 17, PAH removal percentages were: acenaphtylene 100, fluorene 95.2, phenanthrene 93.6, anthracene 70.3, and pyrene 71.5. Methyl phenanthrene removals were lower than that of their parent compound (3-methyl phenanthrene 83.6, 2-methyl phenanthrene 80.8, 1-methyl phenanthrene 77.3, 9-methyl phenanthrene 75.1, and 2,7-dimethyl phenanthrene 76.6). Neither pure cultures nor the microbial community from these wastes showed extracellular biosurfactant production suggesting that the addition of an exogenously produced biosurfactant may be important in enhancing hydrocarbon bioavailability and biodegradation. DNA analysis of bilge waste samples revealed a ubiquitous distribution of the nahAc genotype in the dump pools. Although almost all of the isolates grew on naphthalene as sole carbon source, only some of them yielded nahAc amplification under the experimental conditions used. The variety of PAHs in bilge wastes could support bacteria with multiple degradation pathways and a diversity of catabolic genes divergent from the classical nah-like type.  相似文献   

19.
多环芳烃降解菌的筛选、鉴定及降解特性   总被引:7,自引:0,他引:7  
【目的】多环芳烃(PAHs)是一类普遍存在于环境中且具有高毒性的持久性有机污染物,高效降解菌的筛选对利用生物修复技术有效去除环境中的多环芳烃具有重要意义。研究拟从供试菌株中筛选多环芳烃高效降解菌,并分析其降解特性,为多环芳烃污染环境的微生物修复提供资源保障和科学依据。【方法】采用平板法从25株供试菌株中筛选出以菲和芘为唯一碳源和能源的高效降解菌,经16S rRNA基因序列进行初步鉴定,通过单因素实验法分析其在液体培养基中的降解特性。【结果】筛选出的3株多环芳烃高效降解菌SL-1、02173和02830经16S rRNA基因序列分析,02173和02830分别与假单胞菌属中的Pseudomonas alcaliphila和Pseudomonas corrugate同源性最近,SL-1为本课题组发表新类群Rhizobium petrolearium的模式菌株;降解实验表明,菌株SL-1 3 d内对单一多环芳烃菲(100 mg/L)和芘(50 mg/L)的降解率分别达到100%和48%,5 d后能够降解74%的芘;而其3 d内对混合PAHs中菲和芘的降解率分别为75.89%和81.98%。菌株02173和02830 3 d内对混合多环芳烃中萘(200 mg/L)、芴(50 mg/L)、菲(100 mg/L)和芘(50 mg/L)的降解率均分别超过97%。【结论】筛选出的3株PAHs降解菌SL-1、02173和02830不仅可以高效降解低分子量PAHs,还对高分子量PAHs具有很好的降解潜力。研究表明,由于共代谢作用低分子量多环芳烃可促进高分子量多环芳烃的降解,而此时低分子量多环芳烃的降解将受到抑制。  相似文献   

20.
The presence of cytochrome P450 and P450-mediated phenanthrene oxidation in the white rot fungus Phanerochaete chrysosporium under ligninolytic condition was first demonstrated in this study. The carbon monoxide difference spectra indicated induction of P450 (130 pmol mg−1 in the microsomal fraction) by phenanthrene. The microsomal P450 degraded phenanthrene with a NADPH-dependent activity of 0.44 ± 0.02 min−1. One of major detectable metabolites of phenanthrene in the ligninolytic cultures and microsomal fractions was identified as phenanthrene trans-9,10-dihydrodiol. Piperonyl butoxide, a P450 inhibitor which had no effect on manganese peroxidase activity, significantly inhibited phenanthrene degradation and the trans-9,10-dihydrodiol formation in both intact cultures and microsomal fractions. Furthermore, phenanthrene was also efficiently degraded by the extracellular fraction with high manganese peroxidase activity. These results indicate important roles of both manganese peroxidase and cytochrome P450 in phenanthrene metabolism by ligninolytic P. chrysosporium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号