首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Aim

To assess whether vegetation composition and soil chemistry explain the same or different parts of the variation in the soil microbial community (SMC).

Method

The above and below-ground communities and soil chemical properties were studied along a successional gradient from moorland to deciduous woodland. The SMC was assessed using PLFAs and M-TRFLPs. Using variance partitioning, Co-Correspondence Analysis (CoCA) and Canonical Correspondence Analysis (CCA), the variation (total inertia) in the SMC was partitioned into variation which was uniquely explained by either plant composition or soil chemistry, variation explained by both soil chemistry and plant composition, and unexplained variation.

Results

Plant community composition uniquely explained 30, 13, 16 and 20% of the inertia and soil chemistry uniquely explained 5, 18, 9 and 9% of the inertia in the archaeal TRFLPs, bacterial TRFLPs, fungal TRFLPs and all PLFAs, respectively.

Conclusion

For the first time, variance partitioning was used to include data from a CoCA; although the current limits of such an approach are shown, this study illustrates the potential of such analyses and shows that soil chemistry and plant composition are, in substantial amounts, explaining different parts of the variation within the SMC. This marks an important step in furthering our understanding of the relative importance of different drivers of change in the SMC.  相似文献   

2.
Soil salinization is detrimental to plant growth and yield in agroecosystems worldwide. Epichloë endophytes, a class of clavicipitaceous fungi, enhance the resistance of host plants to saline-alkali stress. This study explored the effects of the systemic fungal endophyte Epichloë coenophiala on the root microbial community and growth performance of tall fescue (Lolium arundinaceum) growing under different saline-alkali stress conditions. Structural equation modeling (SEM) was conducted to analyze the direct and indirect effects (mediated by root microbial community diversity and soil properties) of the endophyte on the growth of tall fescue under saline-alkali stress. The endophyte-infected plants produced higher shoot and root biomass compared to endophyte-free plants under saline-alkali stress (200 and 400 mM). Endophyte infection increased the fungal community diversity and altered its composition in the roots, decreasing the relative abundance of Ascomycota and increasing that of Glomeromycota. Furthermore, endophyte infection decreased the bacterial community diversity and the relative abundance of dominant Proteobacteria. SEM showed that endophyte infection increased the shoot and root biomass under saline-alkali stress (200 and 400 mM) by increasing the arbuscular mycorrhizal fungal diversity in the roots, and soil total nitrogen and phosphorus concentrations. Therefore, it is important to examine aboveground microbes as factors influencing plant growth in saline-alkali stress by affecting belowground microbes and soil chemical properties.  相似文献   

3.
4.
The complexity of large computer systems has raised unprecedented challenges for system management. In practice, operators often collect large volume of monitoring data from system components and set up many rules to check data and trigger alerts. However, the alerts from various rules usually have different problem reporting accuracy because their thresholds are often manually set based on operators’ experience and intuition. Meantime, due to system dependencies, a single problem may trigger many alerts at the same time in large systems and the critical question is which alert should be analyzed first in the following problem determination process. In this paper, we propose a novel peer review mechanism to rank the importance of alerts and the top ranked alerts are more likely to be true positives. After comparing a metric value against its threshold to generate alerts, we also compare the value with the equivalent thresholds from many other rules to determine the importance of alerts. Our approach is evaluated with a real test bed system and experimental results are also included to demonstrate its effectiveness.  相似文献   

5.
Most plant-origin fiber sources used in pig production contains a mixture of soluble and insoluble non-starch polysaccharides (NSP). The knowledge about effects of these sources of NSP on the gut microbiota and its fermentation products is still scarce. The aim of this study was to investigate effects of feeding diets with native sources of NSP on the ileal and fecal microbial composition and the dietary impact on the concentration of short-chain fatty acids (SCFA) and lactic acid. The experiment comprised four diets and four periods in a change-over design with seven post valve t-cecum cannulated growing pigs. The four diets were balanced to be similar in NSP content and included one of four fiber sources, two diets were rich in pectins, through inclusion of chicory forage (CFO) and sugar beet pulp, and two were rich in arabinoxylan, through inclusion of wheat bran (WB) and grass meal. The gut microbial composition was assessed with terminal restriction fragment (TRF) length polymorphism and the abundance of Lactobacillus spp., Enterobacteriaceae, BacteroidesPrevotellaPorphyromonas and the β-xylosidase gene, xynB, were assessed with quantitative PCR. The gut microbiota did not cluster based on NSP structure (arabinoxylan or pectin) rather, the effect was to a high degree ingredient specific. In pigs fed diet CFO, three TRFs related to Prevotellaceae together consisted of more than 25% of the fecal microbiota, which is about 3 to 23 times higher (P<0.05) than in pigs fed the other diets. Whereas pigs fed diet WB had about 2 to 22 times higher abundance (P<0.05) of Megasphaera elsdenii in feces and about six times higher abundance (P<0.05) of Lactobacillus reuteri in ileal digesta than pigs fed the other diets. The total amount of digested NSP (r=0.57; P=0.002), xylose (r=0.53; P=0.004) and dietary fiber (r=0.60; P=0.001) in ileal digesta were positively correlated with an increased abundance of BacteroidesPrevotellaPorphyromonas. The effect on SCFA was correlated to specific neutral sugars where xylose increased the ileal butyric acid proportion, whereas arabinose increased the fecal butyric acid proportion. Moreover, chicory pectin increased the acetic acid proportion in both ileal digesta and feces.  相似文献   

6.
  1. Download : Download high-res image (214KB)
  2. Download : Download full-size image
  相似文献   

7.
Mycorrhizal and non-mycorrhizal (NM) maize plants were grown for 4 or 7 weeks in an autoclaved quartz sand-soil mix. Half of the NM plants were supplied with soluble P (NM-HP) while the other half (NM-LP), like the mycorrhizal plants, received poorly soluble Fe and Al phosphate. The mycorrhizal plants were inoculated with Glomus mosseae or G. intraradices. Soil bacteria and those associated with the mycorrhizal inoculum were reintroduced by adding a filtrate of a low P soil and of the inocula. At 4 and 7 weeks, plants were harvested and root samples were taken from the root tip (0-1 cm), the subapical zone (1-2 cm) and the mature root zone at the site of lateral root emergence. DNA was extracted from the roots with adhering soil. At both harvests, the NM-HP plants had higher shoot dry weight than the plants grown on poorly soluble P. Mycorrhizal infection of both fungi ranged between 78% and 93% and had no effect on shoot growth or shoot P content. Eubacterial community compositions were examined by polymerase chain reaction-denaturing gradient gel electrophoresis of 16 S rDNA, digitisation of the band patterns and multivariate analysis. The community composition changed with time and was root zone specific. The differences in bacterial community composition in the rhizosphere between the NM plants and the mycorrhizal plants were greater at 7 than at 4 weeks. The two fungi had similar bacterial communities after 4 weeks, but these differed after 7 weeks. The observed differences are probably due to changes in substrate composition and amount in the rhizosphere.  相似文献   

8.
The International Journal of Life Cycle Assessment - Life cycle assessment (LCA) is a useful method for assessing environmental impacts at large scales. Biodiversity and ecosystem diversity are...  相似文献   

9.
Reviews in Environmental Science and Bio/Technology - Measuring the influence of long-term agricultural tillage practices on soil organic carbon (SOC) is of great importance to farmers and...  相似文献   

10.
Traditional management practices are suggested to maintain species-rich grasslands. In the Valais, an arid region of Switzerland, hay meadows are traditionally irrigated using open water channels. However, in the past decades this irrigation technique has been increasingly replaced by sprinkler irrigation, which is assumed to result in a more homogeneous water distribution than open water channels. This study examined whether the change in irrigation technique affected the small-scale distribution of plants and soil characteristics in hay meadows in the Valais. Three plots consisting of 13 subplots of increasing size (0.1 × 0.1 to 6.4 × 6.4 m) were installed in six traditionally and six sprinkler-irrigated meadows. In all subplots, plant species richness and soil characteristics [moisture, pH, total organic nitrogen, organic matter content (SOM), total and plant available phosphorus] were recorded. The type of irrigation technique did not affect the shape of the plant species–area relationship. In none of the meadows did the species area–curves reach the asymptote within the range of plot sizes examined. Mantel r statistics showed that spatial autocorrelation in the soil characteristics examined was low and their small-scale distributions were not influenced by the irrigation technique except for soil pH and SOM. Our results indicate a pronounced small-scale heterogeneity in the distribution of plant species and soil characteristics for both types of irrigation technique. This can partly be explained by the fact that sprinklers distribute the water less homogeneously than commonly assumed. As applied in the Valais, sprinkler irrigation does not reduce the spatial heterogeneity and hence biodiversity of hay meadows.  相似文献   

11.
Herbivorous reptiles depend on complex gut microbial communities to effectively degrade dietary polysaccharides. The composition of these fermentative communities may vary based on dietary differences. To explore the role of diet in shaping gut microbial communities, we evaluated the fecal samples from two related host species—the algae-consuming marine iguana (Amblyrhynchus cristatus) and land iguanas (LI) (genus Conolophus) that consume terrestrial vegetation. Marine and LI fecal samples were collected from different islands in the Galápagos archipelago. High-throughput 16S rRNA-based pyrosequencing was used to provide a comparative analysis of fecal microbial diversity. At the phylum level, the fecal microbial community in iguanas was predominated by Firmicutes (69.5±7.9%) and Bacteroidetes (6.2±2.8%), as well as unclassified Bacteria (20.6±8.6%), suggesting that a large portion of iguana fecal microbiota is novel and could be involved in currently unknown functions. Host species differed in the abundance of specific bacterial groups. Bacteroides spp., Lachnospiraceae and Clostridiaceae were significantly more abundant in the marine iguanas (MI) (P-value>1E−9). In contrast, Ruminococcaceae were present at >5-fold higher abundance in the LI than MI (P-value>6E−14). Archaea were only detected in the LI. The number of operational taxonomic units (OTUs) in the LI (356–896 OTUs) was >2-fold higher than in the MI (112–567 OTUs), and this increase in OTU diversity could be related to the complexity of the resident bacterial population and their gene repertoire required to breakdown the recalcitrant polysaccharides prevalent in terrestrial plants. Our findings suggest that dietary differences contribute to gut microbial community differentiation in herbivorous lizards. Most importantly, this study provides a better understanding of the microbial diversity in the iguana gut; therefore facilitating future efforts to discover novel bacterial-associated enzymes that can effectively breakdown a wide variety of complex polysaccharides.  相似文献   

12.
13.
14.
The processes of cell death were studied in vitro in populations of oocytes isolated from prepubertal rats. In order to identify apoptosis, the externalized phosphatidylserine was recognized with Annexin-V coupled to FITC and the fragmentation of DNA was demonstrated by means of electrophoresis. Oocytes were tested for autophagy by means of the incorporation of monodansylcadaverine and monitoring Lc3-I/Lc3-II by western blot. The expression of mRNA marker genes of autophagy and of apoptosis was studied by means of RT–PCR in pure populations of oocytes. Some oocytes expressed at least one of the following markers: caspase-3, lamp1 and Lc3. Some oocytes were positive to Annexin-V or to monodansylcadaverine. However, most of them were simultaneously positive to both markers. The relative frequency of oocytes simultaneously positive to markers of apoptosis and autophagy did not change in the different ages studied. The transformation of Lc3-I in Lc3-II was present in all populations of oocytes studied. The mRNAs for caspase-3, lamp1 and Lc3 were present in all populations of oocytes analyzed. Our results demonstrate that oocytes of rats from new born to prepubertal age are eliminated by means of three different cell death processes: apoptosis, autophagy and a mixed event in which both routes to cell death participate in the same cell.  相似文献   

15.
The bacterial diversity was studied in sediment layers of Posol’skaya Shoal station (Southern Baikal) belonging to different periods. A set of primers specific to individual bacterial groups was used to analyze the 16S rRNA gene fragments. The bacterial diversity in the Holocene deposits was found to be higher than in the Pleistocene ones. In the upper sediments, a positive PCR reaction with bacterial primers and with specific cyanobacterial and archaebacterial primers was detected. The following phylogenetic groups were revealed in the microbial community of the surface horizon: green nonsulfur bacteria, δ-proteobacteria, β-proteobacteria (Nitrospirae), α-proteobacteria, acidobacteria, crenarchaeota, euryarchaeota, and groups of uncultured bacteria. From the DNA of the Pleistocene deposits, the PCR product was obtained only with bacterial primers. The representatives of the genus Pseudomonas were most closely related to the sequences obtained (95–97% homology).  相似文献   

16.
Seabird guano enters coastal waters providing bioavailable substrates for microbial plankton, but their role in marine ecosystem functioning remains poorly understood. Two concentrations of the water soluble fraction (WSF) of gull guano were added to different natural microbial communities collected in surface waters from the Ría de Vigo (NW Spain) in spring, summer, and winter. Samples were incubated with or without antibiotics (to block bacterial activity) to test whether gull guano stimulated phytoplankton and bacterial growth, caused changes in taxonomic composition, and altered phytoplankton–bacteria interactions. Alteromonadales, Sphingobacteriales, Verrucomicrobia and diatoms were generally stimulated by guano. Chlorophyll a (Chl a) concentration and bacterial abundance significantly increased after additions independently of the initial ambient nutrient concentrations. Our study demonstrates, for the first time, that the addition of guano altered the phytoplankton–bacteria interaction index from neutral (i.e. phytoplankton growth was not affected by bacterial activity) to positive (i.e. phytoplankton growth was stimulated by bacterial activity) in the low-nutrient environment occurring in spring. In contrast, when environmental nutrient concentrations were high, the interaction index changed from positive to neutral after guano additions, suggesting the presence of some secondary metabolite in the guano that is needed for phytoplankton growth, which would otherwise be supplied by bacteria.  相似文献   

17.
The dynamics of roots and soil organic carbon (SOC) in deeper soil layers are amongst the least well understood components of the global C cycle, but essential if soil C is to be managed effectively. This study utilized a unique set of land-use pairings of harvested tallgrass prairie grasslands (C4) and annual wheat croplands (C3) that were under continuous management for 75 years to investigate and compare the storage, turnover and allocation of SOC in the two systems to 1 m depth. Cropland soils contained 25 % less SOC than grassland soils (115  and 153 Mg C ha?1, respectively) to 1 m depth, and had lower SOC contents in all particle size fractions (2000–250, 250–53, 53–2 and <2 μm), which nominally correspond to SOC pools with different stability. Soil bulk δ13C values also indicated the significant turnover of grassland-derived SOC up to 80 cm depth in cropland soils in all fractions, including deeper (>40 cm) layers and mineral-associated (<53 μm) SOC. Grassland soils had significantly more visible root biomass C than cropland soils (3.2 and 0.6 Mg ha?1, respectively) and microbial biomass C (3.7 and 1.3 Mg ha?1, respectively) up to 1 m depth. The outcomes of this study demonstrated that: (i) SOC pools that are perceived to be stable, i.e. subsoil and mineral-associated SOC, are affected by land-use change; and, (ii) managed perennial grasslands contained larger SOC stocks and exhibited much larger C allocations to root and microbial pools than annual croplands throughout the soil profile.  相似文献   

18.
In this study, Bt transgenic rice (KMD rice) residue decomposition and the associated microbial community in a rapeseed–rice cropping system were assessed in comparison with its parental non-Bt rice variety (XiuShui 11). Decomposition was measured as mass loss by straw and root decay in litterbags over two consecutive years. Bacterial and fungal community compositions associated with residue decomposition were detected by terminal restriction fragment length polymorphism (T-RFLP) and the additive main effects multiplicative interaction (AMMI) analysis model. Decomposition dynamics and bacterial and fungal communities associated with decomposition were strongly affected by surface and incorporated placements, and by temporal factors. However, no significant differences were observed between Bt and non-Bt rice variety in either decomposition dynamics or in the soil microbial communities associated with residue decay. Our field study indicated that the insertion of the cry1Ab gene into Xiushui 11 rice genome had no significant effect on the residual decay and decomposition-associated microbial community compositions in the rapeseed-rice cropping system.  相似文献   

19.
Abstract

Candida albicans biofilms are responsible for oral candidiasis. Fluoxetine is a widely used antidepressant, with certain anti-Candida activities. The antifungal activity of fluoxetine combined with various antifungals against C. albicans biofilms and oral candidiasis was evaluated in this study. The morphological change in the inhibition of fluoxetine on C. albicans biofilms was observed using SEM. The interactions between fluoxetine and antifungals against C. albicans biofilms were evaluated using microdilution checkerboard methods, FICI and the ΔE model. The synergistic combination was tested in vivo on the mice model of oral candidiasis. SEM imaging showed fluoxetine inhibited hyphal growth and biofilm formation. Fluoxetine combined with caspofungin exhibited synergistic effects against C. albicans biofilms. Antagonistic effects occurred when fluoxetine was combined with amphotericin B or terbinafine. Further, the fluoxetine combined with caspofungin significantly reduced the lesion score and CFU of C. albicans on the murine tongue (p?<?0.05), and relieved oral candidiasis of the infected mice.  相似文献   

20.
The biomass and population dynamics of crustacean zooplankton were determined in oligotrophic Lake Toya in Japan over 5 years from May 1992 to May 1997. In 1992 and 1993, zooplankton biomass was up to 4.3 g dry weight m?2, whereas it decreased to <1 g dry weight m?2 after 1994. This extreme change in biomass was associated with the succession of dominant species from larger ones, such as Daphnia longispina and Cyclops strenuus (s. lat.), to smaller ones, such as Eubosmina tanakai and Bosmina longirostris. Consequently, this biomass change seemed to cause an increase in the chlorophyll a concentration in the euphotic zone and a decline in lake transparency. Because the birth rates of the dominant species were somewhat higher after 1994, the decline in the populations of larger crustaceans seemed to depend more on their rate of death rather than rate of birth, and this higher death rate is not considered to be attributed to food shortage. Although these results strongly suggest a top-down cascading effect of fish predation upon crustaceans, annual catches of two commercially important planktivorous fish species have also decreased in the lake, coincidentally with decreases in zooplankton biomass. This may be attributable to fishing regulations that prohibit catching smaller fish, implying that such smaller fish affect zooplankton and phytoplankton, as well as lake transparency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号