首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heparan sulfate polymerization and modification take place in the Golgi compartment. The modification reactions are initiated by glucosaminyl N-deacetylase/N-sulfotransferase (NDST), a bifunctional enzyme that removes N-acetyl groups from selected N-acetyl-d-glucosamine units followed by N-sulfation of the generated free amino groups. Four isoforms of NDST have been identified. NDST-1 and -2 have a wide and largely overlapping tissue distribution, but it is not known if they can act on the same heparan sulfate chain. We have introduced point mutations into NDST-1 cDNA, which selectively destroy the N-deacetylase or N-sulfotransferase activity of the enzyme [Wei, Z., and Swiedler, S. J. (1999) J. Biol. Chem. 274, 1966-70 and Sueyoshi, T., et al. (1998) FEBS Lett. 433, 211-4]. Stable 293 cell lines expressing the NDST-1 mutants were then generated. Structural analyses of heparan sulfate synthesized by these cells and by cells overexpressing wild-type NDST-1 demonstrate that the N-deacetylation step is not only prerequisite but also rate-limiting, determining the degree of N-sulfation. Transfection of mutant NDST-1 lacking N-deacetylase activity had no effect on heparan sulfate sulfation, while cells expressing wild-type enzyme or NDST-1 lacking N-sulfotransferase activity both resulted in the production of oversulfated heparan sulfate. Since no increase in the amount of N-unsubstituted glucosamine residues was seen after transfection of the mutant lacking N-sulfotransferase activity, the results also suggest that two different enzyme molecules can act on the same glucosamine unit. In addition, we show that oversulfation of heparan sulfate produced by cells tranfected with wild-type NDST-1 or the mutant lacking N-sulfotranferase activity results in decreased sulfation of chondroitin sulfate.  相似文献   

2.
A new assay was developed to measure the N-deacetylase activity of the glucosaminyl N-deacetylase/N-sulfotransferases (NDSTs), which are key enzymes in sulfation of heparan sulfate (HS)/heparin. The assay is based on the recognition of NDST-generated N-unsubstituted glucosamine units in Escherichia coli K5 capsular polysaccharide or in HSs by monoclonal antibody JM-403. Substrate specificity and potential product inhibition of the NDST isoforms 1 and 2 were analyzed by comparing lysates of human 293 kidney cells stably transfected with mouse NDST-1 or -2. We found HSs to be excellent substrates for both NDST enzymes. Both NDST-1 and -2 N-deacetylate heparan sulfate from human aorta ( approximately 0.6 sulfate groups/disaccharide) with comparable high efficiency, apparent Km values of 0.35 and 0.76 microM (calculation based on [HexA]) being lower (representing a higher affinity) than those for K5 polysaccharide (13.3 and 4.7 microM, respectively). Comparison of various HS preparations and the unsulfated K5 polysaccharide as substrates indicate that both NDST-1 and -2 can differentially N-sulfate polysaccharides already modified to some extent by various other enzymes involved in HS/heparin synthesis. Both enzymes were equally inhibited by N-sulfated sequences (>or=6 sugar residues) present in N-sulfated K5, N-deacetylated N-resulfated HS, and heparin. Our primary findings were confirmed in the conventional N-deacetylase assay measuring the release of 3H-acetate of radiolabeled K5 or HS as substrates. We furthermore showed that NDST N-deacetylase activity in crude cell/tissue lysates can be partially blocked by endogenous HS/heparin. We speculate that in HS biosynthesis, some NDST variants initiate HS modification/sulfation reactions, whereas other (or the same) NDST isoforms later on fill in or extend already modified HS sequences.  相似文献   

3.
4.
During the biosynthesis of heparan sulphate (HS) in the Golgi compartment, the first modification enzyme, glucosaminyl N-deacetylase/N-sulphotransferase (NDST), starts to work on the growing HS polysaccharide chain. This enzyme defines the overall design of the sulphation pattern, which will determine the ability of the HS chain to interact with target molecules. NDST removes acetyl groups from glucosamine residues and replaces them with sulphate groups. These N-sulphate groups are essential for further modification during biosynthesis; without N-sulphation, no O-sulphation or conversion of glucuronic acid into iduronic acid will occur. Four NDST isoforms, transcribed from four genes, have been identified. Much of our work is concentrated on how the enzymes are organized within the Golgi compartment and the identification of interacting partners. In addition, we study mice in which the gene encoding NDST-1 or NDST-2 has been knocked out. NDST-1 knockout mice with altered HS structure die at birth due to lung failure, whereas lack of NDST-2 results in abnormal mast cells. Since NDSTs have a key role in HS design (see above), these mice can be used to study HS function. Areas of interest are cell differentiation, growth, inflammation, cancer, lipid metabolism and microbial infection.  相似文献   

5.
Heparan sulfate (HS) is a highly sulfated polysaccharide participated in essential physiological functions from regulating cell growth to blood coagulation. HS contains sulfated domains known as N-S domains and low sulfate domains known as N-Ac domains. The distribution of the domain structures is likely governed by the action of glucosaminyl N-deacetylase/N-sulfotransferase (NDST). Here, we sought to determine the substrate specificity of NDST using model substrates and recombinant NDST protein. We discovered that NDST-1 carries out the modification in a highly ordered fashion. The enzyme sulfates the substrate from the nonreducing end toward the reducing end consecutively, leading to the product with a cluster of N-sulfo glucosamine residues. Furthermore, a preexisting N-sulfo glucosamine residue prevents the action of NDST-1 at the residues immediately located at the nonreducing end, allowing the formation of an N-Ac domain. Our results provide the long sought evidence for understanding the formation of sulfated versus nonsulfated domains in the HS isolated from cells and tissues. The study demonstrates the regulating role of NDST-1 in mapping the sulfation patterns of HS.  相似文献   

6.
Heparan sulfate/heparin N-deacetylase/N-sulfotransferase-1 (NDST-1) is a critical enzyme involved in heparan sulfate/heparin biosynthesis. This dual-function enzyme modifies the GlcNAc-GlcA disaccharide repeating sugar backbone to make N-sulfated heparosan. N-sulfation is an absolute requirement for the subsequent epimerization and O-sulfation steps in heparan sulfate/heparin biosynthesis. We have expressed rat liver (r) NDST-1 in Saccharomyces cerevisiae as a soluble protein. The yeast-expressed enzyme has both N-deacetylase and N-sulfotransferase activities. N-acetyl heparosan, isolated from Escherichia coli K5 polysaccharide, de-N-sulfated heparin (DNSH) and completely desulfated N-acetylated heparan sulfate (CDSNAcHS) are all good substrates for the rNDST-1. However, N-desulfated, N-acetylated heparin (NDSNAcH) is a poor substrate. The rNDST-1 was partially purified on heparin Sepharose CL-6B. Purified rNDST-1 requires Mn(2+) for its enzymatic activity, can utilize PAPS regenerated in vitro by the PAPS cycle (PAP plus para-nitrophenylsulfate in the presence of arylsulfotransferase IV), and with the addition of exogenous PAPS is capable of producing 60-65% N-sulfated heparosan from E. coli K5 polysaccharide or Pasteurella multocida polysaccharide.  相似文献   

7.
Using a high throughput heparan sulfate (HS) isolation and characterization protocol, we have analyzed HS structure in several tissues from mice/mouse embryos deficient in HS biosynthesis enzymes (N-deacetylase/N-sulfotransferase (NDST)-1, NDST-2, and C5-epimerase, respectively) and in mice lacking syndecan-1. The results have given us new information regarding HS biosynthesis with implications on the role of HS in embryonic development. Our main conclusions are as follows. 1) The HS content, disaccharide composition, and the overall degree of N- and O-sulfation as well as domain organization are characteristic for each individual mouse tissue. 2) Removal of a key biosynthesis enzyme (NDST-1 or C5-epimerase) results in similar structural alterations in all of the tissues analyzed. 3) Essentially no variation in HS tissue structure is detected when individuals of the same genotype are compared. 4) NDST-2, although generally expressed, does not contribute significantly to tissue-specific HS structures. 5) No change in HS structure could be detected in syndecan-1-deficient mice.  相似文献   

8.
Heparin and heparan sulfate are linear sulfated polysaccharides that exert a multitude of biological functions. Heparan sulfate glucosaminyl N-deacetylase/N-sulfotransferase isoform 2 (NDST-2), a key enzyme in the biosynthesis of heparin, contains two distinct activities. This bifunctional enzyme removes the acetyl group from N-acetylated glucosamine (N-deacetylase activity) and transfers a sulfuryl group to the unsubstituted amino position (N-sulfotransferase activity). The N-sulfotransferase activity of NDST has been unambiguously localized to the C-terminal domain of NDST. Here, we report that the N-terminal domain of NDST-2 retains N-deacetylase activity. The N-terminal domain (A66-P604) of human NDST-2, designated as N-deacetylase (NDase), was cloned as a (His)(6)-fusion protein, and protein expression was carried out in Escherichia coli. Heparosan treated with NDase contains N-unsubstituted glucosamine and is highly susceptible to N-sulfation by N-sulfotransferase. Our results conclude that the N-terminal domain of NDST-2 contains functional N-deacetylase activity. This finding helps further elucidate the mechanism of action of heparan sulfate N-deacetylase/N-sulfotransferases and the biosynthesis of heparan sulfate in general.  相似文献   

9.
Raman K  Nguyen TK  Kuberan B 《FEBS letters》2011,585(21):3420-3423
Several biologically important growth factor-heparan sulfate (HS) interactions are regulated by HS sulfation patterns. However, the biogenesis of these combinatorial sulfation patterns is largely unknown. N-Deacetylase/N-sulfotrasferase (NDST) converts N-acetyl-d-glucosamine residues to N-sulfo-d-glucosamine residues. This enzyme is suggested to be a gateway enzyme because N-sulfation dictates the final HS sulfation pattern. It is known that O-sulfation blocks C5-epimerase, which acts immediately after NDST action. However, it is still unknown whether O-sulfation inhibits NDST action in a similar manner. In this article we radically change conventional assumptions regarding HS biosynthesis by providing in vitro evidence that N-sulfation is not necessarily just a gateway modification during HS biosynthesis.  相似文献   

10.
11.
Heparan sulfate (HS) proteoglycans influence embryonic development as well as adult physiology through interactions with various proteins, including growth factors/morphogens and their receptors. The interactions depend on HS structure, which is largely determined during biosynthesis by Golgi enzymes. A key step is the initial generation of N-sulfated domains, primary sites for further polymer modification and ultimately for functional interactions with protein ligands. Such domains, generated through action of a bifunctional GlcNAc N-deacetylase/N-sulfotransferase (NDST) on a [GlcUA-GlcNAc](n) substrate, are of variable size due to regulatory mechanisms that remain poorly understood. We have studied the action of recombinant NDSTs on the [GlcUA-GlcNAc](n) precursor in the presence and absence of the sulfate donor, 3'-phosphoadenosine 5'-phosphosulfate (PAPS). In the absence of PAPS, NDST catalyzes limited and seemingly random N-deacetylation of GlcNAc residues. By contrast, access to PAPS shifts the NDST toward generation of extended N-sulfated domains that are formed through coupled N-deacetylation/N-sulfation in an apparent processive mode. Variations in N-substitution pattern could be obtained by varying PAPS concentration or by experimentally segregating the N-deacetylation and N-sulfation steps. We speculate that similar mechanisms may apply also to the regulation of HS biosynthesis in the living cell.  相似文献   

12.
Our previous report suggested the potential role of the exchange protein directly activated by cyclic AMP (Epac) in melanoma metastasis via heparan sulfate (HS)-mediated cell migration. In order to obtain conclusive evidence that Epac1 plays a critical role in modification of HS and melanoma metastasis, we extensively investigated expression and function of Epac1 in human melanoma samples and cell lines. We have found that, in human melanoma tissue microarray, protein expression of Epac1 was higher in metastatic melanoma than in primary melanoma. In addition, expression of Epac1 positively correlated with that of N-sulfated HS, and N-deacetylase/N-sulfotransferase-1 (NDST-1), an enzyme that increases N-sulfation of HS. Further, an Epac agonist increased, but ablation of Epac1 decreased, expressions of NDST-1, N-sulfated HS, and cell migration in various melanoma cell lines. Finally, C8161 cells with stable knockdown of Epac1 showed a decrease in cell migration, and metastasis in mice. These data suggest that Epac1 plays a critical role in melanoma metastasis presumably because of modification of HS.  相似文献   

13.
Heparin is the most widely used pharmaceutical to control blood coagulation in modern medicine. A health crisis that took place in 2008 led to a demand for production of heparin from non-animal sources. Chinese hamster ovary (CHO) cells, commonly used mammalian host cells for production of foreign pharmaceutical proteins in the biopharmaceutical industry, are capable of producing heparan sulfate (HS), a related polysaccharide naturally. Since heparin and HS share the same biosynthetic pathway, we hypothesized that heparin could be produced in CHO cells by metabolic engineering. Based on the expression of endogenous enzymes in the HS/heparin pathways of CHO-S cells, human N-deacetylase/N-sulfotransferase (NDST2) and mouse heparan sulfate 3-O-sulfotransferase 1 (Hs3st1) genes were transfected sequentially into CHO host cells growing in suspension culture. Transfectants were screened using quantitative RT-PCR and Western blotting. Out of 120 clones expressing NDST2 and Hs3st1, 2 clones, Dual-3 and Dual-29, were selected for further analysis. An antithrombin III (ATIII) binding assay using flow cytometry, designed to recognize a key sugar structure characteristic of heparin, indicated that Hs3st1 transfection was capable of increasing ATIII binding. An anti-factor Xa assay, which affords a measure of anticoagulant activity, showed a significant increase in activity in the dual-expressing cell lines. Disaccharide analysis of the engineered HS showed a substantial increase in N-sulfo groups, but did not show a pattern consistent with pharmacological heparin, suggesting that further balancing the expression of transgenes with the expression levels of endogenous enzymes involved in HS/heparin biosynthesis might be necessary.  相似文献   

14.
Heparin-deficient mice, generated by gene targeting of N-deacetylase/N-sulfotransferase-2 (NDST-2), display severe mast cell defects, including an absence of stored mast cell proteases. However, the mechanism behind these observations is not clear. Here we show that NDST-2+/+ bone marrow-derived mast cells cultured in the presence of IL-3 synthesise, in addition to highly sulphated chondroitin sulphate (CS), small amounts of equally highly sulphated heparin-like polysaccharide. The corresponding NDST-2-/- cells produced highly sulphated CS only. Carboxypeptidase A (CPA) activity was detected in NDST+/+ cells but was almost absent in the NDST-/- cells, whereas tryptase (mouse mast cell protease 6; mMCP-6) activity and antigen was detected in both cell types. Antigen for the chymase mMCP-5 was detected in NDST-2+/+ cells but not in the heparin-deficient cells. Northern blot analysis revealed mRNA expression of CPA, mMCP-5 and mMCP-6 in both wild-type and NDST-2-/- cells. A approximately 36 kDa CPA band, corresponding to proteolytically processed active CPA, as well as a approximately 50 kDa pro-CPA band was present in NDST-2+/+ cells. The NDST-2-/- mast cells contained similar levels of pro-CPA as the wild-type mast cells, but the approximately 36 kDa band was totally absent. This indicates that the processing of pro-CPA to its active form may require the presence of heparin and provides the first insight into a mechanism by which the absence of heparin may cause disturbed secretory granule organisation in mast cells.  相似文献   

15.
Heparan sulfate is a sulfated polysaccharide present on most cell surfaces and in the extracellular matrix. In vivo functions of heparan sulfate can be studied in mouse strains lacking enzymes involved in the biosynthesis of heparan sulfate. Glucosaminyl N-deacetylase/N-sulfotransferase (NDST) catalyzes the first modifying step in the biosynthesis of the polysaccharide. This bifunctional enzyme occurs in several isoforms. We here report that targeted gene disruption of NDST-1 in the mouse results in a structural alteration of heparan sulfate in most basement membranes as revealed by immunohistochemical staining of fetal tissue sections using antibodies raised against heparan sulfate. Biochemical analysis of heparan sulfate purified from fibroblast cultures, lung, and liver of NDST-1-deficient embryos demonstrated a dramatic reduction in N-sulfate content. Most NDST-1-deficient embryos survive until birth; however, they turn out to be cyanotic and die neonatally in a condition resembling respiratory distress syndrome. In addition, a minor proportion of NDST-1-deficient embryos die during the embryonic period. The cause of the embryonic lethality is still obscure, but incompletely penetrant defects of the skull and the eyes have been observed.  相似文献   

16.
We report the generation and analysis of mutant mice bearing a targeted disruption of the heparan sulfate (HS)-modifying enzyme GlcNAc N-deacetylase/N-sulfotransferase 3 (NDST3). NDST3(-/-) mice develop normally, are fertile, and show only subtle hematological and behavioral abnormalities in agreement with only moderate HS undersulfation. Compound mutant mice made deficient in NDST2;NDST3 activities also develop normally, showing that both isoforms are not essential for development. In contrast, NDST1(-/-);NDST3(-/-) compound mutant embryos display developmental defects caused by severe HS undersulfation, demonstrating NDST3 contribution to HS synthesis in the absence of NDST1. Moreover, analysis of HS composition in dissected NDST3 mutant adult brain revealed regional changes in HS sulfation, indicating restricted NDST3 activity on nascent HS in defined wild-type tissues. Taken together, we show that NDST3 function is not essential for development or adult homeostasis despite contributing to HS synthesis in a region-specific manner and that the loss of NDST3 function is compensated for by the other NDST isoforms to a varying degree.  相似文献   

17.
18.
Heparan sulphate is an important mediator in determining vascular smooth muscle cell (SMC) phenotype. The sulphation pattern of the heparan sulphate chains is critical to their function. We have examined the initial step in the biosynthesis of the sulphated domains mediated by the enzyme heparan sulphate N-deacetylase/N-sulphotransferase (NDST). Rabbit aortic SMC in primary culture exhibited NDST enzyme activity and expressed NDST-1 in their Golgi apparatus, with maximal expression in SMC 2 days after dispersal in primary culture confirmed by Western blot analysis. Endothelial cells, macrophages and fibroblasts expressed NDST-1 but had generally less intense staining than SMC, although SMC expression decreased with culture. The uninjured rat aorta also showed widespread expression of NDST-1. After balloon de-endothelialisation, NDST-1 could not be detected in SMC of the neointima in the early stages of neointimal formation, but was re-expressed at later time points (after 12 weeks). In human coronary arteries, SMC of the media and the diffuse intimal thickening expressed NDST-1, while SMC in the atherosclerotic plaque were negative for NDST-1. We conclude that SMC may regulate their heparan sulphate sulphation at the level of expression of the enzyme heparan sulphate NDST in a manner related to their phenotypic state.  相似文献   

19.
We have analyzed the effect of sodium chlorate treatment of Madin-Darby canine kidney cells on the structure of heparan sulfate (HS), to assess how the various sulfation reactions during HS biosynthesis are affected by decreased availability of the sulfate donor 3'-phosphoadenosine 5'-phosphosulfate. Metabolically [(3)H]glucosamine-labeled HS was isolated from chlorate-treated and untreated Madin-Darby canine kidney cells and subjected to low pH nitrous acid cleavage. Saccharides representing (i) the N-sulfated domains, (ii) the domains of alternating N-acetylated and N-sulfated disaccharide units, and (iii) the N-acetylated domains were recovered and subjected to compositional disaccharide analysis. Upon treatment with 50 mM chlorate, overall O-sulfation of HS was inhibited by approximately 70%, whereas N-sulfation remained essentially unchanged. Low chlorate concentrations (5 or 20 mM) selectively reduced the 6-O-sulfation of HS, whereas treatment with 50 mM chlorate reduced both 2-O- and 6-O-sulfation. Analysis of saccharides representing the different domain types indicated that 6-O-sulfation was preferentially inhibited in the alternating domains. These data suggest that reduced 3'-phosphoadenosine 5'-phosphosulfate availability has distinct effects on the N- and O-sulfation of HS and that O-sulfation is affected in a domain-specific fashion.  相似文献   

20.
Impaired heparan sulfate (HS) synthesis in vertebrate development causes complex malformations due to the functional disruption of multiple HS-binding growth factors and morphogens. Here, we report developmental heart defects in mice bearing a targeted disruption of the HS-generating enzyme GlcNAc N-deacetylase/GlcN N-sulfotransferase 1 (NDST1), including ventricular septal defects (VSD), persistent truncus arteriosus (PTA), double outlet right ventricle (DORV), and retroesophageal right subclavian artery (RERSC). These defects closely resemble cardiac anomalies observed in mice made deficient in the cardiogenic regulator fibroblast growth factor 8 (FGF8). Consistent with this, we show that HS-dependent FGF8/FGF-receptor2C assembly and FGF8-dependent ERK-phosphorylation are strongly reduced in NDST1−/− embryonic cells and tissues. Moreover, WNT1-Cre/LoxP-mediated conditional targeting of NDST function in neural crest cells (NCCs) revealed that their impaired HS-dependent development contributes strongly to the observed cardiac defects. These findings raise the possibility that defects in HS biosynthesis may contribute to congenital heart defects in humans that represent the most common type of birth defect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号