共查询到20条相似文献,搜索用时 0 毫秒
1.
Non-toluene-associated respiration (NTAR) within a Pseudomonas putida 54G biofilm growing on toluene as sole external carbon source was evaluated using oxygen microelectrodes in a flat-plate vapor-phase biological reactor. Two fluorescent probes, 2,4-diamidino-2-phenylindole and 5-cyano-2,3-ditolyltetrazolium chloride, were used to evaluate the number of total and respiring cells respectively within the biofilm. Biofilm samples were also analyzed for viable and toluene-culturable cells by spread-plating on non-selective and selective media respectively. Fractions of viable stressed, respiring and non-respiring cells within the biofilm were evaluated. The NTAR rate was positively correlated with the fraction of viable stressed and non-respiring cells within the biofilm, which suggested the capability of some cells to grow at the expense of leakage and lysis products coming from injured and dead cells. This effect was more pronounced at higher toluene concentration. Results suggest that NTAR should be incorporated into mathematical models of biofilm reactors degrading volatile organic carbon compounds. Received: 4 January 1997 / Received revision: 20 March 1997 / Accepted: 27 March 1997 相似文献
2.
Burkholderia cepacia PR123(TOM23C), expressing constitutively the TCE-degrading enzyme toluene ortho-monooxygenase (Tom), was immobilized on SIRANtrade mark glass beads in a biofilter for the degradation and mineralization of gas-phase trichloroethylene (TCE). To interpret the experimental results, a mathematical model has been developed which includes axial dispersion, convection, film mass-transfer, and biodegradation coupled with deactivation of the TCE-degrading enzyme. Parameters used for numerical simulation were determined from either independent experiments or values reported in the literature. The model was compared with the experimental data, and there was good agreement between the predicted and measured TCE breakthrough curves. The simulations indicated that TCE degradation in the biofilter was not limited by mass transfer of TCE or oxygen from the gas phase to the liquid/biofilm phase (biodegradation limits), and predicts that improving the specific TCE degradation rates of bacteria will not significantly enhance long-term biofilter performance. The most important factors for prolonging the performance of biofilter are increasing the amount of active biomass and the transformation capacity (enhancing resistance to TCE metabolism). Copyright 1998 John Wiley & Sons, Inc. 相似文献
3.
A two-phase aqueous/organic partitioning bioreactor scheme was used to degrade mixtures of toluene and benzene, and toluene
and p-xylene, using simultaneous and sequential feeding strategies. The aqueous phase of the partitioning bioreactor contained
Pseudomonas sp. ATCC 55595, an organism able to degrade benzene, toluene and p-xylene simultaneously. An industrial grade of oleyl alcohol served as the organic phase. In each experiment, the organic
phase of the bioreactor was loaded with 10.15 g toluene, and either 2.0 g benzene or 2.1 g p-xylene. The resulting aqueous phase concentrations were 50 mg/l, 25 mg/l and 8 mg/l toluene, benzene and p-xylene respectively. The simultaneous fermentation of benzene and toluene consumed these compounds at volumetric rates of
0.024 g l−1 h−1 and 0.067 g l−1 h−1, respectively. The simultaneous fermentation of toluene and p-xylene consumed these xenobiotics at volumetric rates of 0.066 g l−1 h−1 and 0.018 g l−1 h−1, respectively. A sequential feeding strategy was employed in which toluene was added initially, but the benzene or p-xylene aliquot was added only after the cells had consumed half of the initial toluene concentration. This strategy was shown
to improve overall degradation rates, and to reduce the stress on the microorganisms. In the sequential fermentation of benzene
and toluene, the volumetric degradation rates were 0.056 g l−1 h−1 and 0.079 g l−1 h−1, respectively. In the toluene/p-xylene sequential fermentation, the initial toluene load was consumed before the p-xylene aliquot was consumed. After 12 h in which no p-xylene degradation was observed, a 4.0-g toluene aliquot was added, and p-xylene degradation resumed. Excluding that 12-h period, the microbes consumed toluene and p-xylene at volumetric rates of 0.074 g l−1 h−1 and 0.025 g l−1 h−1, respectively. Oxygen limitation occurred in all fermentations during the rapid growth phase.
Received: 16 November 1998 / Received revision: 29 March 1999 / Accepted: 9 April 1999 相似文献
4.
Subsurface bacteria commonly exist in a starvation state with only periodic exposure to utilizable sources of carbon and energy. In this study, the effect of carbon starvation on aerobic toluene degradation was quantitatively evaluated with a selection of bacteria representing all the known toluene oxygenase enzyme pathways. For all the investigated strains, the rate of toluene biodegradation decreased exponentially with starvation time. First-order deactivation rate constants for TMO-expressing bacteria were approximately an order of magnitude greater than those for other oxygenase-expressing bacteria. When growth conditions (the type of growth substrate and the type and concentration of toluene oxygenase inducer) were varied in the cultures prior to the deactivation experiments, the rate of deactivation was not significantly affected, suggesting that the rate of deactivation is independent of previous substrate/inducer conditions. Because TMO-expressing bacteria are known to efficiently detoxify TCE in subsurface environments, these findings have significant implications for in situ TCE bioremediation, specifically for environments experiencing variable growth-substrate exposure conditions. 相似文献
5.
Zandvoort MH Osuna MB Geerts R Lettinga G Lens PN 《Journal of industrial microbiology & biotechnology》2002,29(5):268-274
The effect of omitting nickel from the influent on methanol conversion in an Upflow Anaerobic Sludge Bed (UASB) reactor was
investigated. The UASB reactor (30°C, pH 7) was operated for 261 days at a 12-h hydraulic retention time (HRT) and at organic
loading rates (OLRs) ranging from 2.6 to 7.8 g COD l reactor−1 day−1. The nickel content of the sludge decreased by 66% during the 261-day reactor run because of washout and doubling of the
sludge bed volume. Nickel deprivation initially had a strong impact on the methanogenic activity of the sludge with methanol;
e.g., after 89 days of operation, this activity was doubled by adding 2 μM nickel. Upon prolonged UASB reactor operation,
methanol and VFA effluent concentrations decreased whereas the sludge lost its response to nickel addition in activity tests.
This suggests that a less nickel-dependent methanol-converting sludge had developed in the UASB reactor.
Received 09 April 2002/ Accepted in revised form 13 July 2002 相似文献
6.
Excess biomass accumulation and activity loss in vapor-phase bioreactors (VPBs) can lead to unreliable long-term operation. In this study, temporal and spatial variations in biomass accumulation, distribution and activity in VPBs treating toluene-contaminated air were monitored over a 96-day period. Two laboratory-scale bioreactors were subjected to a toluene loading rate of 45.8 g/m(3)-h with one VPB operating in a unidirectional (UD) mode and a second identical VPB operating in a directionally switching (DS) mode. In the UD bioreactor, the contaminated air stream was continuously fed to the bottom of the reactor, while, in the DS bioreactor, the direction of the contaminated gas flow was reversed every three days. Overall, the DS system performed better with respect to biomass distribution and microbial activity across the bioreactor, resulting in more stable bioreactor performance. In contrast, most of the biomass accumulation and activity was confined to the front half of the UD bioreactor column which caused high pressure drops, rapid activity loss and eventually toluene breakthrough. A carbon balance reveals that excess biomass accumulated continuously in both bioreactors, and biomass yield coefficients were very similar (0.59 g dry biomass/g toluene for the UD and 0.63 g dry biomass/g toluene for the DS). The viable biomass population remained relatively constant in both bioreactors over the operational period, while the inactive biomass fraction steadily increased over the same time frame. Biodegradation activity determined by the dehydrogenase enzyme activity assay was found to be a function of biomass accumulation and reflected pollutant removal profiles along the columns. In addition, biomass activity correlated well with the toluene-degrading fraction of the total bacterial population. 相似文献
7.
Laws and regulations for the reduction of solvent emissions tend to force increasingly lower limits on gaseous emissions. Biological waste-gas treatment is an ecological and rather cheap method for solvent reduction, which is often used for waste-gas streams containing two or more components. The microbiological degradation of toluene and heptane as well as of several mixtures of these substances were investigated in a laboratory plant trickling-bed reactor. It was found that toluene was degraded at up to three times the rate for the heptane. Heptane elimination in the mixtures was low and the toluene elimination rate at low organic loads approached 100%. *** DIRECT SUPPORT *** AG903066 00010 相似文献
8.
Effect of long-term cobalt deprivation on methanol degradation in a methanogenic granular sludge bioreactor 总被引:1,自引:0,他引:1
The effect of the trace metal cobalt on the conversion of methanol in an upflow anaerobic sludge bed (UASB) reactor was investigated by studying the effect of cobalt deprivation from the influent on the reactor efficiency and the sludge characteristics. A UASB reactor (30 degrees C; pH 7) was operated for 261 days at a 12-h hydraulic retention time (HRT). The loading rate was increased stepwise from 2.6 g chemical oxygen demand (COD) x L reactor(-1) x d(-1) to 7.8 g COD x L reactor(-1) x d(-1). Cobalt deprivation had a strong impact on the methanogenic activity of the sludge. In batch tests, the methanogenic activity of the sludge with methanol as the substrate increased 5.3 (day 28) and 2.1 (day 257) times by addition of 840 nM of cobalt. The sludge had an apparent K(m) for cobalt of 948 nM after 28 days of operation and 442 nM at the end of the run. Cobalt deprivation during 54 days of operation led to a methanol conversion efficiency of only 55%. Continuous addition of cobalt (330 nM) for 33 days improved the methanol removal efficiency to 100%. In this period of cobalt dosing, the cobalt concentration in the sludge increased 2.7 times up to 32 microg x g TSS(-1). Upon omission of the cobalt addition, cobalt washed-out at a stable rate of 0.1 microg x g VSS(-1) x d(-1). At the end of the run, the cobalt concentration of the sludge was similar to that of the seed sludge. 相似文献
9.
10.
A 20-l packed-bed reactor filled with foamed glass beads was tested for the treatment of acetonitrile HPLC wastes. Aeration was provided by recirculating a portion of the reactor liquid phase through an aeration tank, where the dissolved oxygen concentration was kept at 6 mg/l. At a feeding rate of 0.77 g acetonitrile l–1 reactor day–1, 99% of the acetonitrile was removed; and 86% of the nitrogen present in acetonitrile was released as NH3, confirming that acetonitrile volatilization was not significant. Increasing the acetonitrile loading resulted in lower removal efficiencies, but a maximum removal capacity of 1.0 g acetonitrile l–1 reactor day–1 was achieved at a feeding rate of 1.6 g acetonitrile l–1 reactor day–1. The removal capacity of the system was well correlated with the oxygenation capacity, showing that acetonitrile removal was likely to be limited by oxygen supply. Microbial characterization of the biofilm resulted in the isolation of a Comamonas sp. able to mineralize acetonitrile as sole carbon, nitrogen and energy source. This organism was closely related to C. testosteroni (91.2%) and might represent a new species in the Comamonas genus. This study confirms the potential of packed-bed reactors for the treatment of a concentrated mixture of volatile pollutants. 相似文献
11.
TCE degradation in a methanotrophic attached-film bioreactor 总被引:1,自引:0,他引:1
Fennell DE Nelson YM Underhill SE White TE Jewell WJ 《Biotechnology and bioengineering》1993,42(7):859-872
Trichloroethene was degraded in expanded-bed bioreactors operated with mixed-culture methanotrophic attached films. Biomass concentrations of 8 to 75 g volatile solids (VS) per liter static bed (L(sb)) were observed. Batch TCE degradation rates at 35 degrees C followed the Michaelis-Menten model, and a maximum TCE degradation rate (q(max)) of 10.6 mg TCE/gVS . day and a half velocity coefficient (K(S)) of 2.8 mg TCE/L were predicted. Continuous-flow kinetics also followed the Michaelis-Menten model, but other parameters may be limiting, such as dissolved copper and dissolved methane-q(max) and K(S) were 2.9 mg TCE/gVS . day and 1.5 mg TCE/L, respectively, at low copper concentrations (0.003 to 0.006 mg Cu/L). The maximum rates decreased substantially with small increases in dissolved copper. Methane consumption during continuous-flow operation varied from 23 to 1200 g CH(4)/g TCE degraded. Increasing the influent dissolved methane concentration from 0.01 mg/L to 5.4 mg/L reduced the TCE degradation rate by nearly an order of magnitude at 21 degrees C. Exposure of biofilms to 1.4 mg/L tetrachloroethene (PCE) at 35 degrees C resulted in the loss of methane utilization ability. Tests with methanotrophs grown on granular activated carbon indicated that lower effluent TCE concentrations could be obtained. The low efficiencies of TCE removal and low degradation rates obtained at 35 degrees C suggest that additional improvements will be necessary to make methanotrophic TCE treatment attractive. (c) 1993 John Wiley & Sons, Inc. 相似文献
12.
Anaerobic degradation of toluene by a denitrifying bacterium 总被引:12,自引:0,他引:12
A denitrifying bacterium, designated strain T1, that grew with toluene as the sole source of carbon under anaerobic conditions was isolated. The type of agar used in solid media and the toxicity of toluene were determinative factors in the successful isolation of strain T1. Greater than 50% of the toluene carbon was oxidized to CO2, and 29% was assimilated into biomass. The oxidation of toluene to CO2 was stoichiometrically coupled to nitrate reduction and denitrification. Strain T1 was tolerant of and grew on 3 mM toluene after a lag phase. The rate of toluene degradation was 1.8 mumol min-1 liter-1 (56 nmol min-1 mg of protein-1) in a cell suspension. Strain T1 was distinct from other bacteria that oxidize toluene anaerobically, but it may utilize a similar biochemical pathway of oxidation. In addition, o-xylene was transformed to a metabolite in the presence of toluene but did not serve as the sole source of carbon for growth of strain T1. This transformation was dependent on the degradation of toluene. 相似文献
13.
Perfusion bioreactors are a promising in vitro strategy to engineer bone tissue because they supply needed oxygen and nutrients and apply an osteoinductive mechanical stimulus to osteoblasts within large porous three-dimensional scaffolds. Model two-dimensional studies have shown that dynamic flow conditions (e.g., pulsatile oscillatory waveforms) elicit an enhanced mechanotransductive response and elevated expression of osteoblastic proteins relative to steady flow. However, dynamic perfusion of three-dimensional scaffolds has been primarily examined in short term cultures to probe for early markers of mechanotransduction. Therefore, the objective of this study was to investigate the effect of extended dynamic perfusion culture on osteoblastic differentiation of primary mesenchymal stem cells (MSCs). To accomplish this, rat bone marrow-derived MSCs were seeded into porous foam scaffolds and cultured for 15 days in osteogenic medium under pulsatile regimens of 0.083, 0.050, and 0.017 Hz. Concurrently, MSCs seeded in scaffolds were also maintained under static conditions or cultured under steady perfusion. Analysis of the cells after 15 days of culture indicated that alkaline phosphatase (ALP) activity, mRNA expression of osteopontin (OPN), and accumulation of OPN and prostaglandin E(2) were enhanced for all four perfusion conditions relative to static culture. ALP activity, OPN and OC mRNA, and OPN protein accumulation were slightly higher for the intermediate frequency (0.05 Hz) as compared with the other flow conditions, but the differences were not statistically significant. Nevertheless, these results demonstrate that dynamic perfusion of MSCs may be a useful strategy for stimulating osteoblastic differentiation in vitro. 相似文献
14.
Summary Microorganisms were able to remove hydrocarbons (pentane and isobutane) from air by biological action in a columnar bioreactor with ceramic packing. The reactor was operated in a liquid continuous mode with gas recirculation and a slow addition of the organic-containing air. After a period of acclimation, the reactor has operated for 12 months with only pentane and isobutane as carbon sources. The gaseous hydrocarbons have been degraded throughout this period. The hydrocarbon removal rates measured between 1 and 2 g h–1 m–3. The microbes were shown to be able to degrade these gaseous hydrocarbons completely in a closed bioreactor without any additional nutrients.Research supported by the Advanced Industrial Concepts Division-Biological and Chemical Technologies Research. U.S. Department of Energy, under contract DE-AC05-84OR21400 with Martin Marietta Energy Systems. Inc. 相似文献
15.
A denitrifying bacterium, designated strain T1, that grew with toluene as the sole source of carbon under anaerobic conditions was isolated. The type of agar used in solid media and the toxicity of toluene were determinative factors in the successful isolation of strain T1. Greater than 50% of the toluene carbon was oxidized to CO2, and 29% was assimilated into biomass. The oxidation of toluene to CO2 was stoichiometrically coupled to nitrate reduction and denitrification. Strain T1 was tolerant of and grew on 3 mM toluene after a lag phase. The rate of toluene degradation was 1.8 mumol min-1 liter-1 (56 nmol min-1 mg of protein-1) in a cell suspension. Strain T1 was distinct from other bacteria that oxidize toluene anaerobically, but it may utilize a similar biochemical pathway of oxidation. In addition, o-xylene was transformed to a metabolite in the presence of toluene but did not serve as the sole source of carbon for growth of strain T1. This transformation was dependent on the degradation of toluene. 相似文献
16.
Trichloroethylene mineralization in a fixed-film bioreactor using a pure culture expressing constitutively toluene ortho -monooxygenase 总被引:1,自引:0,他引:1
An aerobic, single-pass, fixed-film bioreactor was designed for the continuous degradation and mineralization of gas-phase trichloroethylene (TCE). A pure culture of Burkholderia cepacia PR1(23)(TOM(23C)), a Tn5transposon mutant of B. cepacia G4 that constitutively expresses the TCE-degrading enzyme, toluene ortho-monooxygenase (TOM), was immobilized on sintered glass (SIRANtrade mark carriers) and activated carbon. The inert open-pore structures of the sintered glass and the strongly, TCE-absorbing activated carbon provide a large surface area for biofilm development (2-8 mg total cellular protein/mL carrier with glucose minimal medium that lacks chloride ions). At gas-phase TCE concentrations ranging from 0.04 to 2.42 mg/L of air and 0.1 L/min of air flow, initial maximum TCE degradation rates of 0.007-0.715 nmol/(min mg protein) (equivalent to 8.6-392.3 mg TCE/L of reactor/day) were obtained. Using chloride ion generation as the indicator of TCE mineralization, the bioreactor with activated carbon mineralized an average of 6.9-10.3 mg TCE/L of reactor/day at 0.242 mg/L TCE concentration with 0.1 L/min of air flow for 38-40 days. Although these rates of TCE degradation and mineralization are two- to 200-fold higher than reported values, TOM was inactivated in the sintered-glass bioreactor at a rate that increased with increasing TCE concentration (e.g., in approximately 2 days at 0.242 mg/L and <1 day at 2.42 mg/L), although the biofilter could be operated for longer periods at lower TCE concentrations. Using an oxygen probe and phenol as the substrate, the activity of TOM in the effluent cells of the bioreactor was monitored; the loss of TOM activity of the effluent cells corroborated the decrease in the TCE degradation and mineralization rates in the bioreactor. Repeated starving of the cells was found to restore TOM activity in the bioreactor with activated carbon and extended TCE mineralization by approximately 34%. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 674-685, 1997. 相似文献
17.
Optimization of high-molecular-weight polycyclic aromatic hydrocarbons' degradation in a two-liquid-phase bioreactor 总被引:1,自引:0,他引:1
Marcoux J Déziel E Villemur R Lépine F Bisaillon JG Beaudet R 《Journal of applied microbiology》2000,88(4):655-662
A microbial consortium degrading the high-molecular-weight polycyclic aromatic hydrocarbons (HMW PAHs) pyrene, chrysene, benzo[a]pyrene and perylene in a two-liquid-phase reactor was studied. The highest PAH-degrading activity was observed with silicone oil as the water-immiscible phase; 2,2,4,4,6,8, 8-heptamethylnonane, paraffin oil, hexadecane and corn oil were much less, or not efficient in improving PAH degradation by the consortium. Addition of surfactants (Triton X-100, Witconol SN70, Brij 35 and rhamnolipids) or Inipol EAP22 did not promote PAH biodegradation. Rhamnolipids had an inhibitory effect. Addition of salicylate, benzoate, 1-hydroxy-2-naphtoic acid or catechol did not increase the PAH-degrading activity of the consortium, but the addition of low-molecular-weight (LMW) PAHs such as naphthalene and phenanthrene did. In these conditions, the degradation rates were 27 mg l-1 d-1 for pyrene, 8.9 mg l-1 d-1 for chrysene, 1.8 mg l-1 d-1 for benzo[a]pyrene and 0.37 mg l-1 d-1 for perylene. Micro-organisms from the interface were slightly more effective in degrading PAHs than those from the aqueous phase. 相似文献
18.
Microbial degradation of phenanthrene and pyrene in a two-liquid phase-partitioning bioreactor 总被引:6,自引:0,他引:6
A study was conducted to determine the potential of two-liquid phase-bioreactors for the treatment of (polycyclic aromatic hydrocarbons) PAHs. Phenanthrene and pyrene were supplied two times at a concentration of 100 mg/l of reactor broth, either as crystals or dissolved in silicone oil. Complete phenanthrene biodegradation was achieved within 3 days after each addition to the biphasic-inoculated reactor. Its concentration in the monophasic reactors dropped by 93% within 4 days, but remained incomplete for the duration of the experiment. Pyrene removal occurred to a limited extent only in the presence of phenanthrene. Significant pollutant losses were recorded in the monophasic reactors, most likely caused by volatilization. Pollutant degradation was improved upon repeated phenanthrene amendment to the biphasic system. Biphasic reactors allow the fast and complete degradation of PAHs and prevent their hazardous disappearance. The use of biphasic reactors for the degradation of poorly soluble pollutants should become more beneficial when the substrate-interface uptake mechanism is operating. Thus, biphasic reactors should be integrated into the microbial enrichment procedure. 相似文献
19.
Experimental and modeling studies were conducted to analyze the dynamic response behavior of a phenol-oxidizing fixed film using a differential, fluidized-bed bioreactor in a recycle loop with a well-mixed reservoir. With the bioreactor at steady state, a pulse of phenol was added to perturb the system, and the phenol concentration was monitored continuously until steady state was again achieved.The experimental dynamics were compared with a dynamic mathematical model based on diffusion and reaction within the biofilm, liquid mixing, and biofilm growth. Constant-pH experiments could be adequately described using an unstructured, double-Monod kinetic expression with substrate inhibition by phenol.However, in dynamic experiments without pH control, the pH of the liquid phase dropped, and damped oscillations were observed in the phenol concentration and reaction rate trajectories. Oscillatory solutions could not be induced in the model, even when product inhibition was included, and a linear stability analysis did not reveal tendencies toward instability. The cause of the experimental oscillations remains unknown. 相似文献
20.
The commercially available thermoplastic polymer Hytrel was selected as the delivery phase for the hydrophobic model compound biphenyl in a solid-liquid two-phase partitioning bioreactor (TPPB), and 2.9 g biphenyl could successfully be degraded in 1-L TPPBs by a pure culture of the biphenyl-degrading bacterium Burkholderia xenovorans LB400 in 50 h and by a mixed microbial consortium isolated from contaminated soil in 45 h. TPPBs consist of an aqueous cell-containing phase and an immiscible second phase that partitions toxic and/or poorly soluble substrates (in this case biphenyl) on the basis of maintaining a thermodynamic equilibrium. This paper illustrates a rational strategy for selecting a suitable solid polymeric substance for the delivery of the poorly water-soluble model compound biphenyl. The partitioning of biphenyl between the selected polymers and water was analogous to partitioning of solutes between two immiscible liquid phases. The partitioning coefficients varied between 180 for Nylon 6.6 and 11,000 for Desmopan, where the later numerical value is comparable to biphenyl partitioning coefficients between water and organic solvents. Employing a solid delivery phase enabled the utilization of a surfactant-producing microbial mixed culture, which could not be cultivated in liquid-liquid TPPBs and thereby extended the range of biocatalysts that can be employed in TPPBs. 相似文献