首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Photosynthesis and related leaf characteristics were measured in canopies of co-occurring Quercus rubra L. (red oak), Quercus prinus L. (chestnut oak) and Acer rubrum L. (red maple) trees. Mature (20+ m tall) trees were investigated at sites of differing soil water availability within a catchment (a drier upper site and a wetter lower site). Leaf photosynthetic characteristics differed significantly between species and in response to site and position in the canopy. Photosynthetic capacity (Amax) was significantly greater at the wetter site in all canopy strata in A. rubrum but not in Q. rubra or Q. prinus. Our findings for A. rubrum are generally consistent with those predicting that species with higher specific leaf area (SLA) will have higher Amax per unit leaf nitrogen (N) and that species with leaves with lower SLA (e.g. Q. rubra and Q. prinus) will have shallower slopes of the Amax-N relationship. Importantly, the relationships between Amax and Narea (and by implication photosynthetic nitrogen-use efficiency, PNUE) differed in A. rubrum between the sites, with PNUE significantly lower at the drier site. The lower photosynthetic capacity and PNUE must substantially reduce carbon acquisition capacity in A. rubrum under these field conditions. Maximum stomatal conductance (gsmax) differed significantly between species, with gsmax greatest in Q. rubra and Q. prinus. In Q. rubra and Q. prinus, gsmax was significantly lower at the upper site than the lower site. There was no significant response of gsmax to site in A. rubrum. These stomatal responses were consistent with the Ci/Ca ratio, which was significantly lower in leaves of Q. rubra and Q. prinus at the upper site, but did not differ between sites in A. rubrum. Leaf '13C was significantly lower in A. rubrum than in either Q. rubra or Q. prinus at both sites. These findings indicate differences in stomatal behaviour in A. rubrum which are likely to contribute to lower water use efficiency at both sites. Our results support the hypothesis that the two Quercus species, in contrast to A. rubrum, maintain photosynthetic capacity at the drier site whilst minimising transpirational water loss. They also suggest, based primarily on physiological evidence, that the ability of A. rubrum to compete with other species of these deciduous forests may be limited, particularly in sites of low moisture availability and during low rainfall years.  相似文献   

2.
Using constant heat sap flow sensors, xylem water fluxes in ten tree species and two liana species were monitored for 5–10 days during the beginning of the wet season in May, 1993. For a subset of the trees, a branch was also monitored at the top of the crown for 5 days. Xylem flux (J S) was related diurnally in all plants to vapor pressure deficit (D) measured within the upper-third of the canopy, and to incoming shortwave radiation R S above the canopy. Cross-correlation analysis was used to estimate time lags between diurnal patterns of J S and D or R S, and between J S in stems and branches. The maximum correlation coefficient from cross-correlation of J S with R S (range=0.57–0.92) was often higher than the maximum of J S with D (range=0.43–0.89), indicating that diurnal J S was more dependent on R S than D. Time lags (lag corresponding to maximum correlation) of J S at stem-base with D was shorter (0–45 min) than with radiation (5–115 min), highly variable within a species, and uncorrelated to the height or exposure of tree crowns or liana in the canopy. On a stand level, not accounting for the diel lag between stem sap flux and canopy flux resulted in errors in estimated canopy transpiration of up to 30%. Received: 19 October 1998 / Accepted: 8 June 1999  相似文献   

3.
Dwarf mistletoes induce abnormal growth patterns and extreme changes in the biomass allocation of their hosts as well as directly parasitizing them for resources. Because biomass allocation can affect the resource use and efficiency of conifers, we studied the influences of dwarf mistletoe infection on above-ground biomass allocation of Douglas fir and western larch, and the consequences of such changes on whole-tree water use and water relations. Sap flow, tree water potentials, leaf:sapwood area ratios (AL:AS), leaf carbon isotope ratios, and nitrogen content were measured on Douglas fir and western larch trees with various degrees of mistletoe infection during the summer of 1996 in western Montana. Heavy dwarf mistletoe infection on Douglas fir and western larch was related to significant increases in AL:AS. Correspondingly, water transport dynamics were altered in infected trees, but responses were different for the two species. Higher AL:AS ratios in heavily infected Douglas firs were offset by increases in sapwood area-based sap flux densities (QSW) such that leaf area-based sap flux densities (QL) and predawn leaf water potentials at the end of the summer did not change significantly with mistletoe infection. Small (but statistically insignificant) decreases of QL for heavily infected Douglas firs were enough to offset increases in leaf area such that whole-tree water use was similar for uninfected and heavily infected trees. Increased AL:AS ratios of heavily infected western larch were not offset by increases of QSW. Consequently, QL was reduced, which corresponded with significant decreases of water potential at the end of the summer. Furthermore, mistletoe-infection-related changes in AL:AS as a function of tree size resulted in greater whole-tree water use for large infected larches than for large uninfected trees. Such changes may result in further depletion of limited soil water resources in mature infected stands late in the growing season. Foliage from infected trees of both species had lower water use efficiencies than non-infected trees. Our results demonstrate substantial changes of whole-tree processes related to mistletoe infection, and stress the importance of integrating whole-tree physiological and structural processes to fully understand the mechanisms by which pathogens suppress forest productivity.  相似文献   

4.
Conifers decrease the amount of biomass apportioned to leaves relative to sapwood in response to increasing atmospheric evaporative demand. We determined how these climate-driven shifts in allocation affect the aboveground water relations of ponderosa pine growing in contrasting arid (desert) and humid (montane) climates. To support higher transpiration rates, a low leaf:sapwood area ratio (AL/AS) in desert versus montane trees could increase leaf-specific hydraulic conductance (KL). Alternatively, a high sapwood volume:leaf area ratio in the desert environment may increase the contribution of stored water to transpiration. Transpiration and hydraulic conductance were determined by measuring sap flow (JS) and shoot water potential during the summer (June-July) and fall (August-September). The daily contribution of stored water to transpiration was determined using the lag between the beginning of transpiration from the crown at sunrise and JS. In the summer, mean maximum JS was 31.80LJ.74 and 24.34Dž.05 g m-2 s-1 for desert and montane trees (a 30.6% difference), respectively. In the fall, JS was 25.33NJ.52 and 16.36dž.64 g m-2 s-1 in desert and montane trees (a 54.8% difference), respectively. JS was significantly higher in desert relative to montane trees during summer and fall (P<0.05). Predawn and midday shoot water potential and sapwood relative water content did not differ between environments. Desert trees had a 129% higher KL than montane trees in the summer (2.41᎒-5 versus 1.05᎒-5 kg m-2 s-1 MPa-1, P<0.001) and a 162% higher KL in the fall (1.97᎒-5 versus 0.75᎒-5 kg m-2 s-1 MPa-1, P<0.001). Canopy conductance decreased with D in all trees at all measurement periods (P<0.05). Maximum gC was 3.91 times higher in desert relative to montane trees averaged over the summer and fall. Water storage capacity accounted for 11 kg (11%) and 10.6 kg (17%) of daily transpiration in the summer and fall, respectively, and did not differ between desert and montane trees. By preventing xylem tensions from reaching levels that cause xylem cavitation, high KL in desert ponderosa pine may facilitate its avoidance. Thus, the primary benefit of low leaf:sapwood allocation in progressively arid environments is to increase KL and not to increase the contribution of stored water to transpiration.  相似文献   

5.
应用Granier热消散探针,长期监测华南丘陵地马占相思(Acacia mangium)林14棵样树的树干液流(Sap flow),由此计算整树和林段的蒸腾速率,结合同步记录的环境因子,求算冠层平均气孔导度(Gc)。Granier探针的灵敏度较高,能精确测定即使是微弱的液流活动。观测结果显示,树木个体之间的液流密度(Js)和整树蒸腾(Et)受树形特征影响较大。马占相思林径级大的树木个体数较少,但占据林段边材总面积和林段蒸腾的比例较大。JsEt的日变化主要受光合有效辐射(Qo)和空气水蒸气压亏缺(D)的控制,土壤含水量(θ)对较大胸径树木Et的影响大于胸径较小的树木,个体之间JsEt的差异随θ的下降而缩小。一年中,林段蒸腾(E)在光照和水热条件较好的7月最高,9~12月,由于土壤水分供应的减少致使E值降低,ED的敏感性下降。Gc与主要环境因子的关系与E相似,如果θ长期偏低,Gc会明显下降,是造成E降低的主要原因。成熟马占相思林在光照充足、水热条件较好的情况下的蒸腾活动旺盛,但对土壤水分胁迫的忍受力较低。  相似文献   

6.
We quantified the effect of stand age and tree species composition on canopy transpiration (EC) by analysing transpiration per unit leaf area (EL) and canopy stomatal conductance (GS) for boreal trees comprising a five stand wildfire chronosequence. A total of 196 sap flux sensors were used on 90 trees consisting of Betula papyrifera Marsh (paper birch; present in the youngest stand), Populus tremuloides Michx (quaking aspen), Pinus banksiana Lamb. (jack pine), and Picea mariana (Mill.) (black spruce). While fine roots were positively correlated with stand EC; leaf area index, basal area, and sapwood area were not. Stands less than 70 years old were dominated by Populus tremuloides and Pinus banksiana and stands greater than 70 years old were composed almost entirely of Picea mariana. As Populus tremuloides and Pinus banksiana increased in size and age, they displayed an increasing sapwood to leaf area ratio (AS : AL), a constant minimum leaf water potential (ΨL), and a constant proportionality between GS at low vapour pressure deficit (Dj GSref) and the sensitivity of GS to D (–δ). In contrast, AS : AL, minimum ΨL, and the proportionally between –δ and GSref decreased with height and age in Picea mariana. A GS model that included the effects of D, AS : AL, tree height, and for Picea mariana an increasing soil to leaf water potential gradient with stand age, was able to capture the effects of contrasting hydraulic properties of Picea mariana, Populus tremuloides and Pinus banksiana during stand development after wildfire.  相似文献   

7.
G. Edwards  H. Clark  P. Newton 《Oecologia》2001,127(3):383-394
Seed production and seedling recruitment were measured over 2 years under ambient (360 ppm) and elevated (475 ppm) atmospheric CO2 in a free air carbon dioxide enrichment (FACE) experiment, carried out in a sheep-grazed pasture on dry, sandy soil in New Zealand. In both years elevated CO2 led to more dispersed seeds of the grasses Anthoxanthum odoratum, Lolium perenne and Poa pratensis, the legumes Trifolium repens and T. subterraneum and the herbs Hypochaeris radicata and Leontodon saxatilis. The increased seed dispersal in A. odoratum, H. radicata, Leontodon saxatilis and T. repens reflected both more inflorescences per unit area and more seeds per inflorescence under elevated CO2. The increased seed dispersal in Lolium perenne, P. pratensis and T. subterraneum was due solely to more inflorescences per unit area. The number of seedlings that emerged and survived to at least 7 months of age was increased by elevated CO2 for H. radicata, Leontodon saxatilis, T. repens and T. subterraneum in both years and for A. odoratum and Lolium perenne in the first year. For species where increased seedling recruitment was noted, there was a significant positive correlation between seed production in summer and seedling emergence in the following autumn and winter, and sowing 200 extra seeds per species m-2 resulted in more seedlings compared to unsown controls. Elevated CO2 did not affect seedling survival in any species. There was no measurable effect of elevated CO2 on canopy and soil surface conditions or soil moisture at the time of seedling emergence. The results suggest the dominant effect of elevated CO2 on seedling recruitment in this pasture was an indirect one, reflecting effects on the number of seeds produced. The biomass of H. radicata, Leontodon saxatilis, T. repens and T. subterraneum in the above-ground vegetation was greater under elevated than ambient CO2. However, the size of individual seedlings and mature plants of these four species was unaffected by elevated CO2. The results indicate an important way elevated CO2 influenced plant species composition in this pasture was through changes in the pattern of seedling recruitment.  相似文献   

8.
L. Donovan  M. Linton  J. Richards 《Oecologia》2001,129(3):328-335
Predawn leaf water potential (Ow) and xylem pressure potential (Op) are expected to be in equilibrium with the soil water potential (soil Ow) around roots of well-watered plants. We surveyed 21 plant species (desert, chaparral, and coastal salt marsh species, as well as two temperate tree and two crop species) for departures from this expectation and for two potential mechanisms explaining the departures. We measured soil Ow, leaf Ow, and xylem Op in the glasshouse under well-watered conditions that eliminated soil moisture heterogeneity and ensured good soil-root hydraulic continuity. Most species failed to equilibrate fully with soil Ow, depending on whether leaf Ow or xylem Op was used as the measure of predawn plant water potential. The contribution of nighttime transpiration to predawn disequilibrium was assessed by comparing plants with bagged canopies (enclosed overnight in plastic bags to eliminate transpiration) to plants with unbagged canopies. Nighttime transpiration significantly reduced predawn xylem Op for 16 of 21 species and the magnitude of this contribution to predawn disequilibrium was large (0.50-0.87 MPa) in four woody species: Atriplex confertifolia, Batis maritima, Larrea tridentata, and Sarcobatus vermiculatus. The contribution of nighttime transpiration to predawn disequilibrium was not more prevalent in mesic compared with xeric or desert phreatophytic compared with non-phreatophytic species. Even with bagging that eliminated nighttime transpiration, plants did not necessarily equilibrate with soil Ow. Plant xylem Op or leaf Ow were significantly more negative than soil Ow for 15 of 15 species where soil Ow was measured. Predawn disequilibrium based on leaf Ow was of large magnitude (0.50-2.34 MPa) for seven of those 15 species, predominately halophytes and Larrea tridentata. A portion of the discrepancy between leaf and soil Ow is consistent with the putative mechanism of high concentrations of leaf apoplastic solutes as previously modeled for a halophyte, but an additional portion remains unexplained. Predawn leaf Ow and xylem Op may not reflect soil Ow, particularly for woody plants and halophytes, even under well-watered conditions.  相似文献   

9.
The effect of tree height on crown level stomatal conductance   总被引:19,自引:6,他引:13  
Variation in stomatal conductance is typically explained in relation to environmental conditions. However, tree height may also contribute to the variability in mean stomatal conductance. Mean canopy stomatal conductance of individual tree crowns (GSi) was estimated using sap flux measurements in Fagus sylvatica L., and the hypothesis that GSi decreases with tree height was tested. Over 13 d of the growing season during which soil moisture was not limiting, GSi decreased linearly with the natural logarithm of vapour pressure deficit (D), and increased exponentially to saturation with photosynthetic photon flux density (Qo). Under conditions of D = 1 kPa and saturating Qo, GSi decreased by approximately 60% with 30 m increase in tree height. Over the same range in height, sapwood‐to‐leaf area ratio (AS:AL) doubled. A simple hydraulic model explained the variation in GSi based on an inverse relationship with height, and a linear relationship with AS:AL. Thus, in F. sylvatica, adjustments in AS:AL partially compensate for the negative effect of increased flow‐path length on leaf conductance. Furthermore, because stomata with low conductance are less sensitive to D, gas exchange of tall trees is reduced less by high D. Despite these compensations, decreasing hydraulic conductance with tree height in F. sylvatica reduces carbon uptake through a corresponding decrease in stomatal conductance.  相似文献   

10.
The multiple steady states in an isothermal, constant-density CSTR involving two-substrates, enzyme- catalyzed reactions is determined by a zero eigenvalue analysis. The hysteresis and bistability occurs for a certain range of the rate constant of product formation from a ternary complex, kES1S2MP+E. A two-parameter (kES1S2MP+E, k0MS1) bifurcation diagram for several different values of flow rate kS1̂ is also presented. It shows that, to maintain the existence of the steady state multiplicity under a fixed flow rate, the larger the rate constant kES1S2MP+E is, the larger the feed concentration of a substrate is required and the wider the range of that exists. To maintain the existence of the steady state multiplicity for a lower flow rate, it is required to reduce the feed concentration of substrates.  相似文献   

11.
We tested the hypothesis that hydraulic conductance per unit leaf surface area of plant shoots (KSL) determines the maximum diurnal stomatal conductance (gL) that can be reached by plants growing in the field. A second hypothesis was tested that some xylem cavitation cannot be avoided by transpiring plants and might act as a signal for regulating gL. Eleven woody species were studied, differing from each other with respect to taxonomy, wood anatomy and leaf habit. Maximum diurnal gL, transpiration rate (EL), pre-dawn and minimum diurnal leaf water potential (Opd and Omin, respectively) were measured in the field. The critical O level at which stem cavitation was triggered (Ocav) was measured on detached branches, using the acoustic method. A high-pressure flow meter was used to measure maximum KSL of 1-year-old shoots. Both gL and EL were positively related to KSL. The whole-plant hydraulic conductance per unit leaf area (KWL) of all the species studied, calculated as the ratio of EL to (O (=Opd-Omin) was closely related to KSL. In every case, Omin (ranging between -0.85 and -1.35 MPa in the different species) dropped to the Ocav range or was <Ocav (ranging between -0.71 and -1.23 MPa), thus suggesting that some cavitation-induced embolism could not be avoided. The possibility is discussed that some cavitation-induced reduction in KSL is the signal for stomatal closure preventing runaway embolism. The lack of correlation of gL to Ocav is discussed in terms of the inconsistency of Ocav as an indicator of the vulnerability of plants to cavitation. No differences in hydraulic traits were observed between evergreen and deciduous species.  相似文献   

12.
A steady-state nonlinear feedforward controller (FFC) for measurable disturbances is designed for a continuous bioreactor, which is represented by Hammerstein type nonlinear model wherein the nonlinearity is a polynomial with input multiplicities. The manipulated variable is the feed substrate concentration (Sf) and the disturbance variable is the dilution rate (D). The productivity (Q=DP) is considered as the controlled variable. The desired value of Q=3.73 gives two values of feed substrate concentration. The nonlinearity in the gain is considered for relating output to the manipulated variable and separately for the relation between output to disturbance variable. The FFC is also designed for the overall linearized system. The performance of the FFC is evaluated on the nonlinear differential equation model. The FFC is also designed for the model based on a single nonlinear steady-state equation containing both D and Sf. This nonlinear FFC gives the best performance. The nonlinear FFC is also designed by using only linear gain for the disturbance and nonlinear gain for the manipulated variable. Similarly, nonlinear FFC is also designed by using linear gain for the manipulated variable and the nonlinear gain for the disturbance variable. The performances of these FFC schemes are compared.  相似文献   

13.
Although the processes governing photosynthesis are well understood, scaling from shoot to canopy in coniferous forests is complex. Development of different sap-flow techniques has made it possible to measure transpiration of whole trees and thereby also of whole canopies. There is a strong link between photosynthesis and transpiration, for which reason it would be interesting to test whether measurements of canopy transpiration could also be used to estimate canopy photosynthesis. As a first step towards this, water-use efficiency (WUE) was studied at branch and canopy scales on the basis of branch gas-exchange measurements, with half-hourly and daily temporal resolution. Half-hourly and daily WUE at both branch and canopy scales showed a strong dependency on vapour-pressure deficit ('e). Branch photosynthesis modelled from branch transpiration and 'e mimicked well measured branch photosynthesis. Also, modelled photosynthesis, scaled to canopy and compared to net forest CO2 exchange measured by the eddy-covariance technique, occasionally showed good agreement. In spite of these seemingly promising results, there was a difference in the response to 'e between branches and between years, which needs to be better understood.  相似文献   

14.
Post-storage gas exchange parameters like CO2 assimilation, stomatal conductance, transpiration, water use efficiency and intercellular CO2 concentrations, together with several chlorophyll a fluorescence parameters: Fo, Fv, Fv/Fm, Fm/Fo and Fv/Fo were examined in radiata pine (Pinus radiata D. Don) seedlings that were stored for 1, 8 or 15 days at 4° or 10°C with or without soil around the roots. Results were analysed in relation to post-storage water potential and electrolyte leakage in order to forecast their vitality (root growth potential) following cold storage, and post-planting survival potential under optimal conditions. During storage at 4° and 10°C, photosynthesis was reduced, being more pronounced in bare-root seedlings than in seedlings with soil around the roots. The depletion of CO2 assimilation seemed not to be solely a stomatal effect as effects on chloroplasts contributed to this photosynthetic inhibition. Thus, the fall in the ratios Fv/Fm, Fv/Fo and Fm/Fo indicated photochemical apparatus damage during storage. Photosynthetic rate was positively correlated with the root growth index and new root length showing that new root growth is dependent primarily on current photosynthesis. Pre-planting exposure of bare-root radiata pine seedlings to temperatures of 10°C for more than 24 h during transportation or storage is not recommended.  相似文献   

15.
Terpenoids, polyphenols, and C11 metabolites are broadly distributed among brown seaweeds. Terpenoids and polyphenols have often been investigated as chemical defenses against herbivores, while there are only few investigations of the fatty-acid-derived C11 hydrocarbons and C11 sulfur compounds as potential defenses. We investigated effects of C11 sulfur metabolites from the cosmopolitan brown alga Dictyopteris membranacea on feeding and fitness of the herbivorous amphipod Ampithoe longimana. In choice tests between freshly collected thalli of D. hoytii (which lacks C11 sulfur compounds) and D. membranacea (which contains C11 sulfur compounds) amphipods consumed about 4 times more of the species lacking the C11 sulfur compounds. The same feeding preference was observed when these plants were finely ground and embedded in an agar matrix to destroy morphological differences. When a diet made from field-collected thalli of D. membranacea containing C11 sulfur compounds was tested against a diet made from a laboratory culture of D. membranacea that had lost the ability to produce C11 sulfur compounds, the same magnitude of preference was observed for the population lacking the sulfur compounds. In addition to the C11 sulfur compounds, a water-soluble C9-oxo acid that appears to be a by-product in the biosynthesis of the C11 metabolites also suppressed amphipod feeding to a comparable extent. Both classes of compound may contribute to the effective chemical protection of D. membranacea. When juvenile amphipods were reared for 28 days on artificial diets containing the above compounds, their survivorship (⢪%) closely resembled that of a starved treatment, but differed dramatically from a control treatment (60%) consisting of the same food, but without the metabolites. Most other classes of brown algal secondary metabolites are defensive against a broad spectrum of larger herbivores, but relatively ineffective against the amphipod studied here. In contrast, the fatty-acid-derived sulfur compounds and the C9-oxo acid strongly deter Ampithoe-like mesograzers but appear less effective against other herbivores, suggesting that these metabolites could be ecologically important in defending zygotes and germlings against these small consumers.  相似文献   

16.
Two aspen (Populus tremuloides Michx.) clones, differing in O3 tolerance, were grown in a free-air CO2 enrichment (FACE) facility near Rhinelander, Wisconsin, and exposed to ambient air, elevated CO2, elevated O3 and elevated CO2+O3. Leaf instantaneous light-saturated photosynthesis (PS) and leaf areas (A) were measured for all leaves of the current terminal, upper (current year) and the current-year increment of lower (1-year-old) lateral branches. An average, representative branch was chosen from each branch class. In addition, the average photosynthetic rate was estimated for the short-shoot leaves. A summing approach was used to estimate potential whole-plant C gain. The results of this method indicated that treatment differences were more pronounced at the plant- than at the leaf- or branch-level, because minor effects within modules accrued in scaling to plant level. The whole-plant response in C gain was determined by the counteracting changes in PS and A. For example, in the O3-sensitive clone (259), inhibition of PS in elevated O3 (at both ambient and elevated CO2) was partially ameliorated by an increase in total A. For the O3-tolerant clone (216), on the other hand, stimulation of photosynthetic rates in elevated CO2 was nullified by decreased total A.  相似文献   

17.
Physiological traits related to water transport were studied in Rhizophora mangle (red mangrove) growing in coastal and estuarine sites in Hawaii. The magnitude of xylem pressure potential (Px), the vulnerability of xylem to cavitation, the frequency of embolized vessels in situ, and the capacity of R. mangle to repair embolized vessels were evaluated with conventional and recently developed techniques. The osmotic potential of the interstitial soil water (?sw) surrounding the roots of R. mangle was c. -2.6LJ.52᎒-3 and -0.4Lj.13᎒-3 MPa in the coastal and estuarine sites, respectively. Midday covered (non-transpiring) leaf water potentials (OL) determined with a pressure chamber were 0.6-0.8 MPa more positive than those of exposed, freely-transpiring leaves, and osmotic potential of the xylem sap (?x) ranged from -0.1 to -0.3 MPa. Consequently, estimated midday values of Px (calculated by subtracting ?x from covered OL) were about 1 MPa more positive than OL determined on freely transpiring leaves. The differences in OL between covered and transpiring leaves were linearly related to the transpiration rates. The slope of this relationship was steeper for the coastal site, suggesting that the hydraulic resistance was larger in leaves of coastal R. mangle plants. This was confirmed by both hydraulic conductivity measurements on stem segments and high-pressure flowmeter studies made on excised leafy twigs. Based on two independent criteria, loss of hydraulic conductivity and proportions of gas- and liquid-filled vessels in cryo-scanning electron microscope (cryo-SEM) images, the xylem of R. mangle plants growing at the estuarine site was found to be more vulnerable to cavitation than that of plants growing at the coastal site. However, the cryo-SEM analyses suggested that cavitation occurred more readily in intact plants than in excised branches that were air-dried in the laboratory. Cryo-SEM analyses also revealed that, in both sites, the proportion of gas-filled vessels was 20-30% greater at midday than at dawn or during the late afternoon. Refilling of cavitated vessels thus occurred during the late afternoon when considerable tension was present in neighboring vessels. These results and results from pressure-volume relationships suggest that R. mangle adjusts hydraulic properties of the water-transport system, as well as the leaf osmotic potential, in concert with the environmental growing conditions.  相似文献   

18.
The uniform stress hypothesis of stem formation was evaluated by comparing stem taper of Abies balsamea, Abies lasiocarpa, Picea rubens, Pinus contorta, Pinus elliottii, Pinus palustris, Pinus ponderosa, Pinus taeda, and Pseudotsuga menziesii to the taper expected if stems develop to uniformly distribute bending stress. The comparison was conducted by regressing stem diameter at height h (Dh) against bending moment at h (Mh) using the model Dh=J (Mh)' where J and ' are fitted coefficients, and testing for '=0.333, the hypothesized value. Twelve curves were fitted with the model. Seven of the fitted values of ' were significantly different from 0.333, but eight of the values were within ᆞ% of 0.333 and eleven values were within ᆣ% of 0.333. Where the fitted value of ' was >15% of 0.333, residuals were biased with height. Fit by relative height, values of ' were within ᆞ% of 0.333 for large portions of these stems. While most of the fitted values of ' support the uniform-stress hypothesis, the values of ' for Pseudotsuga menziesii trees clearly did not. Many of the fitted values of J were inversely related to the modulus of elasticity (E) of green wood reported for these species. With the exception of Pseudotsuga menziesii, growing conditions appeared to account for extraordinary values of J. Increases in J with stem height corresponded with reported decreases in E with height. The covariance between J and E suggests some regulation of bending curvature by adjustments in cross-sectional area. These results suggest that stems taper to maintain a uniform bending curvature and that when E is relatively constant within and among stems, diameter along the stem or across stems can be predicted from bending moment using a simple power function.  相似文献   

19.
Dynamic responses of understory plants to sunflecks have been extensively studied, but how much differences in dynamic light responses affect daily photosynthesis (Aday) is still the subject of active research. Recent models of dynamic photosynthesis have provided a quantitative tool that allows the critical assessment of the importance of these sunfleck responses on Aday. Here we used a dynamic photosynthesis model to assess differences in four species that were growing in ambient and elevated CO2. We hypothesized that Liriodendron tulipifera, a species with rapid photosynthetic induction gain and slow induction loss, would have the least limitations to sunfleck photosynthesis relative to the other three species (Acer rubrum, Cornus florida, Liquidambar styraciflua). As a consequence, L. tulipifera should have the highest Aday in an understory environment, despite being the least shade tolerant of the species tested. We further hypothesized that daily photosynthetic enhancement by elevated CO2 would differ from enhancement levels observed during light-saturated, steady-state measurements. Both hypotheses were supported by the model results under conditions of low daily photosynthetic photon flux density (PFD; <3% of the above-canopy PFD). However, under moderate PFD (10-20% of the above-canopy PFD), differences in dynamic sunfleck responses had no direct impact on Aday for any of the species, since stomatal and photosynthetic induction limitations to sunfleck photosynthesis were small. Thus, the relative species ranking in Aday under moderate PFD closely matched their rankings in steady-state measurements of light-saturated photosynthesis. Similarly, under elevated CO2, enhancement of modeled Aday over Aday at ambient CO2 matched the enhancement measured under light saturation. Thus, the effects of species-specific differences in dynamic sunfleck responses, and differences in elevated CO2 responses of daily photosynthesis, are most important in marginal light environments.  相似文献   

20.
Plasticity in hydraulic architecture of Scots pine across Eurasia   总被引:1,自引:0,他引:1  
Widespread tree species must show physiological and structural plasticity to deal with contrasting water balance conditions. To investigate these plasticity mechanisms, a meta-analysis of Pinus sylvestris L. sap flow and its response to environmental variables was conducted using datasets from across its whole geographical range. For each site, a Jarvis-type, multiplicative model was used to fit the relationship between sap flow and photosynthetically active radiation, vapour pressure deficit (D) and soil moisture deficit (SMD); and a logarithmic function was used to characterize the response of stomatal conductance (G s) to D. The fitted parameters of those models were regressed against climatic variables to study the acclimation of Scots pine to dry/warm conditions. The absolute value of sap flow and its sensitivity to D and SMD increased with the average summer evaporative demand. However, relative sensitivity of G s to D (m/G s,ref, where m is the slope and G s,ref is reference G s at D = 1 kPa) did not increase with evaporative demand across populations, and transpiration per unit leaf area at a given D increased accordingly in drier/warmer climates. This physiological plasticity was linked to the previously reported climate- and size-related structural acclimation of leaf to sapwood area ratios. G s,ref, and its absolute sensitivity to D (m), tended to decrease with age/height of the trees as previously reported for other pine species. It is unclear why Scots pines have higher transpiration rates at drier/warmer sites, at the expense of lower water-use efficiency. In any case, our results suggest that these structural adjustments may not be enough to prevent lower xylem tensions at the driest sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号