首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In Phaeodactylum tricornutum Photosystem II is unusually resistant to damage by exposure to high light intensities. Not only is the capacity to dissipate excess excitations in the antenna much larger and induced more rapidly than in other organisms, but in addition an electron transfer cycle in the reaction center appears to prevent oxidative damage when secondary electron transport cannot keep up with the rate of charge separations. Such cyclic electron transfer had been inferred from oxygen measurements suggesting that some of its intermediates can be reduced in the dark and can subsequently compete with water as an electron donor to Photosystem II upon illumination. Here, the proposed activation of cyclic electron transfer by illumination is confirmed and shown to require only a second. On the other hand the dark reduction of its intermediates, specifically of tyrosine Y(D), the only Photosystem II component known to compete with water oxidation, is ruled out. It appears that the cyclic electron transfer pathway can be fully opened by reduction of the plastoquinone pool in the dark. Oxygen evolution reappears after partial oxidation of the pool by Photosystem I, but the pool itself is not involved in cyclic electron transfer.  相似文献   

2.
W. Onno Feikema  Johann Lavaud 《BBA》2006,1757(7):829-834
In Phaeodactylum tricornutum Photosystem II is unusually resistant to damage by exposure to high light intensities. Not only is the capacity to dissipate excess excitations in the antenna much larger and induced more rapidly than in other organisms, but in addition an electron transfer cycle in the reaction center appears to prevent oxidative damage when secondary electron transport cannot keep up with the rate of charge separations. Such cyclic electron transfer had been inferred from oxygen measurements suggesting that some of its intermediates can be reduced in the dark and can subsequently compete with water as an electron donor to Photosystem II upon illumination. Here, the proposed activation of cyclic electron transfer by illumination is confirmed and shown to require only a second. On the other hand the dark reduction of its intermediates, specifically of tyrosine YD, the only Photosystem II component known to compete with water oxidation, is ruled out. It appears that the cyclic electron transfer pathway can be fully opened by reduction of the plastoquinone pool in the dark. Oxygen evolution reappears after partial oxidation of the pool by Photosystem I, but the pool itself is not involved in cyclic electron transfer.  相似文献   

3.
The balance of energy flow from light absorption into biomass was investigated under simulated natural light conditions in the diatom Phaeodactylum tricornutum and the green alga Chlorella vulgaris. The energy balance was quantified by comparative analysis of carbon accumulation in the new biomass with photosynthetic electron transport rates per absorbed quantum, measured both by fluorescence quenching and oxygen production. The difference between fluorescence- and oxygen-based electron flow is defined as 'alternative electron cycling'. The photosynthetic efficiency of biomass production was found to be identical for both algae under nonfluctuating light conditions. In a fluctuating light regime, a much higher conversion efficiency of photosynthetic energy into biomass was observed in the diatom compared with the green alga. The data clearly show that the diatom utilizes a different strategy in the dissipation of excessively absorbed energy compared with the green alga. Consequently, in a fluctuating light climate, the differences between green algae and diatoms in the efficiency of biomass production per photon absorbed are caused by the different amount of alternative electron cycling.  相似文献   

4.
Chlorella cells were examined in a modulated oxygen polarograph under aerobic and anaerobic conditions. At light intensities below about 600 ergs · cm?2 · s?1 of 650 nm light, the oxygen yield and phase lag are lower under anaerobic conditions. Addition of 25 mM sodium nitrite increases both these parameters to values close to those found in the presence of oxygen. It is proposed that nitrite is reduced by Photosystem I thus diverting electrons from the cyclic electron transport pathway. The intersystem electron transport chain becomes more oxidized and this suppresses a backflow of electrons to the oxidizing side of Photosystem II, hence increasing the oxygen yield and the phase lag. The removal of oxygen from the bathing medium also alters the response of dark adapted Chlorella to a series of saturating light flashes. In terms of the Kok model of Photosystem II (Kok, B., Forbush, B. and McGloin, M. (1970) Photochem. Photobiol. 11, 457–475) there is a large increase in the parameter α. Addition of nitrite reverses this change and virtually restores the response seen in the presence of oxygen. The deactivation of the S2 state is greatly speeded up in the absence of oxygen but the addition of nitrite again reverses this.  相似文献   

5.
Oxygen ist reduced by the electron transport chain of chloroplasts during CO2 reduction. The rate of electron flow to oxygen is low. Since antimycin A inhibited CO2-dependent oxygen evolution, it is concluded that cyclic photophosphorylation contributes ATP to photosynthesis in chloroplasts which cannot satisfy the ATP requirement of CO2 reduction by electron flow to NADP and to oxygen. Inhibition of photosynthesis by antimycin A was more significant at high than at low light intensities suggesting that cyclic photophosphorylation contributes to photosynthesis particularly at high intensities. Cyclic electron flow in intact chloroplasts is under the control of electron acceptors. At low light intensities or under far-red illumination it is decreased by substrates which accept electrons from photosystem I such as oxaloacetate, nitrite or oxygen. Obviously, the cyclic electron transport pathway is sensitive to electron drainage. In the absence of electron acceptors, cyclic electron flow is supported by far-red illumination and inhibited by red light. The inhibition by light exciting photosystem II demonstrated that the cyclic electron transport pathway is accessible to electrons from photosystem II. Inhibition can be relieved by oxygen which appears to prevent over-reduction of electron carriers of the cyclic pathway and thus has an important regulatory function. The data show that cyclic electron transport is under delicate redox control. Inhibition is caused both by excessive oxidation and by over-reduction of electron carriers of the pathway.  相似文献   

6.
Light induced damage of the photosynthetic apparatus is an important and highly complex phenomenon, which affects primarily the Photosystem II complex. Here the author summarizes the current state of understanding of the molecular mechanisms, which are involved in the light induced inactivation of Photosystem II electron transport together with the relevant mechanisms of photoprotection. Short wavelength ultraviolet radiation impairs primarily the Mn?Ca catalytic site of the water oxidizing complex with additional effects on the quinone electron acceptors and tyrosine donors of PSII. The main mechanism of photodamage by visible light appears to be mediated by acceptor side modifications, which develop under conditions of excess excitation in which the capacity of light-independent photosynthetic processes limits the utilization of electrons produced in the initial photoreactions. This situation of excess excitation facilitates the reduction of intersystem electron carriers and Photosystem II acceptors, and thereby induces the formation of reactive oxygen species, especially singlet oxygen whose production is sensitized by triplet chlorophyll formation in the reaction center of Photosystem II. The highly reactive singlet oxygen and other reactive oxygen species, such as H?O? and O??, which can also be formed in Photosystem II initiate damage of electron transport components and protein structure. In parallel with the excess excitation dependent mechanism of photodamage inactivation of the Mn?Ca cluster by visible light may also occur, which impairs electron transfer through the Photosystem II complex and initiates further functional and structural damage of the reaction center via formation of highly oxidizing radicals, such as P 680(+) and Tyr-Z(+). However, the available data do not support the hypothesis that the Mn-dependent mechanism would be the exclusive or dominating pathway of photodamage in the visible spectral range. This article is part of a Special Issue entitled: Photosystem II.  相似文献   

7.
Photosystem II (PSII), the enzyme responsible for photosynthetic oxygen evolution, is a rapidly turned over membrane protein complex. However, the factors that regulate biogenesis of PSII are poorly defined. Previous proteomic analysis of the PSII preparations from the cyanobacterium Synechocystis sp PCC 6803 detected a novel protein, Psb29 (Sll1414), homologs of which are found in all cyanobacteria and vascular plants with sequenced genomes. Deletion of psb29 in Synechocystis 6803 results in slower growth rates under high light intensities, increased light sensitivity, and lower PSII efficiency, without affecting the PSII core electron transfer activities. A T-DNA insertion line in the PSB29 gene in Arabidopsis thaliana displays a phenotype similar to that of the Synechocystis mutant. This plant mutant grows slowly and exhibits variegated leaves, and its PSII activity is light sensitive. Low temperature fluorescence emission spectroscopy of both cyanobacterial and plant mutants shows an increase in the proportion of uncoupled proximal antennae in PSII as a function of increasing growth light intensities. The similar phenotypes observed in both plant and cyanobacterial mutants demonstrate that the function of Psb29 has been conserved throughout the evolution of oxygenic photosynthetic organisms and suggest a role for the Psb29 protein in the biogenesis of PSII.  相似文献   

8.
Synechocystis sp. PCC 6803 when grown in the presence of sublethal (M) levels of cobalt chloride shows an enhancement of Photosystem II (PS II) catalyzed Hill reaction. This stimulation seems to be induced by cobalt ions as other metal ions inhibit para-benzoquinone catalyzed Hill reaction. At saturating white light intensity, this enhancement is two times over that of the control cells on unit chlorophyll basis. Analysis of the PS II electron transport rate at varying intensities of white, blue or yellow light suggests an increased maximal rates but no change in the quantum yield or effective antenna size of CoCl2-grown cells. There were no structural and functional changes in the phycobilisome as judged by the absence of changes in the phycocyanin/allophycocyanin ratio, fluorescence emission spectra, second derivative absorption spectra at 77 K and SDS-PAGE analysis of isolated phycobilisomes. The 77 K fluorescence emission spectra of the cells showed a decrease in the ratio of Photosystem I emission (F725) to Photosystem II emission (F685) in CoCl2-grown cells compared to the control cells. These observations indicate three possibilities: (1) there is an increase in the number of Photosystem II units; (2) a faster turnover of Photosystem II centers; or (3) an alteration in energy redistribution between PS II and PS I in CoCl2-grown cells which causes stimulation of Photosystem II electron transport rate.Abbreviations APC allophycocyanin - Chl a chlorophyll a - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - EDTA ethylene diamine tetraacetic acid - PBS phycobilisome - PC phycocyanin - PSI Photosystem I - PS II Photosystem II - pBQ p-benzoquinone - PMSF phenyl methyl sulfonyl fluoride  相似文献   

9.
The contribution to reduction of oxygen by ferredoxin (Fd) to the overall reduction of oxygen in isolated pea thylakoids was studied in the presence of Fd versus Fd + NADP+. The overall rate of electron transport was measured using a determination of Photosystem II quantum yield from chlorophyll fluorescence parameters, and the rate of oxidation of Fd was measured from the light-induced redox changes of Fd. At low light intensity, increasing Fd concentration from 5 to 30 μM in the absence of NADP+ increased the proportion of oxygen reduction by Fd from 25–35 to 40–60% in different experiments. This proportion decreased with increasing light intensity. When NADP+ was added in the presence of 15 μM Fd, which was optimal for the NADP+ reduction rate, the participation of Fd in the reduction of oxygen was low, no more than 10%, and it also decreased with increasing light intensity. At high light intensity, the overall oxygen reduction rates in the presence of Fd + NADP+ and in the presence of Fd alone were comparable. The significance of reduction of dioxygen either by water-soluble Fd or by the membrane-bound carriers of the photosynthetic electron transport chain for redox signaling under different light intensities is discussed.  相似文献   

10.
The psbX gene (sml0002) coding for a 4.1 kDa protein in Photosystem II of plants and cyanobacteria was deleted in both wild type and in a Photosystem I-less mutant of the cyanobacterium Synechocystis sp. PCC 6803. Polymerase chain reaction and sequencing analysis showed that the mutants had completely segregated. Deletion of the PsbX protein does not seem to influence growth rate, electron transport or water oxidation ability. Whereas a high light induction of the psbX mRNA could be observed in wild type, deletion of the gene did not lead to high light sensibility. Light saturation measurements and 77K fluorescence measurements indicated a minor disconnection of the antenna in the deletion mutant. Furthermore, fluorescence induction measurements as well as immuno-staining of the D1 protein showed that the amount of Photosystem II complexes in the mutants was reduced by 30%. Therefore, PsbX does not seem to be necessary for the Photosystem II electron transport, but directly or indirectly involved in the regulation of the amount of functionally active Photosystem II centres in Synechocystis sp. PCC 6803.  相似文献   

11.
Chloroplast from greening potato tuber showed good photosynthetic capacity. The evolution of O2 was dependent upon the intensity of light. A light intensity of 30 lux gave maximum O2 evolution. At higher intensities inhibition was observed. The presence of bicarbonate in the reaction mixture was essential for O2 evolution. NADP was found to be a potent inhibitor of O2 evolution in this system. NADP and 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU) inhibited the O2 evolution completely at a 3 μm concentration level, which was reversed by oxidized 2,6-dichlorophenol-indophenol (DCIP). Cyanide (CN)-treated chloroplasts showed full O2 evolution capacity, when a lipophilic electron acceptor like N-tetramethyl-p-phenylenediamine (TMPD) or DCIP was used along with ferricyanide. Ferricyanide alone showed only 20% reduction. NADP or DCMU could inhibit O2 evolution only when TMPD was the acceptor but not with DCIP. Photosystem II (PS II) isolated from these chloroplasts also showed inhibition by NADP or DCMU and its reversal by DCIP. Here also the evolution of O2 with only TMPD as acceptor was sensitive to NADP or DCMU. In the presence of added silicotungstate in PS II NADP or DCMU did not affect ferricyanide reduction or oxygen evolution. The chloroplasts were able to bind exogenously added NADP to the extent of 120 nmol/mg chlorophyll. It is concluded that the site of inhibition of NADP is the same as in DCMU, and it is between the DCIP and TMPD acceptor site in the electron transport from the quencher (Q) to plastoquinone (PQ).  相似文献   

12.
Washing of spinach chloroplasts with high concentrations of Tris3 induces pH-dependent changes in chloroplast reactions. At high pH (8.4) Tris washing causes the inhibition of Photosystem 2 activity which can be prevented by the maintenance of reducing conditions during washing. Washing at low pH (7.2) causes an enhancement of oxygen evolution and increased rate of ferricyanide photoreduction which is not influenced by the presence of reducing conditions. The increased rate of electron flow is accompanied by the inhibition of light mediated phosphorylating activity, acid-induced ATP synthesis, light-induced proton uptake and light triggered Mg2+ ATPase activity. Tris treatment at low pH also causes a sensitization of Photosystem 2 activity such that oxygen evolution is inhibited by low concentrations of tris at high pH. This inhibition of the stimulated electron flow is not accompanied by a reconstitution of the photophosphorylation activity. A detailed analysis of the effect of tris treatment on Photosystem II activity and membrane dependent energy conversion shows that the treatment of chloroplasts causes an inhibition of the energy conversion process which is independent of the effect on oxygen evolution. Determination of the presence of coupling factor (as determined by ATPase activity) and membrane osmotic properties reveal normal levels of enzyme activity and osmotic response in treated chloroplasts. The inhibition of the energy conversion process is accompanied by reduced capacity to maintain a proton gradient. Kinetic analysis of the proton uptake reaction reveals that Tris treatment renders the grana membranes more permeable to protons.  相似文献   

13.
In illuminated intact spinach chloroplasts, warming to and beyond 40 °C increased the proton permeability of thylakoids before linear electron transport through Photosystem II was inhibited. Simultaneously, antimycin A-sensitive cyclic electron transport around Photosystem II was activated with oxygen or CO2, but not with nitrite as electron acceptors. Between 40 to 42 °C, activation of cyclic electron transport balanced the loss of protons so that a sizeable transthylakoid proton gradient was maintained. When the temperature of darkened spinach leaves was slowly increased to 40°C, reduction of the quinone acceptor of Photosystem II, QA, increased particularly when respiratory CO2 production and autoxidation of plastoquinones was inhibited by decreasing the oxygen content of the atmosphere from 21 to 1%. Simultaneously, Photosystem II activity was partially lost. The enhanced dark QA reduction disappeared after the leaf temperature was decreased to 20 °C. No membrane energization was detected by light-scattering measurements during heating the leaf in the dark. In illuminated spinach leaves, light scattering and nonphotochemical quenching of chlorophyll fluorescence increased during warming to about 40 °C while Photosystem II activity was lost, suggesting extra energization of thylakoid membranes that is unrelated to Photosystem II functioning. After P700 was oxidized by far-red light, its reduction in the dark was biphasic. It was accelerated by factors of up to 10 (fast component) or even 25 (slow component) after short heat exposure of the leaves. Similar acceleration was observed at 20 °C when anaerobiosis or KCN were used to inhibit respiratory oxidation of reductants. Methyl viologen, which accepts electrons from reducing side of Photosystem II, completely abolished heat-induced acceleration of P700+ reduction after far-red light. The data show that increasing the temperature of isolated chloroplasts or intact spinach leaves to about 40 °C not only inhibits linear electron flow through Photosystem II but also activates Photosystem I-driven cyclic electron transport pathways capable of contributing to the transthylakoid proton gradient. Heterogeneity of the kinetics of P700+ reduction after far-red oxidation is discussed in terms of Photosystem I-dependent cyclic electron transport in stroma lamellae and grana margins.  相似文献   

14.
Plants respond to excess light by a photoprotective reduction of the light harvesting efficiency. The notion that the non-photochemical quenching of chlorophyll fluorescence can be reliably used as an indicator of the photoprotection is put to a test here. The technique of the repetitive flash fluorescence induction is employed to measure in parallel the non-photochemical quenching of the maximum fluorescence and the functional cross-section (sigma(PS II)) which is a product of the photosystem II optical cross-section a(PS II) and of its photochemical yield Phi(PS II) (sigma (PS II) = a(PS II) Phi(PS II)). The quenching is measured for both, the maximum fluorescence found in a single-turnover flash (F(M) (ST)) and in a multiple turnover light pulse (F(M) (MT)). The experiment with the diatom Phaeodactylum tricornutum confirmed that, in line with the prevalent model, the PS II functional cross-section sigma (PS II) is reduced in high light and restored in the dark with kinetics and amplitude that are closely matching the changes of the F(M) (ST) and F(M) (MT) quenching. In contrast, a poor correlation between the light-induced changes in the PS II functional cross-section sigma (PS II) and the quenching of the multiple-turnover F(M) (MT) fluorescence was found in the green alga Scenedesmus quadricauda. The non-photochemical quenching in Scenedesmus quadricauda was further investigated using series of single-turnover flashes given with different frequencies. Several mechanisms that modulate the fluorescence emission in parallel to the Q(A) redox state and to the membrane energization were resolved and classified in relation to the light harvesting capacity of Photosystem II.  相似文献   

15.
Ting CS  Owens TG 《Plant physiology》1993,101(4):1323-1330
Nonphotochemical fluorescence quenching was found to exist in the dark-adapted state in the diatom Phaeodactylum tricornutum. Pretreatment of cells with the uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP) or with nigericin resulted in increases in dark-adapted minimum and maximum fluorescence yields. This suggests that a pH gradient exists across the thylakoid membrane in the dark, which serves to quench fluorescence levels nonphotochemically. The physiological processes involved in establishing this proton gradient were sensitive to anaerobiosis and antimycin A. Based on these results, it is likely that this energization of the thylakoid membrane is due in part to chlororespiration, which involves oxygen-dependent electron flow through the plastoquinone pool. Chlororespiration has been shown previously to occur in diatoms. In addition, we observed that cells treated with 3-(3,4-dichlorophenyl)-1,1-dimethylurea exhibited very strong nonphotochemical quenching when illuminated with actinic light. The rate and extent of this quenching were light-intensity dependent. This quenching was reversed upon addition of CCCP or nigericin and was thus due primarily to the establishment of a pH gradient across the thylakoid membrane. Preincubation of cells with CCCP or nigericin or antimycin A completely abolished this quenching. Cyclic electron transport processes around photosystem I may be involved in establishing this proton gradient across the thylakoid membrane under conditions where linear electron transport is inhibited. At steady state under normal physiological conditions, the qualitative changes in photochemical and nonphotochemical fluorescence quenching at increasing photon flux densities were similar to those in higher plants. However, important quantitative differences existed at limiting and saturating intensities. Dissimilarities in the factors that regulate fluorescence quenching mechanisms in these organisms may account for these differences.  相似文献   

16.
The effects of lowering the pH on Photosystem II have been studied by measuring changes in absorbance and electron spin resonance in spinach chloroplasts.At pH values around 4 a light-induced dark-reversible chlorophyll oxidation by Photosystem II was observed. This chlorophyll is presumably the primary electron donor of system II. At pH values between 5 and 4 steady state illumination induced an ESR signal, similar in shape and amplitude to signal II, which was rapidly reversed in the dark. This may reflect the accumulation of the oxidized secondary donor upon inhibition of oxygen evolution. Near pH 4 the rapidly reversible signal and the stable and slowly decaying components of signal II disappeared irreversibly concomitant with the release of bound manganese.The results are discussed in relation to the effects of low pH on prompt and delayed fluorescence reported earlier (van Gorkom, H. J., Pulles, M. P. J., Haveman, J. and den Haan, G. A. (1976) Biochim. Biophys. Acta 423, 217–226).  相似文献   

17.
End product feedback effects on photosynthetic electron transport   总被引:7,自引:0,他引:7  
The inhibition of photosynthetic electron transport when starch and sucrose synthesis limit the overall rate of photosynthesis was studied inPhaseolus vulgaris L. andXanthium strumarium L. The starch and sucrose limitation was established by reducing photorespiration by manipulation of the partial pressure of O2 and CO2. Chlorophylla fluorescence quenching, the redox state of Photosystem I (estimated by the redox status of NADP-dependent malate dehydrogenase), and the intermediates of the xanthophyll cycle were investigated. Non-photochemical fluorescence quenching increased, NADP-dependent malate dehydrogenase remained at 100% activity, and the amount of violaxanthin decreased when starch and sucrose synthesis limited photosynthesis. In addition, O2-induced feedback caused a decrease in photochemical quenching. These results are consistent with a downward regulation of photosynthetic electron transport during end product feedback on photosynthesis. When leaves were held in high CO2 for 4 hours, the efficiency of Photosystem II was reduced when subsequently measured under low light. The results indicate that the quantum efficiency of open Photosystem II centers was reduced by the 4 hour treatment. We interpret the results to indicate that feedback from starch and sucrose synthesis on photosynthetic electron transport stimulates mechanisms for dissipating excess light energy but that these mechanisms do not completely protect leaves from long-term inhibition of photosynthetic electron transport capacity.  相似文献   

18.
Gilles Peltier  Pierre Thibault 《BBA》1988,936(3):319-324
Photosynthetic oxygen exchange has been measured using 18O2 and the mass-spectrometric technique in two mutant strains of Chlamydomonas reinhardtii deficient in electron transport. In the F15 mutant, deficient in PS I, O2 was evolved in the light at a constant rate of about 145 nmol O2/min per mg chlorophyll. At the same time, O2 uptake was increased in the light by about 28%. O2 evolution and the light-stimulation of O2 uptake were inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Antimycin A and salicylhydroxamic acid, both inhibitors of mitochondrial respiration, when added together, inhibited dark respiration and also the light-dependent O2 evolution by about 80%. Similar properties were observed in a mutant strain of Chlamydomonas (F18) lacking the cytochrome b6-f complex. We conclude from these results that in the absence of active Photosystem I, a permanent electron flow can occur in the light from Photosystem II to molecular O2. This electron transfer pathway would involve the plastoquinone pool and the mitochondrial electron transport chain. Because O2 evolution measured in the F15 mutant was severely inhibited by the uncoupler cyanide m-chlorophenylhydrazone, we propose that an energy-dependent reverse electron transfer similar to that of Rhodospirillaceae might occur in the chloroplast of Chlamydomonas.  相似文献   

19.
The enzyme lactoperoxidase was used to specifically iodinate the surface-exposed proteins of chloroplast lamellae. This treatment had two effects on Photosystem II activity. The first, occurring at low levels of iodination, resulted in a partial loss of the ability to reduce 2,6-dichlorophenolindophenol (DCIP), even in the presence of an electron donor for Photosystem II. There was a parallel loss of Photosystem II mediated variable yield fluorescence which could not be restored by dithionite treatment under anaerobic conditions. The same pattern of inhibition was observed in either glutaraldehyde-fixed or unfixed membranes. Analysis of the lifetime of fluorescence indicated that iodination changes the rate of deactivation of the excited state chlorophyll. We have concluded that iodination results in the introduction of iodine into the Photosystem II reaction center pigment-protein complex and thereby introduces a new quenching. The data indicate that the reaction center II is surface exposed.At higher levels of iodination, an inhibition of the electron transport reactions on the oxidizing side of Photosystem II was observed. That portion of the total rate of photoreduction of DCIP which was inhibited by this action could be restored by addition of an electron donor to Photosystem II. Loss of activity of the oxidizing side enzymes also resulted in a light-induced bleaching of chlorophyll a680 and carotenoid pigments and a dampening of the sequence of O2 evolution observed during flash irradiation of treated chloroplasts. All effects on electron transport on the oxidizing side of Photosystem II could be eliminated by glutaraldehyde fixation of the chloroplast lamellae prior to lactoperoxidase treatment. It is concluded that the electron carriers on the oxidizing side of Photosystem II are not surface localized; the functioning of these components is impaired by structural disorganization of the membrane occurring at high levels of iodination.Our data are in agreement with previously published schemes which suggest that Photosystem II mediated electron transport traverses the membrane.  相似文献   

20.
Oxygen evolution was inhibited after reacting chloroplast membranes with four different water soluble protein modification reagents. Photosystem II photochemistry was not affected, whown by unimpaired oxidation of an alternate PSII donor, diphenyl carbazide. Concomitant with oxygen evolution inhibition by the diazonium reagent, there was a four-fold increase in covalent binding of the compound to the membranes, suggesting an electron transport dependent conformational change is involved in the effect. PSI cyclic electron flow with DCMU present did not potentiate the oxygen evolution inhibition nor the increased diazo coupling, indicating that the effect is not simply a manifestation of the same energized state driven by cyclic electron flow. Since the effects are due to non-membrane penetrating reagents, we conclude that a protein component associated with oxygen evolution is localized at the external surface of grana membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号