共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Thorat DA Doddareddy MR Seo SH Hong TJ Cho YS Hahn JS Pae AN 《Bioorganic & medicinal chemistry letters》2011,21(6):1593-1597
Novel 2,4-diaminoquinazoline derivatives originating from a virtual screening approach were designed, synthesized and their biological activities as heat shock protein 90 (Hsp90) inhibitors were evaluated. The prepared compounds exhibited significant anti-proliferative activities against DU-145, HT-29, HCT-116, A375P and MCF-7 cancer cell lines. The selected compounds were tested against Her2, a client protein of Hsp90, and showed significant reduction in Her2 protein expression. Compound 6b was found the most potent, reduced Her2 protein expression levels and induced Hsp70 protein expression levels significantly. 相似文献
3.
AbstractPharmacophore modeling and atom-based three-dimensional quantitative structure–activity relationship (3D-QSAR) have been developed on N-acylglycino- and hippurohydroxamic acid derivatives, which are known potential inhibitors of urease. This is followed by virtual screening and ADMET (absorption, distribution, metabolism, excretion and toxicity) studies on a large library of known drugs in order to get lead molecules as Helicobacter pylori urease inhibitors. A suitable three-featured pharmacophore model comprising one H-bond acceptor and two H-bond donor features (ADD.10) has been found to be the best QSAR model. An external library of compounds (~3000 molecules), pre-filtered using Lipinski’s rule of five, has been further screened using the pharmacophore model ADD.10. By analyzing the fitness of the hits with respect to the pharmacophore model and their binding interaction inside the urease active site, four molecules have been predicted to be extremely good urease inhibitors. Two of these have significant potential and should be taken up for further drug-designing process. 相似文献
4.
Roger Kist 《Journal of biomolecular structure & dynamics》2017,35(16):3555-3568
The mTOR (mammalian or mechanistic Target Of Rapamycin), a complex metabolic pathway that involves multiple steps and regulators, is a major human metabolic pathway responsible for cell growth control in response to multiple factors and that is dysregulated in various types of cancer. The classical inhibition of the mTOR pathway is performed by rapamycin and its analogs (rapalogs). Considering that rapamycin binds to an allosteric site and performs a crucial role in the inhibition of the mTOR complex without causing the deleterious side effects common to ATP-competitive inhibitors, we employ ligand-based drug design strategies, such as virtual screening methodology, computational determination of ADME/Tox properties of selected molecules, and molecular dynamics in order to select molecules with the potential to become non-ATP-competitive inhibitors of the mTOR enzymatic complex. Our findings suggest five novel potential mTOR inhibitors, with similar or better properties than the classic inhibitor complex, rapamycin. 相似文献
5.
Miura T Fukami TA Hasegawa K Ono N Suda A Shindo H Yoon DO Kim SJ Na YJ Aoki Y Shimma N Tsukuda T Shiratori Y 《Bioorganic & medicinal chemistry letters》2011,21(19):5778-5783
Heat shock protein 90 (Hsp90) is a molecular chaperone which regulates maturation and stabilization of its substrate proteins, known as client proteins. Many client proteins of Hsp90 are involved in tumor progression and survival and therefore Hsp90 can be a good target for developing anticancer drugs. With the aim of efficiently identifying a new class of orally available inhibitors of the ATP binding site of this protein, we conducted fragment screening and virtual screening in parallel against Hsp90. This approach quickly identified 2-aminotriazine and 2-aminopyrimidine derivatives as specific ligands to Hsp90 with high ligand efficiency. In silico evaluation of the 3D X-ray Hsp90 complex structures of the identified hits allowed us to promptly design CH5015765, which showed high affinity for Hsp90 and antitumor activity in human cancer xenograft mouse models. 相似文献
6.
Pharmacophore-based virtual screening, subsequent docking, and molecular dynamics (MD) simulations have been done to identify potential inhibitors of maltosyl transferase of Mycobacterium tuberculosis (mtb GlgE). Ligand and structure-based pharmacophore models representing its primary binding site (pbs) and unique secondary binding site 2 (sbs2), respectively, were constructed based on the three dimensional structure of mtb GlgE. These pharmacophore models were further used for screening of ZINC and antituberculosis compounds database (ATD). Virtually screened molecules satisfying Lipinski’s rule of five were then analyzed using docking studies and have identified 23 molecules with better binding affinity than its natural substrate, maltose. Four top scoring ligands from ZINC and ATD that either binds to pbs or sbs2 have been subjected to 10 ns each MD simulations and binding free energy calculations. Results of these studies have confirmed stable protein ligand binding. Results reported in the article are likely to be helpful in antitubercular therapeutic development research. 相似文献
7.
Naga Srinivas Tripuraneni 《Journal of biomolecular structure & dynamics》2016,34(11):2481-2492
Phosphodiesterases 4 enzyme is an attractive target for the design of anti-inflammatory and bronchodilator agents. In the present study, pharmacophore and atom-based 3D-QSAR studies were carried out for pyrazolopyridine and quinoline derivatives using Schrödinger suite 2014-3. A four-point pharmacophore model was developed using 74 molecules having pIC50 ranging from 10.1 to 4.5. The best four feature model consists of one hydrogen bond acceptor, two aromatic rings, and one hydrophobic group. The pharmacophore hypothesis yielded a statistically significant 3D-QSAR model, with a high correlation coefficient (R2?=?.9949), cross validation coefficient (Q2?=?.7291), and Pearson-r (.9107) at six component partial least square factor. The external validation indicated that our QSAR model possessed high predictive power with R2 value of .88. The generated model was further validated by enrichment studies using the decoy test. Molecular docking, free energy calculation, and molecular dynamics (MD) simulation studies have been performed to explore the putative binding modes of these ligands. A 10-ns MD simulation confirmed the docking results of both stability of the 1XMU–ligand complex and the presumed active conformation. Outcomes of the present study provide insight in designing novel molecules with better PDE4 inhibitory activity. 相似文献
8.
Mohsin Y. Lone Anu Manhas Mohd. Athar 《Journal of biomolecular structure & dynamics》2018,36(11):2951-2965
In the present work, multiple pharmacophore-based virtual screening of the SPECS natural product database was carried out to identify novel inhibitors of the validated biological target, InhA. The pharmacophore models were built from the five different groups of the co-crystallized ligands present within the active site. The generated models with the same features from each group were pooled and subjected to the test set validation, receiver–operator characteristic analysis and Güner–Henry studies. A set of five hypotheses with sensitivity > 0.5, specificity > 0.5, area under curve (AUC) > 0.7, and goodness of hit score > 0.7 were retrieved and exploited for the virtual screening. The common hits (87 molecules) obtained from these hypotheses were processed via drug-likeness filters. The filtered molecules (27 molecules) were compared for the binding modes and the top scored molecules (12 molecules) along with the reference (triclosan (TCL), docking score = ?11.65 kcal/mol) were rescored and reprioritized via molecular mechanics-generalized Born surface area approach. Eventually, the stability of reprioritized (10 molecules) docked complexes was scrutinized via molecular dynamics simulations. Moreover, the quantum chemical studies of the dynamically stable compounds (9 molecules) were performed to understand structural features essential for the activity. Overall, the protocol resulted in the recognition of nine lead compounds that can be targeted against InhA. 相似文献
9.
Heat shock protein (Hsp) 90 is an ATP-dependent chaperone and its expression has been reported to be associated with poor prognosis of breast cancer. Cancer stem cells (CSCs) are particular subtypes of cells in cancer which have been demonstrated to be important to tumor initiation, drug resistance and metastasis. In breast cancer, breast CSCs (BCSCs) are identified as CD24-CD44 + cells or cells with high intracellular aldehyde dehydrogenase activity (ALDH+). Although the clinical trials of Hsp90 inhibitors in breast cancer therapy are ongoing, the BCSC targeting effect of them remains unclear. In the present study, we discovered that the expression of Hsp90α was increased in ALDH + human breast cancer cells. Geldanamycin (GA), a Hsp90 inhibitor, could suppress ALDH + breast cancer cells in a dose dependent manner. We are interesting in the insufficiently inhibitory effect of low dose GA treatment. It was correlated with the upregulation of Hsp27 and Hsp70. By co-treatment with HSP inhibitors, quercetin or KNK437 potentiated BCSCs, which determined with ALDH+ population or mammosphere cells, toward GA inhibition, as well as anti-proliferation and anti-migration effects of GA. With siRNA mediated gene silencing, we found that knockdown of Hsp27 could mimic the effect of HSP inhibitors to potentiate the BCSC targeting effect of GA. In conclusion, combination of HSP inhibitors with Hsp90 inhibitors could serve as a potential solution to prevent the drug resistance and avoid the toxicity of high dose of Hsp90 inhibitors in clinical application. Furthermore, Hsp27 may play a role in chemoresistant character of BCSCs. 相似文献
10.
The aim of this study was to identify novel scaffolds and utilise them in designing potent PLK1 inhibitors. Three-dimensional pharmacophore models on the basis of chemical features were developed for PLK1 on the basis of the known inhibitors. The best pharmacophore model, Hypo 1, which has the highest correlation (0.96), the highest cost difference (75.7494), the lowest total cost and RMSD (75.7494, 0.5458), contains two hydrophobics, one ring aromatic and one hydrogen donor. Hypo 1 was validated by the test set, decoy set and the Fischer's randomisation method. Then it was used for chemical database virtual screening. The hit compounds were filtered by Lipinski's rule of five and absorption, distribution, metabolism, elimination and toxicity properties. Finally, 24 compounds with good estimated activity values were used for docking studies. These results will be used to develop new inhibitors of PLK1 as leads. 相似文献
11.
Anu Manhas Dhaval Patel Mohsin Y. Lone Prakash C. Jha 《Journal of cellular biochemistry》2019,120(9):14531-14543
In the present contribution, multicomplex-based pharmacophore studies were carried out on the structural proteome of Plasmodium falciparum 1-deoxy-D -xylulose-5-phosphate reductoisomerase. Among the constructed models, a representative model with complementary features, accountable for the inhibition was used as a primary filter for the screening of database molecules. Auxiliary evaluations of the screened molecules were performed via drug-likeness and molecular docking studies. Subsequently, the stability of the docked inhibitors was envisioned by molecular dynamics simulations, principle component analysis, and molecular mechanics-Poisson-Boltzmann surface area-based free binding energy calculations. The stability assessment of the hits was done by comparing with the reference (beta-substituted fosmidomycin analog, LC5) to prioritize more potent candidates. All the complexes showed stable dynamic behavior while three of them displayed higher binding free energy compared with the reference. The work resulted in the identification of the compounds with diverse scaffolds, which could be used as initial leads for the design of novel PfDXR inhibitors. 相似文献
12.
Ludi Jiang Yusu He Ganggang Luo Yongqiang Yang Gongyu Li 《Molecular simulation》2016,42(15):1223-1232
In order to identify potential natural inhibitors against the microsomal triglyceride transfer protein (MTP), HipHop models were generated using 20 known inhibitors from the Binding Database. Using evaluation indicators, the best hypothesis model, Hypo1, was selected and utilised to screen the Traditional Chinese Medicine Database, which resulted in a hit list of 58 drug-like compounds. A homology model of MTP was built by MODELLER and was minimised by CHARMm force field. It was then validated by Ramachandran plot and Verify-3D so as to obtain a stable structure, which was further used to refine the 58 hits using molecular docking studies. Then, five compounds with higher docking scores which satisfied the docking requirements were discovered. Among them, Ginkgetin and Dauricine were most likely to be candidates that exhibition inhibiting effect on MTP. The screening strategy in this study is relatively new to the discovery of MTP inhibitors in medicinal chemistry. Moreover, it is important to note that, lomitapide, an approved MTP inhibitor, fits well with Hypo1 as well as our homology model of MTP, which confirmed the rationality of our studies. The results indicated the applicability of molecular modeling for the discovery of potential natural MTP inhibitors from traditional Chinese herbs. 相似文献
13.
14.
Xiaohong Zhu Liangliang Zhong Duoqian Dai Meiyuan Hong Rong You 《Molecular simulation》2017,43(7):534-547
AbstractThe p90 ribosomal s6 kinase 2 (RSK2) is a promising target because of its over expression and activation in human cancer cells and tissues. Over the last few years, significant efforts have been made in order to develop RSK2 inhibitors to treat myeloma, prostatic cancer, skin cancer and etc., but with limited success so far. In this paper, pharmacophore modelling, molecular docking study and molecular dynamics (MD) simulation have been performed to explore the novel inhibitors of RSK2. Pharmacophore models were developed by 95 molecules having pIC50 ranging from 4.577 to 9.000. The pharmacophore model includes one hydrogen bond acceptor (A), one hydrogen bond donor (D), one hydrophobic feature (H) and one aromatic ring (R). It is the best pharmacophore hypothesis that has the highest correlation coefficient (R2 = 0.91) and cross validation coefficient (Q2 = 0.71) at 5 component PLS factor. It was evaluated using enrichment analysis and the best model was used for virtual screening. The constraints used in this study were docking score, ADME properties, binding free energy estimates and IFD Score to screen the database. Ultimately, 12 hits were identified as potent and novel RSK2 inhibitors. A 15 ns molecular dynamics (MD) simulation was further employed to validate the reliability of the docking results. 相似文献
15.
Claudin-4 (CLDN4) is a vital member of tight-junction proteins that is often overexpressed in cancer and other malignancies. The three-dimensional structure of human CLDN4 was constructed based on homology modeling approach. A total of 265 242 molecules from the National Cancer Institute (NCI) database has been utilized as a dataset for this study. In the present work, structure-based virtual screening is performed with the NCI database using Glide. By molecular docking, 10 candidate molecules with high scoring functions, which binds to the active site of CLDN4 were identified. Subsequently, molecular dynamics simulations of membrane protein were used for optimization of the top-three lead compounds (NCI110039, NCI344682, and NCI661251) with CLDN4 in a dynamic system. The lead molecule from NCI database NCI11039 (purpurogallin carboxylic acid) was synthesized and cytotoxic properties were evaluated with A549, MCF7 cell lines. Our docking and dynamics simulations predicted that ARG31, ASN142, ASP146, and ARG158 as critically important residues involved in the CLDN4 activity. Finally, three lead candidates from the NCI database were identified as potent CLDN4 inhibitors. Cytotoxicity assays had proved that purpurogallin carboxylic acid had an inhibitory effect towards breast (MCF7) and lung (A549) cancer cell lines. Computational insights and in vitro (cytotoxicity) studies reported in this study are expected to be helpful for the development of novel anticancer agents. 相似文献
16.
《Bioorganic & medicinal chemistry》2016,24(11):2423-2432
We previously reported 4-(3-((6-bromonaphthalen-2-yl)oxy)-2-hydroxypropyl)-N,N-dimethylpiperazine-1-sulfonamide (1) as a novel heat shock protein 90 inhibitor with moderate activity. In our ongoing efforts for the discovery of Hsp90 modulators we undertake structural investigations on 1. Series of the titled compound were designed, synthesized and evaluated. We have found that compounds with a hydroxyl group at C-4 of the aryl ring on the piperazine moiety possess Hsp90 inhibition properties. Compound 6f with improved activity could be further developed and optimized as Hsp90 inhibitor. 相似文献
17.
AbstractKlebsiella pneumoniae (K. pneumoniae) is a Gram-negative opportunistic pathogen commonly associated with hospital-acquired infections that are often resistant even to antibiotics. Heptosyltransferase (HEP) belongs to the family of glycosyltransferase-B (GT-B) and plays an important in the synthesis of lipopolysaccharides (LPS) essential for the formation of bacterial cell membrane. HEP-III participates in the transfer of heptose sugar to the outer surface of bacteria to synthesize LPS. LPS truncation increases the bacterial sensitivity to hydrophobic antibiotics and detergents, making the HEP as a novel drug target. In the present study, we report the 3D homology model of K. pneumoniae HEP-III and its structure validation. Active site was identified based on similarities with known structures using Dali server, and structure-based pharmacophore model was developed for the active site substrate ADP. The generated pharmacophore model was used as a 3D search query for virtual screening of the ASINEX database. The hit compounds were further filtered based on fit value, molecular docking, docking scores, molecular dynamics (MD) simulations of HEP-III complexed with hit molecules, followed by binding free energy calculations using Molecular Mechanics-Poisson–Boltzmann Surface Area (MM-PBSA). The insights obtained in this work provide the rationale for design of novel inhibitors targeting K. pneumoniae HEP-III and the mechanistic aspects of their binding. Communicated by Ramaswamy H. Sarma 相似文献
18.
《Journal of enzyme inhibition and medicinal chemistry》2013,28(6):908-919
AbstractSeveral (thiazol-2-yl)hydrazone derivatives from 2-, 3- and 4-acetylpyridine were synthesized and tested against human monoamine oxidase (hMAO) A and B enzymes. Most of them had an inhibitory effect in the low micromolar/high nanomolar range, being derivatives of 4-acetylpyridine selective hMAO-B inhibitors also at low nanomolar concentrations. The structure–activity relationship, as confirmed by molecular modeling studies, proved that the pyridine ring linked to the hydrazonic nitrogen and the substituted aryl moiety at C4 of the thiazole conferred the inhibitory effects on hMAO enzymes. Successively, the strongest hMAO-B inhibitors were tested toward acetylcholinesterase (AChE) and the most interesting compound showed activity in the low micromolar range. Our results suggest that this scaffold could be further investigated for its potential multi-targeted role in the discovery of new drugs against the neurodegenerative diseases. 相似文献
19.
Krzysztof Sitko Marta Bednarek Jagoda Mantej Magdalena Trzeciak Stefan Tukaj 《Cell stress & chaperones》2021,26(6):1001
Atopic dermatitis (AD) is one of the most common chronic inflammatory dermatoses characterized by persistent itching and recurrent eczematous lesions. While the primary events and key drivers of AD are topics of ongoing debate, cutaneous inflammation due to inappropriate IgE (auto)antibody–related immune reactions is frequently considered. Highly conserved and immunogenic heat shock protein 90 (Hsp90), a key intra- and extracellular chaperone, can activate the immune response driving the generation of circulating anti-Hsp90 autoantibodies that are found to be elevated in several autoimmune disorders. Here, for the first time, we observed that serum levels of Hsp90 and anti-Hsp90 IgE autoantibodies are significantly elevated (p < 0.0001) in AD patients (n = 29) when compared to age- and gender-matched healthy controls (n = 70). We revealed a positive correlation (0.378, p = 0.042) between serum levels of Hsp90 and the severity of AD assessed by Scoring Atopic Dermatitis (SCORAD). In addition, seropositivity for anti-Hsp90 IgE has been found in 48.27% of AD patients and in 2.85% of healthy controls. Although further studies on a larger group of patients are needed to confirm presented data, our results suggest that extracellular Hsp90 and autoantibodies to Hsp90 deserve attention in the study of the mechanisms that promote the development and/or maintenance of atopic dermatitis. 相似文献
20.
Akhil Kumar Sudeep Roy Shubhandra Tripathi 《Journal of biomolecular structure & dynamics》2016,34(2):239-249
Beta-site APP cleaving enzyme1 (BACE1) catalyzes the rate determining step in the generation of Aβ peptide and is widely considered as a potential therapeutic drug target for Alzheimer’s disease (AD). Active site of BACE1 contains catalytic aspartic (Asp) dyad and flap. Asp dyad cleaves the substrate amyloid precursor protein with the help of flap. Currently, there are no marketed drugs available against BACE1 and existing inhibitors are mostly pseudopeptide or synthetic derivatives. There is a need to search for a potent inhibitor with natural scaffold interacting with flap and Asp dyad. This study screens the natural database InterBioScreen, followed by three-dimensional (3D) QSAR pharmacophore modeling, mapping, in silico ADME/T predictions to find the potential BACE1 inhibitors. Further, molecular dynamics of selected inhibitors were performed to observe the dynamic structure of protein after ligand binding. All conformations and the residues of binding region were stable but the flap adopted a closed conformation after binding with the ligand. Bond oligosaccharide interacted with the flap as well as catalytic dyad via hydrogen bond throughout the simulation. This led to stabilize the flap in closed conformation and restricted the entry of substrate. Carbohydrates have been earlier used in the treatment of AD because of their low toxicity, high efficiency, good biocompatibility, and easy permeability through the blood–brain barrier. Our finding will be helpful in identify the potential leads to design novel BACE1 inhibitors for AD therapy. 相似文献