首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study aimed to determine the minimum inhibitory concentration (MIC) of kaempferol and quercetin against planktonic and biofilm forms of the Candida parapsilosis complex. Initially, nine C. parapsilosis sensu stricto, nine C. orthopsilosis and nine C. metapsilosis strains were used. Planktonic susceptibility to kaempferol and quercetin was assessed. Growing and mature biofilms were then exposed to the flavonoids at MIC or 10xMIC, respectively, and theywere also analyzed by confocal laser scanning microscopy. The MIC ranges were 32-128 µg ml?1 for kaempferol and 0.5-16 µg ml?1 for quercetin. Kaempferol and quercetin decreased (P?<?0.05) the metabolic activity and biomass of growing biofilms of the C. parapsilosis complex. As for mature biofilms, the metabolic effects of the flavonoids varied, according to the cryptic species, but kaempferol caused an overall reduction in biofilm biomass. Microscopic analyses showed restructuring of biofilms after flavonoid exposure. These results highlight the potential use of these compounds as sustainable resources for the control of fungal biofilms.  相似文献   

2.
Abstract

P22 phage >105 PFU ml?1 could be used to inhibit Salmonella Typhimurium biofilm formation by 55–80%. Concentrations of EDTA >1.25?mM and concentrations of nisin >1,200?µg ml?1 were also highly effective in reducing S. Typhimurium biofilm formation (≥96% and ≥95% reductions were observed, respectively). A synergistic effect was observed when EDTA and nisin were combined whereas P22 phage in combination with nisin had no synergistic impact on biofilm formation. Triple combination of P22 phage, EDTA and nisin could be also used to inhibit biofilm formation (≥93.2%) at a low phage titer (102 PFU ml?1), and low EDTA (1.25?mM) and nisin (9.375?µg ml?1) concentrations. A reduction of 70% in the mature biofilm was possible when 107 PFU ml?1 of P22 phage, 20?mM of EDTA and 150?μg ml?1 of nisin were used in combination. This study revealed that it could be possible to reduce biofilm formation by S. Typhimurium by the use of P22 phage, EDTA and nisin, either alone or in combination. Although, removal of the mature biofilm was more difficult, the triple combination could be successfully used for mature biofilm of S. Typhimurium.  相似文献   

3.
Abstract

The aim of this study was to investigate the antibacterial activity, antibiotic-associated synergy, and anti-biofilm activity of the ruthenium complex, cis-[RuCl2 (dppb) (bqdi)]2+ (RuNN). RuNN exhibited antimicrobial activity against Gram-positive bacteria with minimum inhibitory concentration (MIC) values ranging from 15.6 to 62.5?µg ml?1 and minimum bactericidal concentration (MBC) values ranging from 62.5 to 125?µg ml?1. A synergistic effect against Staphylococcus spp. was observed when RuNN was combined with ampicillin, and the range of associated fractional inhibitory concentration index (FICI) values was 0.187 to 0.312. A time-kill curve indicated the bactericidal activity of RuNN in the first 1–5?h. In general, RuNN inhibited biofilm formation and disrupted mature biofilms. Furthermore, RuNN altered the cellular morphology of S. aureus biofilms. Further, RuNN did not cause hemolysis of erythrocytes. The results of this study provide evidence that RuNN is a novel therapeutic candidate to treat bacterial infections caused by Staphylococcus biofilms.  相似文献   

4.
Abstract

Acinetobacter baumannii is a biofilm forming multidrug resistant (MDR) pathogen responsible for respiratory tract infections. In this study, aluminium oxide nanoparticles (Al2O3 NPs) were synthesized and characterized by TEM and EDX and shown to be spherical shaped nanoparticles with a diameter < 10?nm. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) for the Al2O3 NPs ranged between 125 and 1,000?µg ml?1. Exposure to NPs caused cellular membrane disruption, indicated by an increase in cellular leakage of the contents. Biofilm inhibition was 11.64 to 70.2%, whereas attachment of bacteria to polystyrene surfaces was reduced to 48.8 to 51.9% in the presence of NPs. Nanoparticles also reduced extracellular polymeric substance production and the biomass of established biofilms. The data revealed the non-toxic nature of Al2O3 NPs up to a concentrations of 120?µg ml?1 in HeLa cell lines. These results demonstrate an effective and safer use of Al2O3 NPs against the MDR A. baumannii by targeting biofilm formation, adhesion and EPS production.  相似文献   

5.
Abstract

Candida albicans biofilms are responsible for oral candidiasis. Fluoxetine is a widely used antidepressant, with certain anti-Candida activities. The antifungal activity of fluoxetine combined with various antifungals against C. albicans biofilms and oral candidiasis was evaluated in this study. The morphological change in the inhibition of fluoxetine on C. albicans biofilms was observed using SEM. The interactions between fluoxetine and antifungals against C. albicans biofilms were evaluated using microdilution checkerboard methods, FICI and the ΔE model. The synergistic combination was tested in vivo on the mice model of oral candidiasis. SEM imaging showed fluoxetine inhibited hyphal growth and biofilm formation. Fluoxetine combined with caspofungin exhibited synergistic effects against C. albicans biofilms. Antagonistic effects occurred when fluoxetine was combined with amphotericin B or terbinafine. Further, the fluoxetine combined with caspofungin significantly reduced the lesion score and CFU of C. albicans on the murine tongue (p?<?0.05), and relieved oral candidiasis of the infected mice.  相似文献   

6.
This study evaluated the effect of the protease inhibitor ritonavir (RIT) on Trichosporon asahii and Trichosporon inkin. Susceptibility to RIT was assessed by the broth microdilution assay and the effect of RIT on protease activity was evaluated using azoalbumin as substrate. RIT was tested for its anti-biofilm properties and RIT-treated biofilms were assessed regarding protease activity, ultrastructure and matrix composition. In addition, antifungal susceptibility, surface hydrophobicity and biofilm formation were evaluated after pre-incubation of planktonic cells with RIT for 15 days. RIT (200 μg ml?1) inhibited Trichosporon growth. RIT (100 μg ml?1) also reduced protease activity of planktonic and biofilm cells, decreased cell adhesion and biofilm formation, and altered the structure of the biofilm and the protein composition of the biofilm matrix. Pre-incubation with RIT (100 μg ml?1) increased the susceptibility to amphotericin B, and reduced surface hydrophobicity and cell adhesion. These results highlight the importance of proteases as promising therapeutic targets and reinforce the antifungal potential of protease inhibitors.  相似文献   

7.
Aim: The purpose of this work was to evaluate the size‐dependent antifungal activity of different silver nanoparticles (SN) colloidal suspensions against Candida albicans and Candida glabrata mature biofilms. Methods and Results: The research presented herein used SN of three different average sizes (5, 10 and 60 nm), which were synthesized by the reduction of silver nitrate through sodium citrate and which were stabilized with ammonia or polyvinylpyrrolidone. Minimal inhibitory concentration (MIC) assays were performed using the microdilution methodology. The antibiofilm activity of SN was determined by total biomass quantification (by crystal violet staining) and colony forming units enumeration. MIC results showed that all SN colloidal suspensions were fungicidal against the tested strains at very low concentrations (0·4–3·3 μg ml?1). With regard to biomass quantification, SN colloidal suspensions were very effective only against C. glabrata biofilms, achieving biomass reductions around 90% at a silver concentration of 108 μg ml?1. In general, all SN suspensions promoted significant log10 reduction of the mean number of cultivable biofilm cells after exposure to silver concentrations at or higher than 108 μg ml?1. Moreover, the results showed that the particle size and the type of stabilizing agent used did not interfere in the antifungal activity of SN against Candida biofilms. Conclusions: This study suggests that SN have antifungal therapeutic potential, but further studies are still required namely regarding formulation and delivery means. Significance and Impact of the Study: SN may contribute to the development of new strategies for the improvement of oral health and quality of life particularly of the complete denture wearers.  相似文献   

8.
Candida biofilms are tolerant to conventional antifungal therapeutics and the host immune system. The transition of yeast cells to hyphae is considered a key step in C. albicans biofilm development, and this transition is inhibited by the quorum-sensing molecule farnesol. We hypothesized that fatty acids mimicking farnesol might influence hyphal and biofilm formation by C. albicans. Among 31 saturated and unsaturated fatty acids, six medium-chain saturated fatty acids, that is, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid and lauric acid, effectively inhibited C. albicans biofilm formation by more than 75% at 2 µg ml−1 with MICs in the range 100–200 µg ml−1. These six fatty acids at 2 µg ml−1 and farnesol at 100 µg ml−1 inhibited hyphal growth and cell aggregation. The addition of fatty acids to C. albicans cultures decreased the productions of farnesol and sterols. Furthermore, down-regulation of several hyphal and biofilm-related genes caused by heptanoic or nonanoic acid closely resembled the changes caused by farnesol. In addition, nonanoic acid, the most effective compound diminished C. albicans virulence in a Caenorhabditis elegans model. Our results suggest that medium-chain fatty acids inhibit more effectively hyphal growth and biofilm formation than farnesol.  相似文献   

9.
Abstract

Staphylococcus epidermidis (SE) is an opportunistic nosocomial pathogen that accounts for recalcitrant device-related infections worldwide. Owing to the growing interest in plants and their secondary metabolites targeting bacterial adhesion, this study was intended to uncover the anti-biofilm potential of Hemidesmus indicus and its major constituent 2-hydroxy-4-methoxybenzaldehyde (HMB) against SE. The minimum biofilm inhibitory concentration (MBIC) of H. indicus root extract and HMB were found to be 500 and 250?µg ml?1, respectively. The results of time-dependent biofilm inhibition and mature biofilm disruption assays confirmed that HMB targets initial cell adhesion. Furthermore, interference by HMB in the expression of adhesin genes (icaA, aap and bhp) and biofilm components was associated with an increased susceptibility of SE to oxidative stress and antibiotics. To conclude, this study reports for the first time HMB as a potential drug against SE biofilms.  相似文献   

10.
11.
ABSTRACT

The dissipation and detoxification of nicosulfuron (NS) by Pseudomonas aeruginosa B9 isolated from a cornfield soil was investigated. The fastest decline of NS occurred at 40 µg ml?1 in liquid media with 0.25% glucose plus 0.05% yeast extract (DT50 = 4 days) with a notable pH reduction (pH ? 5). Bioassay tests showed considerable phytotoxicity of NS for Cress (Lepidium sativum L.) with 50% shoot growth inhibition (SGI) at 40 µg ml?1. The dissipation of NS (40 µg ml?1) by the B9 isolate reduced the SGI significantly (SGI: up to 45 ± 3%) compared to the non-inoculated media (SGI: up to 58 ± 4%). In soils with the B9 isolate, NS dissipation, especially at 0.3 µg g?1, was faster with a more significant SGI reduction (k = 0.08 ± 0.00 day?1; SGI = 2 ± 1%) compared to non-inoculated samples (k = 0.03 ± 0.00 day?1; SGI = 8 ± 1%). NS initially inhibited soil respiration, microbial biomass carbon, and dehydrogenase activity. The effect was however transient, and these parameters recovered within 10 days, especially in the presence of the isolate. Overall, this study proves Pseudomonas aeruginosa B9 as a suitable candidate for bioremediation of NS in contaminated sites.  相似文献   

12.
With the goal of discovering new anti-infective agents active against microbial biofilms, this investigation focused on some natural pyrrolomycins, a family of halogenated pyrrole antibiotics. In this study the anti-staphylococcal biofilm activity of pyrrolomycins C, D, F1, F2a, F2b, F3 and of the synthesized related compounds I, II, III were investigated. The susceptibility of six staphylococcal biofilms was determined by methyltiazotetrazolium staining. Most of the compounds were active at concentrations of 1.5 μg ml?1 with significant inhibition percentages. A few of the compounds were active at the lowest screening concentration of 0.045 μg ml?1. The population log reduction of activity against the two best biofilm forming Staphylococcus aureus strains as determined by viable plate counts is also reported. In order to adequately assess the utility of these compounds, their toxicity against human cells was evaluated. It is concluded that pyrrolomycins and synthetic derivatives are promising compounds for developing novel effective chemical countermeasures against staphylococcal biofilms.  相似文献   

13.
Xiuli Dong 《Biofouling》2014,30(10):1165-1174
This study reports the inhibitory effect of single walled carbon nanotubes (SWCNTs) on biofilm formation from Bacillus anthracis spores. Although the presence of 50 to 100 μg ml?1 of SWCNTs in the suspension increased spore attachment in the wells of 96-well plates, the presence of 200 μg ml?1 of SWCNTs in the germination solution decreased the germination percentage of the attached spores by 93.14%, completely inhibiting subsequent biofilm formation. The inhibition kinetics of 50 μg ml?1 SWCNTs on biofilm formation showed that this concentration inhibited biofilm formation by 81.2% after incubation for 48 h. SWCNT treatment in the earlier stages of biofilm formation was more effective compared to treatment at later stages. Mature biofilms were highly resistant to SWCNT treatment.  相似文献   

14.
Abstract

This study systematically assessed the inactivation mechanism on Staphylococcus aureus biofilms by a N2 atmospheric-pressure plasma jet and the effect on the biofilm regeneration capacity from the bacteria which survived, and their progenies. The total bacterial populations were 7.18?±?0.34 log10 CFU ml?1 in biofilms and these were effectively inactivated (>5.5-log10 CFU ml?1) within 30?min of exposure. Meanwhile, >80% of the S. aureus biofilm cells lost their metabolic capacity. In comparison, ~20% of the plasma-treated bacteria entered a viable but non-culturable state. Moreover, the percentage of membrane-intact bacteria declined to ~30%. Scanning electron microscope images demonstrated cell shrinkage and deformation post-treatment. The total amount of intracellular reactive oxygen species was observed to have significantly increased in membrane-intact bacterial cells with increasing plasma dose. Notably, the N2 plasma treatment could effectively inhibit the biofilm regeneration ability of the bacteria which survived, leading to a long-term phenotypic response and dose-dependent inactivation effect on S. aureus biofilms, in addition to the direct rapid bactericidal effect.  相似文献   

15.
Abstract

This study aimed to compare the formation of polymicrobial biofilms using carious dentin or saliva as inoculum for application in in vitro microbiological studies on caries research. For biofilm growth, combined samples of infected dentin or saliva from three donors were used. The biofilms were grown on glass coverslips, under a regimen of intermittent exposure (6?h day?1) to 1% sucrose for 4?days. Total bacterial loads, as well as specific aciduric bacteria and mutans streptococci loads were quantified and correlated with biofilm acidogenicity and susceptibility to chlorhexidine. The data were evaluated using the Student’s-t, Mann Whitney and Kruskal-Wallis tests. The two biofilms showed similar microbial loads (total bacteria, aciduric bacteria and mutans streptococci) on day 4, and high acidogenicity after 48?h and were susceptible to chlorhexidine at different time intervals. In conclusion, both dentin and saliva can be used as an inoculum in in vitro studies of processes related to biofilm formation.  相似文献   

16.
This study investigated the antimicrobial effects of the ethanolic extract of Brazilian red propolis (BRP) on multispecies biofilms. A seven-day-old subgingival biofilm with 32 species was grown in a Calgary device. Biofilms were treated with BRP (1,600, 800, 400 and 200?μg ml?1) twice a day for 1?min, starting from day 3. Chlorhexidine (0.12%) and dilution-vehicle were used as positive and negative controls, respectively. On day 7, metabolic activity and the microbial composition of the biofilms by DNA-DNA hybridization were determined. The viability data were analyzed by one-way ANOVA followed by Tukey’s post hoc, whereas the microbial composition data were transformed via BOX-COX and analyzed using Dunnett’s post hoc. BRP (1,600?μg ml?1) decreased biofilm metabolic activity by 45%, with no significant difference from chlorhexidine-treated samples. BRP (1,600?μg ml?1) and chlorhexidine significantly reduced levels of 14 bacterial species compared to the vehicle control. Taken together, BRP showed promising antimicrobial properties which may be useful in periodontal disease control.  相似文献   

17.
Aims: To evaluate the anti‐biofilm activity of the commercially available essential oils from two Boswellia species. Methods and Results: The susceptibility of staphylococcal and Candida albicans biofilms was determined by methyltiazotetrazolium (MTT) staining. At concentrations ranging from 217·3 μg ml?1 (25% v/v) to 6·8 μg ml?1 (0·75% v/v), the essential oil of Boswellia papyrifera showed considerable activity against both Staphylococcus epidermidis DSM 3269 and Staphylococcus aureus ATCC 29213 biofilms. The anti‐microbial efficacy of this oil against S. epidermidis RP62A biofilms was also tested using live/dead staining in combination with fluorescence microscopy, and we observed that the essential oil of B. papyrifera showed an evident anti‐biofilm effect and a prevention of adhesion at sub‐MIC concentrations. Boswellia rivae essential oil was very active against preformed C. albicans ATCC 10231 biofilms and inhibited the formation of C. albicans biofilms at a sub‐MIC concentration. Conclusions: Essential oils of Boswellia spp. could effectively inhibit the growth of biofilms of medical relevance. Significance and Impact of the Study: Boswellia spp. essential oils represent an interesting source of anti‐microbial agents in the development of new strategies to prevent and treat biofilms.  相似文献   

18.
Antifungal resistance is a serious problem in clinical infections. Farnesol, which is a potential antifungal agent against biofilms formed by Candida albicans resistant strains (a fluconazole-resistant isolate derived from SC5314 and two clinical Candida resistant isolates), was investigated in this study. The inhibitory effects of farnesol on biofilms were examined by XTT assay. The morphological changes and biofilm thicknesses were analyzed by scanning electron microscopy and confocal laser scanning microscopy, respectively. Additionally, the checkerboard microdilution method was used to investigate the interactions between farnesol and antifungals (fluconazole, amphotericin B, caspofungin, itraconazole, terbinafine and 5-flurocytosine) against biofilms. The results showed decreased SMICs of farnesol and thinner biofilms in the farnesol-treated groups, indicating that farnesol inhibited the development of biofilms formed by the resistant strain. Furthermore, there were synergistic effects between farnesol and fluconazole/5-flurocytosine, while there were antagonistic effects between farnesol and terbinafine/itraconazole, respectively, on the biofilms formed by the resistant strains.  相似文献   

19.
Some dynamic biofilm models for dental caries development are limited as they require multiple experiments and do not allow independent biofilm growth units, making them expensive and time-consuming. This study aimed to develop and test an in vitro dynamic microcosm biofilm model for caries lesion development and for dose-response to chlorhexidine. Microcosm biofilms were grown under two different protocols from saliva on bovine enamel discs for up to 21 days. The study outcomes were as follows: the percentage of enamel surface hardness change, integrated hardness loss, and the CFU counts from the biofilms formed. The measured outcomes, mineral loss and CFU counts showed dose-response effects as a result of the treatment with chlorhexidine. Overall, the findings suggest that biofilm growth for seven days with 0.06 ml min?1 salivary flow under exposure to 5% sucrose (3 × daily, 0.25 ml min?1, 6 min) was suitable as a pre-clinical model for enamel demineralization and antimicrobial studies.  相似文献   

20.
Abstract

This study aimed to evaluate the effect of diclofenac on minimum inhibitory concentrations of antifungals against planktonic cells and biofilms of Candida tropicalis. Susceptibility testing of planktonic cells was evaluated using the broth microdilution assay and checkerboard method. Biofilm formation by C. tropicalis in the presence of diclofenac, alone or in combination with antifungals, was also evaluated, and scanning electron microscope (SEM) and confocal microscope (CLSM) analyses were performed. Diclofenac showed an MIC of 1024?μg?ml?1 against planktonic cells. The MICs of fluconazole and voriconazole against azole-resistant isolates were reduced 8- to 32-fold and 16- to 256-fold, respectively, when in combination with diclofenac. When in combination with fluconazole or voriconazole, diclofenac reduced the antifungal concentration necessary to inhibit C. tropicalis biofilm formation. In conclusion, diclofenac presents synergism with fluconazole and voriconazole against resistant C. tropicalis strains and improves the activity of these azole drugs against biofilm formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号