首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 194 毫秒
1.
Glut1 transgenic mice were bred with transgenic mice that overexpress hexokinase II in skeletal muscle in order to determine whether whole-body glucose disposal could be further augmented in mice overexpressing glucose transporters. Overexpression of hexokinase alone in skeletal muscle had no effect on glucose transport or metabolism in isolated muscles, nor did it alter blood glucose levels or the rate of whole-body glucose disposal. Expression of the hexokinase transgene in the context of the Glut1 transgenic background did not alter glucose transport in isolated muscles but did cause additional increases in steady-state glucose 6-phosphate (3.2-fold) and glycogen (7.5-fold) levels compared with muscles that overexpress the Glut1 transporter alone. Surprisingly, however, these increases were not accompanied by a change in basal or insulin-stimulated whole-body glucose disposal in the doubly transgenic mice compared with Glut1 transgenic mice, probably due to an inhibition of de novo glycogen synthesis as a result of the high levels of steady-state glycogen in the muscles of doubly transgenic mice (430 micromol/g versus 10 micromol/g in wild-type mice). We conclude that the hexokinase gene may not be a good target for therapies designed to counteract insulin resistance or hyperglycemia.  相似文献   

2.
Glucose transport in skeletal muscle is mediated by two distinct transporter isoforms, designated muscle/adipose glucose transporter (Glut4) and erythrocyte/HepG2/brain glucose transporter (Glut1), which differ in both abundance and membrane distribution. The present study was designed to investigate whether differences in insulin responsiveness of red and white muscle might be due to differential expression of the glucose transporter isoforms. Glucose transport, as well as Glut1 and Glut4 protein and mRNA levels, were determined in red and white portions of the quadriceps and gastrocnemius muscles of male Sprague-Dawley rats (body wt. approx. 250 g). Maximal glucose transport (in response to 100 nM-insulin) in the perfused hindlimb was 3.6 times greater in red than in white muscle. Red muscle contained approx. 5 times more total Glut4 protein and 2 times more Glut4 mRNA than white muscle, but there were no differences in the Glut1 protein or mRNA levels between the fibre types. Our data indicate that differences in responsiveness of glucose transport in specific skeletal muscle fibre types may be dependent upon the amount of Glut4 protein. Because this protein plays such an integral part in glucose transport in skeletal muscle, any impairment in its expression may play a role in insulin resistance.  相似文献   

3.
We investigated the long-term effect of metformin treatment on blood pressure, insulin sensitivity, and vascular responses to insulin in conscious spontaneously hypertensive rats (SHR). The rats were instrumented with intravascular catheters and pulsed Doppler flow probes to measure blood pressure, heart rate, and blood flow. Insulin sensitivity was assessed by the euglycemic hyperinsulinemic clamp technique. Two groups of SHR received metformin (100 or 300 mg x kg(-1) x day(-1)) for 3 wk while another group of SHR and a group of Wistar Kyoto (WKY) rats were left untreated. We found that vasodilation of skeletal muscle and renal vasculatures by insulin is impaired in SHR. Moreover, a reduced insulin sensitivity was detected in vivo and in vitro in isolated soleus and extensor digitorum longus muscles from SHR compared with WKY rats. Three weeks of treatment with metformin improves the whole-body insulin-mediated glucose disposal in SHR but has no blood pressure-lowering effect and no influence on vascular responses to insulin (4 mU x kg(-1) x min(-1)). An improvement in insulin-mediated glucose transport activity was detected in isolated muscles from metformin-treated SHR, but in the absence of insulin no changes in basal glucose transport activity were observed. It is suggested that part of the beneficial effect of metformin on insulin resistance results from a potentiation of the hormone-stimulating effect on glucose transport in peripheral tissues (mainly skeletal muscle). The results argue against a significant antihypertensive or vascular effect of metformin in SHR.  相似文献   

4.
Serum levels and muscle expression of the chemokine CXCL1 increase markedly in response to exercise in mice. Because several studies have established muscle-derived factors as important contributors of metabolic effects of exercise, this study aimed at investigating the effect of increased expression of muscle-derived CXCL1 on systemic and intramuscular metabolic parameters, with focus on fatty acid oxidation and oxidative metabolism in skeletal muscle. By overexpression of CXCL1 in the tibialis cranialis muscle in mice, significant elevations in muscle and serum CXCL1 within a physiological range were obtained. At 3 mo of high-fat feeding, visceral and subcutaneous fat mass were 32.4 (P < 0.01) and 22.4% (P < 0.05) lower, respectively, in CXCL1-overexpressing mice compared with control mice. Also, chow-fed CXCL-transfected mice had 35.4% (P < 0.05) lower visceral fat mass and 33.4% (P < 0.05) lower subcutaneous fat mass compared with chow-fed control mice. These reductions in accumulation of adipose tissue were accompanied by improved glucose tolerance and insulin sensitivity. Furthermore, in CXCL1-transfected muscles, muscular ex vivo fatty acid oxidation was significantly enhanced compared with control muscles (chow fed: 2.2-fold, P < 0.05; high-fat fed: 2-fold, P < 0.05) and also showed increased expression levels of major fatty acid oxidation genes (CD36, CPT I, and HADH). Finally, CXCL1 expression was associated with increased muscle mRNA expression of VEGF and CD31, suggesting a role for CXCL1 in muscle angiogenesis. In conclusion, our data show that overexpression of CXCL1 within a physiological range attenuates diet-induced obesity, likely mediated through a CXCL1-induced improvement of fatty acid oxidation and oxidative capacity in skeletal muscle tissue.  相似文献   

5.
Jiao K  Liu H  Chen J  Tian D  Hou J  Kaye AD 《Cytokine》2008,42(2):161-169
The role of adipokines in development of insulin resistance still remains controversial. The purpose of the present study was to examine the dynamic changes of fasting plasma levels of interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-alpha), free fatty acids (FFA) and insulin in a Sprague-Dawley rat insulin resistant model induced by high-fat diet. Heterotopic deposition of triglycerides (TG) in liver, skeletal muscles and pancreatic islet was also investigated. The fasting plasma level of insulin in rats in the high-fat diet group was significantly higher than that in the normal diet group on day 21 (P<0.01), suggesting that an increased insulin resistance developed in the high-fat diet group. However, no significant difference in the plasma IL-6 level was observed between the two groups (P>0.05), although in both groups, the plasma IL-6 level was significantly higher on day 21 than that of the day 0 (P<0.05). The plasma FFA level in the high-fat diet group began to increase significantly on day 21 (P<0.05), and elevated markedly on day 28, was positively correlated to the fasting plasma insulin level. Histological study revealed a more abundant TG deposition in liver and skeletal muscles (from quadriceps femoris) in the high-fat diet group than in the normal diet group on day 21, and the liver deposition was even higher on day 28. However, no deposition was observed in pancreatic islets. The plasma TNF-alpha level remained unchanged throughout the duration of the experiment. These results indicate that the progression of insulin resistance in high-fat diet rats is closely related to the plasma FFA elevation and the heterotopic deposition of TG in liver and skeletal muscles, but is unrelated to the plasma TNF-alpha and IL-6 levels.  相似文献   

6.
Overnourishment during the suckling period [small litter (SL)] results in the development of adult-onset obesity. To investigate the mechanisms that underlie the development of insulin resistance in the skeletal muscle of young and adult female SL rats, the litter size was reduced to 3 female pups/dam (SL) while the control litter had 12 pups/dam from the postnatal Day 3 until Day 21. Protein content, mRNA expression and methylation status of the promoter region of key components in the insulin signaling pathway were determined in the skeletal muscle of SL rats. Overnutrition during the suckling period resulted in increased body weight gains, hyperphagia and adult-onset obesity as well as increased levels of serum insulin, glucose and leptin in SL rats. No differences in the expression of total protein as well as tyrosine phosphorylation of insulin receptor β and glucose transporter 4 (Glut4) were observed in skeletal muscle between two groups at both ages. A significant decrease of total insulin receptor substrate 1 (IRS-1) and an increase in serine phosphorylation of IRS-1 were observed in skeletal muscle from adult SL rats. Hypermethylation of specific cytidyl-3',5'phospho-guanylyl (CpG) dinucleotides in the proximal promoter region was observed for the Irs1 and Glut4 genes, which correlated with the reduction in Irs1 and Glut4 mRNA levels in skeletal muscle of adult SL rats. Our results suggest that epigenetic modifications of the key genes involved in the insulin signaling pathway in skeletal muscle could result in the development of insulin resistance in SL female rats.  相似文献   

7.
Summary Insulin stimulation of glucose transport in skeletal muscle is considered to involve translocation of the skeletal muscle_adipose tissue glucose transporter isoform, Glut 4, from cytosolic vesicles to the cell surface. The current study was undertaken to investigate Glut 4 translocation in skeletal muscle of healthy volunteers during euglycaemic insulin infusion. Previous quantitative studies of glucose transport have depended on differential centrifugation methods, which demand large biopsy samples. In this study we have developed and applied a quantitative method using confocal laser microscopy, well suited to the small needle biopsies that are typically available clinically. Percutaneous biopsy of vastus lateralis skeletal muscle was performed during basal and euglycaemic insulin-stimulated conditions, and Glut 4 translocation was assessed using immunohistochemical labelling and confocal laser microscopy imaging in 14 healthy lean subjects. At physiological hyperinsulinaemia (536 _ 16 pm), mean systemic glucose utilization was 9.27 _ 0.78 mg_kg-min, indicative of normal insulin sensitivity. The presence of Glut 4 at the sarcolemma increased significantly (p· 0.01), with a ratio of insulin-stimulated to basal sarcolemmal Glut 4 of 1.85 _ 0.33, indicative of insulin-stimulated Glut 4 translocation. The area of Glut 4-labelled sites also increased significantly (p· 0.01) in response to insulin infusion; this ratio was 1.56 _ 0.13. Thus, at physiological hyperinsulinaemia, the amount of Glut 4 at the cell surface of skeletal muscle in healthy, lean individuals increases approximately twofold over basal conditions, and this process can be measured using immunohistochemical labelling imaged by confocal laser scanning microscopy. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

8.
Obesity and insulin resistance cause serious consequences to human health. To study effects of skeletal muscle growth on obesity prevention, we focused on a key gene of skeletal muscle named myostatin, which plays an inhibitory role in muscle growth and development. We generated transgenic mice through muscle-specific expression of the cDNA sequence (5'-region 886 nucleotides) encoding for the propeptide of myostatin. The transgene effectively depressed myostatin function. Transgenic mice showed dramatic growth and muscle mass by 9 weeks of age. Here we reported that individual major muscles of transgenic mice were 45-115% heavier than those of wild-type mice, maintained normal blood glucose, insulin sensitivity, and fat mass after a 2-month regimen with a high-fat diet (45% kcal fat). In contrast, high-fat diet induced wild-type mice with 170-214% more fat mass than transgenic mice and developed impaired glucose tolerance and insulin resistance. Insulin signaling, measured by Akt phosphorylation, was significantly elevated by 144% in transgenic mice over wild-type mice fed a high-fat diet. Interestingly, high-fat diet significantly increased adiponectin secretion while blood insulin, resistin, and leptin levels remained normal in the transgenic mice. The results suggest that disruption of myostatin function by its propeptide favours dietary fat utilization for muscle growth and maintenance. An increased secretion of adiponectin may promote energy partition toward skeletal muscles, suggesting that a beneficial interaction between muscle and adipose tissue play a role in preventing obesity and insulin resistance.  相似文献   

9.
It has been reported that benfluorex ameliorates the insulin resistance induced by high-fat feeding when its administration is initiated at the same time as the change in diet. Here we have examined whether benfluorex reverses insulin resistance when this is established in middle-aged rats chronically maintained on a high-fat diet. Untreated 12-month-old rats that had been subjected to a high-fat diet for the last 6 months showed markedly lower insulin-induced stimulation of 2-deoxyglucose uptake by strips of soleus muscle and a reduced expression of GLUT4 glucose carriers in skeletal muscle. However, animals subjected to the same protocol but treated with benfluorex during the last month of high-fat feeding showed marked improvement in insulin-stimulated glucose transport by soleus muscle. Benfluorex treatment caused a substantial increase in the content of GLUT4 protein in white muscle; however, GLUT4 levels in red muscle remained low. Our results indicate: (i) that benfluorex treatment in middle-aged rats reverses the insulin resistance induced by high-fat feeding in soleus muscle; (ii) benfluorex is active even when it is administered once the insulin-resistant state is already established; (iii) reversion of muscle insulin resistance by benfluorex can occur independently of modifications in GLUT4 protein expression.  相似文献   

10.
We examined the effect of leptin on the insulin resistance in skeletal muscles by measuring glucose transport. Male Wistar rats were fed rat chow or high-fat diets for 30 days. Before sacrifice, rats fed high-fat diet were subcutaneously injected with leptin (1 mg/kg b.w.) for 3 days. The glucose transport in epitrochlearis and soleus muscles did not differ in the experimental groups under basal conditions, however these values decreased significantly in the rats fed high-fat diet under insulin stimulation (p<0.01). Leptin treatment recovered the decreased glucose transport in epitrochlearis (p<0.05) and soleus muscles (p=0.08). Triglyceride concentrations in soleus muscles were increased significantly in the rats fed high-fat diet as compared to rats fed chow diet (p<0.01), and were decreased significantly by leptin treatment (p<0.01). The glucose transport was measured under basal conditions and after 60 microU/ml of insulin treatment with or without 50 ng/ml of leptin. Leptin had no direct stimulatory effect on glucose transport under both basal and insulin-stimulated conditions in vitro. These results demonstrate that leptin injection to rats fed high-fat diet recovered impaired insulin responsiveness of skeletal muscles and muscle triglyceride concentrations. However, there was no direct stimulatory effect of leptin on insulin sensitivity of skeletal muscles in vitro.  相似文献   

11.
An improved immunogold labeling procedure was used to examine the subcellular distribution of glucose transporters in Lowricryl HM20- embedded skeletal muscle from transgenic mice overexpressing either Glut1 or Glut4. In basal muscle, Glut4 was highly enriched in membranes of the transverse tubules and the terminal cisternae of the triadic junctions. Less than 10% of total muscle Glut4 was present in the vicinity of the sarcolemmal membrane. Insulin treatment increased the number of gold particles associated with the transverse tubules and the sarcolemma by three-fold. However, insulin also increased the total Glut4 immunogold reactivity in muscle ultrathin sections by up to 1.8- fold and dramatically increased the amount of Glut4 in muscle sections as observed by laser confocal immunofluorescence microscopy. The average diameter of transverse tubules observed in longitudinal sections increased by 50% after insulin treatment. Glut1 was highly enriched in the sarcolemma, both in the basal state and after insulin treatment. Disruption of transverse tubule morphology by in vitro glycerol shock completely abolished insulin-stimulated glucose transport in isolated rat epitrochlearis muscles. These data indicate that: (a) Glut1 and Glut4 are targeted to distinct plasma membrane domains in skeletal muscle; (b) Glut1 contributes to basal transport at the sarcolemma and the bulk of insulin-stimulated transport is mediated by Glut4 localized in the transverse tubules; (c) insulin increases the apparent surface area of transverse tubules in skeletal muscle; and (d) insulin causes the unmasking of a COOH-terminal antigenic epitope in skeletal muscle in much the same fashion as it does in rat adipocytes.  相似文献   

12.
目的:通过研究高脂饮食和有氧运动对胰岛素抵抗(IR)小鼠骨骼肌雷帕霉素靶蛋白/核糖体S6激酶1(mTOR/S6K1)通路的影响,试图为运动防治IR提供理论依据。方法:8周C57BL/6小鼠随机分为正常饮食组和高脂饮食组,每组各20只,高脂饮食组喂养8周后建立IR模型。随后将正常饮食组再次随机分为正常饮食安静组(NC)和正常饮食运动组(NE);高脂饮食组也随机分为高脂饮食安静组(HC)和高脂饮食运动组(HE)。各运动组进行为期6周、75%VO2max强度跑台训练,每天1次,每次60min,每周5次。实验结束后采用OGTT检测葡萄糖耐量,组织学检测胰岛形态变化,ELISA法检测血清空腹胰岛素水平,Northern blot、Western blot检测骨骼肌中mTOR和S6K1 mRNA和蛋白及其磷酸化蛋白pS6K1-Thr389的表达。结果:与NC组相比,HC组小鼠体重、空腹血清胰岛素值和胰岛β细胞团面积百分比均呈显著增加,且OGTT曲线显示糖耐量明显受损,然而6周有氧运动后以上各指标呈显著性降低,葡萄糖耐量也得到明显改善;且骨骼肌中mTOR、S6K1、pS6K1-Thr389 mRNA和蛋白表达均明显降低。结论:mTOR/S6K1信号通路与高脂饮食诱导IR的发生密切相关,有氧运动明显增加了机体组织对胰岛素的敏感性,推测有氧运动可能通过抑制mTOR/S6K1信号通路,增加IR小鼠骨骼肌的能量代谢从而改善IR。  相似文献   

13.
目的观察运动干预对高脂饲料诱导胰岛素抵抗(IR)大鼠白细胞介素1β(IL-1β)表达的影响,探讨运动减轻IR的可能机制。方法健康Wistar雄性大鼠分为基础饲料喂养组(normal chow group,NC),高脂膳食喂养组(high-fat diet group,HF)。高脂膳食喂养Wistar雄性大鼠10周,构建IR动物模型。10周后,HF组再随机分为高脂喂养运动组和非运动组,游泳运动干预4周。游泳运动干预前后以正常血糖-高血浆胰岛素钳夹实验技术[hyperinsulinemic-euglycemic clamp(HEC)technique]评估IR大鼠胰岛素敏感性,ELISA法测定大鼠血清IL-1β水平,RT-PCR法测定大鼠骨骼肌IL-1βmRNA表达。结果HF组大鼠葡萄糖输注率(glucose infusion rate,GIR)显著低于NC组(P〈0.05),HF组血清IL-1β水平及骨骼肌组织IL-1βmRNA表达明显高于NC组(P〈0.05,P〈0.01);运动组大鼠血清IL-1β水平及骨骼肌组织IL-1βmRNA表达明显低于非运动组(P〈0.05),与NC组差异无显著性(P〉0.05)。结论运动改善IR大鼠胰岛素敏感性,可能与降低IR大鼠IL-1β的表达有关。  相似文献   

14.
Methionine-S-sulfoxide reductase (MsrA) protects against high-fat diet-induced insulin resistance due to its antioxidant effects. To determine whether its counterpart, methionine-R-sulfoxide reductase (MsrB) has similar effects, we compared MsrB1 knockout and wild-type mice using a hyperinsulinemic-euglycemic clamp technique. High-fat feeding for eight weeks increased body weights, fat masses, and plasma levels of glucose, insulin, and triglycerides to similar extents in wild-type and MsrB1 knockout mice. Intraperitoneal glucose tolerance test showed no difference in blood glucose levels between the two genotypes after eight weeks on the high-fat diet. The hyperglycemic-euglycemic clamp study showed that glucose infusion rates and whole body glucose uptakes were decreased to similar extents by the high-fat diet in both wild-type and MsrB1 knockout mice. Hepatic glucose production and glucose uptake of skeletal muscle were unaffected by MsrB1 deficiency. The high-fat diet-induced oxidative stress in skeletal muscle and liver was not aggravated in MsrB1-deficient mice. Interestingly, whereas MsrB1 deficiency reduced JNK protein levels to a great extent in skeletal muscle and liver, it markedly elevated phosphorylation of JNK, suggesting the involvement of MsrB1 in JNK protein activation. However, this JNK phosphorylation based on a p-JNK/JNK level did not positively correlate with insulin resistance in MsrB1-deficient mice. Taken together, our results show that, in contrast to MsrA deficiency, MsrB1 deficiency does not increase high-fat diet-induced insulin resistance in mice.  相似文献   

15.
Employing subcellular membrane fractionation methods it has been shown that insulin induces a 2-fold increase in the Glut 4 protein content in the plasma membrane of skeletal muscle from rats. Data based upon this technique are, however, impeded by poor plasma membrane recovery and cross-contamination with intracellular membrane vesicles. The present study was undertaken to compare the subcellular fractionation technique with the technique using [3H]ATB-BMPA exofacial photolabelling and immunoprecipitation of Glut 4 on soleus muscles from 3-week-old Wistar rats. Maximal insulin stimulation resulted in a 6-fold increase in 3-O-methylglucose uptake, and studies based on the subcellular fractionation method showed a 2-fold increase in Glut 4 content in the plasma membrane, whereas the exofacial photolabelling demonstrated a 6- to 7-fold rise in cell surface associated Glut 4 protein. Glucose transport activity was positively correlated with cell surface Glut 4 content as estimated by exofacial labelling. In conclusion: (1) the increase in glucose uptake in muscle after insulin exposure is caused by an augmented concentration of Glut 4 protein on the cell surface membrane, (2) at maximal insulin stimulation (20 mU/ml) approximately 40% of the muscle cell content of Glut 4 is at the cell surface, and (3) the exofacial labelling technique is more sensitive than the subcellular fractionation technique in measuring the amount of glucose transporters on muscle cell surface.  相似文献   

16.
Borst SE  Snellen HG 《Life sciences》2001,69(13):1497-1507
We assessed the effects of combined metformin treatment and exercise training on body composition, on insulin concentration following glucose loading, on insulin-stimulated glucose transport in skeletal muscle, and on muscle glycogen content. Male Sprague-Dawley rats were treated for 35 days with or without metformin (320 mg/kg/day) and/or treadmill exercise training (20 min at 20 m/min, 5 days/wk). Because metformin reduces food intake, pair-fed controls were included. Metformin, training, and pair-feeding all decreased food intake, body weight, and insulin concentration following glucose loading. Metformin and training reduced intra-abdominal fat, but pair feeding did not. In isolated strips derived from soleus, epitrochlearis and extensor carpi ulnaris muscles, metformin increased insulin-stimulated transport of [3H]-2-deoxyglucose by 90%, 89% and 125%, respectively (P < 0.02) and training increased [3H]-2-deoxyglucose transport in the extensor carpi ulnaris muscle only (66%, P < 0.05). Pair-feeding did not alter [3H]-2-deoxyglucose transport. Training increased gastrocnemius muscle glycogen by 100% (P < 0.001). Metformin and pair-feeding did not alter muscle glycogen. We conclude that metformin reverses the maturation-induced impairment of insulin responsiveness in Sprague-Dawley rats by increasing insulin-stimulated glucose transport in skeletal muscle and that this effect is not secondary to reduced food intake. We also conclude that metformin and exercise training may increase insulin sensitivity by different mechanisms, with training causing increased glucose transport only in some muscles and also causing increased muscle glycogen storage.  相似文献   

17.
Depletion of GLUT4, the primary glucose transporter protein in adipose tissue and skeletal muscle, is reported to contribute to insulin resistance in pregnancy or diabetes. To examine this phenomenon, the expression of GLUT4 protein was assessed by Western blotting in streptozotocin-induced diabetic pregnant rats. In adipose tissue, relative to control, it was decreased by 30% in the normal pregnant group (p<0.001), by 37% in the diabetic nonpregnant group (p<0.01) and by 65% in the diabetic pregnant group (p<0.001). On the other hand, no significant variation was evident among the groups in skeletal muscle. To assess the mechanisms responsible for depletion of GLUT4 protein in adipose tissue, we quantitated levels of GLUT4 mRNA with a RNase protection assay. It was decreased by 44% in the normal pregnant group (p<0.05) and by 55% in the diabetic pregnant group (p<0.05), but not altered in the diabetic nonpregnant group. These results suggest that the depletion of GLUT4 protein in adipose tissue is a factor contributing to insulin resistance in pregnancy or diabetes, especially when the two states exist in combination.  相似文献   

18.
The mechanisms of insulin resistance differ among tissues, and under various circumstances. A high-fat diet is known to induce insulin resistance, but the timing of this insulin resistance induction in the liver differs from that in other insulin-target tissues. Hyperinsulinemic-euglycemic clamp studies have revealed that a high-fat diet induces insulin resistance in the liver relatively quickly, while taking more time in muscle and adipose tissue. In contrast, biochemical studies have shown a high-fat diet to paradoxically enhance insulin signaling in the liver. The results of a recent study conducted by our group indicate that hypothalamic insulin resistance via p70 S6 kinase 1 (S6K1) activation induced by a high-fat diet may explain this discrepancy between physiological and biochemical observations. There are both direct and indirect pathways by which insulin suppresses hepatic glucose production, and the indirect pathway via the hypothalamus is particularly impaired under relatively short-term overfeeding conditions, which in turn leads to compensatory enhancement of insulin signaling in the liver.  相似文献   

19.
Insulin resistance in skeletal muscle and heart plays a major role in the development of type 2 diabetes and diabetic heart failure and may be causally associated with altered lipid metabolism. Hormone-sensitive lipase (HSL) is a rate-determining enzyme in the hydrolysis of triglyceride in adipocytes, and HSL-deficient mice have reduced circulating fatty acids and are resistant to diet-induced obesity. To determine the metabolic role of HSL, we examined the changes in tissue-specific insulin action and glucose metabolism in vivo during hyperinsulinemic euglycemic clamps after 3 wk of high-fat or normal chow diet in awake, HSL-deficient (HSL-KO) mice. On normal diet, HSL-KO mice showed a twofold increase in hepatic insulin action but a 40% decrease in insulin-stimulated cardiac glucose uptake compared with wild-type littermates. High-fat feeding caused a similar increase in whole body fat mass in both groups of mice. Insulin-stimulated glucose uptake was reduced by 50-80% in skeletal muscle and heart of wild-type mice after high-fat feeding. In contrast, HSL-KO mice were protected from diet-induced insulin resistance in skeletal muscle and heart, and these effects were associated with reduced intramuscular triglyceride and fatty acyl-CoA levels in the fat-fed HSL-KO mice. Overall, these findings demonstrate the important role of HSL on skeletal muscle, heart, and liver glucose metabolism.  相似文献   

20.
We have used differential display to identify genes whose expression is altered in type 2 diabetes thus contributing to its pathogenesis. One mRNA is overexpressed in fibroblasts from type 2 diabetics compared with non-diabetic individuals, as well as in skeletal muscle and adipose tissues, two major sites of insulin resistance in type 2 diabetes. The levels of the protein encoded by this mRNA are also elevated in type 2 diabetic tissues; thus, we named it PED for phosphoprotein enriched in diabetes. PED cloning shows that it encodes a 15 kDa phosphoprotein identical to the protein kinase C (PKC) substrate PEA-15. The PED gene maps on human chromosome 1q21-22. Transfection of PED/PEA-15 in differentiating L6 skeletal muscle cells increases the content of Glut1 transporters on the plasma membrane and inhibits insulin-stimulated glucose transport and cell-surface recruitment of Glut4, the major insulin-sensitive glucose transporter. These effects of PED overexpression are reversed by blocking PKC activity. Overexpression of the PED/PEA-15 gene may contribute to insulin resistance in glucose uptake in type 2 diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号