首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The construction of hybrid proteins of PBP1B and PBP3 has been described. One hybrid protein (PBP1B/3) contained the transglycosylase domain of PBP1B and the transpeptidase domain of PBP3. In the other hybrid protein, the putative transglycosylase domain of PBP3 was coupled to the transpeptidase domain of PBP1B (PBP3/1B). The hybrid proteins were localized in the cell envelope in a similar way as the wild-type PBP1B. In vitro isolates of the strains containing the hybrid proteins had a transglycosylase activity intermediate between that of wild-type PBP1B-producing strain and that of a PBP1B overproducer. Analysis with specific antibiotics against PBP1A/1B and PBP3 and mutant analysis in strains containing PBP3/1B revealed no detectable effects in vivo compared with wild-type strains. The same was shown for PBP1B/3 when the experiments were performed in a recA background. The data indicate that the hybrid proteins cannot replace native penicillin-binding proteins. This finding suggests that functional high-molecular-weight penicillin-binding protein specificity is at least in part determined by the unique combination of the two functional domains.  相似文献   

2.
Penicillin-binding protein 1B (PBP1B) of Escherichia coli is a bifunctional murein synthase containing both a transpeptidase domain and a transglycosylase domain. The protein is present in three forms (alpha, beta, and gamma) which differ in the length of their N-terminal cytoplasmic region. Expression plasmids allowing the production of native PBP1B or of PBP1B variants with an inactive transpeptidase or transglycosylase domain or both were constructed. The inactive domains contained a single amino acid exchange in an essential active-site residue. Overproduction of the inactive PBP1B variants, but not of the active proteins, caused lysis of wild-type cells. The cells became tolerant to lysis by inactive PBP1B at a pH of 5.0, which is similar to the known tolerance for penicillin-induced lysis under acid pH conditions. Lysis was also reduced in mutant strains lacking several murein hydrolases. In particular, a strain devoid of activity of all known lytic transglycosylases was virtually tolerant, indicating that mainly the lytic transglycosylases are responsible for the observed lysis effect. A possible structural interaction between PBP1B and murein hydrolases in vivo by the formation of a multienzyme complex is discussed.  相似文献   

3.
Dual enzyme activities for the biosynthesis of peptidoglycan of the cell wall are located in major higher molecular weight penicillin-binding proteins (PBP) of Escherichia coli. Each of these proteins catalyzes the two successive final reactions in the synthesis of cross-linked peptidoglycan from the precursor N-acetylglucosaminyl-N-acetylmuramyl peptide linked to undecaprenol diphosphate; namely, the transglycosylation that extends the glycan chain and the penicillin-sensitive DD-transpeptidation that cross-links the glycan chains through two peptide side chains. Both transglycosylation and transpeptidation catalyzed by PBP-1Bs represent de novo synthesis of cross-linked peptidoglycan. Under appropriate conditions, about 25% cross-linkage was observed during the reaction, the main reaction product supposedly being a regularly cross-linked network of peptidoglycan. The two domains for the transglycosylase and transpeptidase activities were found to be located on a 50-kDa portion of the PBP-1Bs, which are about 90 kDa. Gene recombination experiments indicated that the transglycosylase domain is located upstream, i.e. on the N-terminal side of the transpeptidase domain, suggesting that the gene for these bifunctional peptides may have been formed by fusion of the genes for transglycosylase and transpeptidase that were previously located separately on the chromosome in this order.  相似文献   

4.
The polymerization of peptidoglycan is the result of two types of enzymatic activities: transglycosylation, the formation of linear glycan chains, and transpeptidation, the formation of peptide cross-bridges between the glycan strands. Staphylococcus aureus has four penicillin binding proteins (PBP1 to PBP4) with transpeptidation activity, one of which, PBP2, is a bifunctional enzyme that is also capable of catalyzing transglycosylation reactions. Additionally, two monofunctional transglycosylases have been reported in S. aureus: MGT, which has been shown to have in vitro transglycosylase activity, and a second putative transglycosylase, SgtA, identified only by sequence analysis. We have now shown that purified SgtA has in vitro transglycosylase activity and that both MGT and SgtA are not essential in S. aureus. However, in the absence of PBP2 transglycosylase activity, MGT but not SgtA becomes essential for cell viability. This indicates that S. aureus cells require one transglycosylase for survival, either PBP2 or MGT, both of which can act as the sole synthetic transglycosylase for cell wall synthesis. We have also shown that both MGT and SgtA interact with PBP2 and other enzymes involved in cell wall synthesis in a bacterial two-hybrid assay, suggesting that these enzymes may work in collaboration as part of a larger, as-yet-uncharacterized cell wall-synthetic complex.  相似文献   

5.
The two membrane precursors (pentapeptide lipids I and II) of peptidoglycan are present in Escherichia coli at cell copy numbers no higher than 700 and 2,000 respectively. Conditions were determined for an optimal accumulation of pentapeptide lipid II from UDP-MurNAc-pentapeptide in a cell-free system and for its isolation and purification. When UDP-MurNAc-tripeptide was used in the accumulation reaction, tripeptide lipid II was formed, and it was isolated and purified. Both lipids II were compared as substrates in the in vitro polymerization by transglycosylation assayed with PBP 1b or PBP 3. With PBP 1b, tripeptide lipid II was used as efficiently as pentapeptide lipid II. It should be stressed that the in vitro PBP 1b activity accounts for at best to 2 to 3% of the in vivo synthesis. With PBP 3, no polymerization was observed with either substrate. Furthermore, tripeptide lipid II was detected in D-cycloserine-treated cells, and its possible in vivo use in peptidoglycan formation is discussed. In particular, it is speculated that the transglycosylase activity of PBP 1b could be coupled with the transpeptidase activity of PBP 3, using mainly tripeptide lipid II as precursor.  相似文献   

6.
In ellipsoid‐shaped ovococcus bacteria, such as the pathogen Streptococcus pneumoniae (pneumococcus), side‐wall (peripheral) peptidoglycan (PG) synthesis emanates from midcells and is catalyzed by the essential class B penicillin‐binding protein PBP2b transpeptidase (TP). We report that mutations that inactivate the pneumococcal YceG‐domain protein, Spd_1346 (renamed MltG), remove the requirement for PBP2b. ΔmltG mutants in unencapsulated strains accumulate inactivation mutations of class A PBP1a, which possesses TP and transglycosylase (TG) activities. The ‘synthetic viable’ genetic relationship between Δpbp1a and ΔmltG mutations extends to essential ΔmreCD and ΔrodZ mutations that misregulate peripheral PG synthesis. Remarkably, the single MltG(Y488D) change suppresses the requirement for PBP2b, MreCD, RodZ and RodA. Structural modeling and comparisons, catalytic‐site changes and an interspecies chimera indicate that pneumococcal MltG is the functional homologue of the recently reported MltG endo‐lytic transglycosylase of Escherichia coli. Depletion of pneumococcal MltG or mltG(Y488D) increases sphericity of cells, and MltG localizes with peripheral PG synthesis proteins during division. Finally, growth of Δpbp1a ΔmltG or mltG(Y488D) mutants depends on induction of expression of the WalRK TCS regulon of PG hydrolases. These results fit a model in which MltG releases anchored PG glycan strands synthesized by PBP1a for crosslinking by a PBP2b:RodA complex in peripheral PG synthesis.  相似文献   

7.
The mecA-27r gene from Staphylococcus aureus 27r encodes penicillin-binding protein 2a (PBP2a-27r), which causes this strain to be methicillin resistant. Removal or replacement of the N-terminal transmembrane domain had no effect on binding of penicillin, but removal of portions of the putative transglycosylase domain (144, 245, or 341 amino acids after the transmembrane region) destroyed penicillin-binding activity. The SXXK, SXN, and KSG motifs, present in all penicillin-interacting enzymes, were found in the expected linear spatial arrangement within the putative transpeptidase region of PBP2a-27r. Alterations of amino acids in all three of these motifs resulted in elimination of penicillin-binding activity, confirming their roles in the interaction with penicillin.  相似文献   

8.
A method has been developed to study the orientation of proteins in the cytoplasmic membrane of Escherichia coli. Vesicles from sonicated cells were incubated in droplets on electron microscope support grids in sequence with a monoclonal antibody (MAb) against a protein with an unknown orientation (PBP 1b) followed by a MAb against a periplasmic component (peptidoglycan). The different MAbs were made visible with 5- and 10-nm gold-conjugated secondary antibodies, respectively. PBP 1b appeared to colabel with peptidoglycan. The labeling of PBP 1b in membrane vesicles with MAbs against four different epitopes was further used to estimate the number of PBP 1b molecules per cell. Approximately 1,400 PBP 1b molecules per cell grown in broth were labeled. The spatial distribution of the epitopes of the MAbs was studied by immunocolabeling of pairs of MAbs and by competitive antibody-binding inhibition. It could be tentatively concluded that the four epitopes form a cluster of antigenic determinants which occupy less than half of the surface of PBP 1b.  相似文献   

9.
Although prior studies have characterized the neutralizing activities of monoclonal antibodies (MAbs) against dengue virus (DENV) serotypes 1, 2, and 3 (DENV-1, DENV-2, and DENV-3), few reports have assessed the activity of MAbs against DENV-4. Here, we evaluated the inhibitory activity of 81 new mouse anti-DENV-4 MAbs. We observed strain- and genotype-dependent differences in neutralization of DENV-4 by MAbs mapping to epitopes on domain II (DII) and DIII of the envelope (E) protein. Several anti-DENV-4 MAbs inefficiently inhibited at least one strain and/or genotype, suggesting that the exposure or sequence of neutralizing epitopes varies within isolates of this serotype. Remarkably, flavivirus cross-reactive MAbs, which bound to the highly conserved fusion loop in DII and inhibited infection of DENV-1, DENV-2, and DENV-3, more weakly neutralized five different DENV-4 strains encompassing the genetic diversity of the serotype after preincubation at 37°C. However, increasing the time of preincubation at 37°C or raising the temperature to 40°C enhanced the potency of DII fusion loop-specific MAbs and some DIII-specific MAbs against DENV-4 strains. Prophylaxis studies in two new DENV-4 mouse models showed that neutralization titers of MAbs after preincubation at 37°C correlated with activity in vivo. Our studies establish the complexity of MAb recognition against DENV-4 and suggest that differences in epitope exposure relative to other DENV serotypes affect antibody neutralization and protective activity.  相似文献   

10.
Penicillin-binding proteins (PBPs) are the targets of beta-lactam antibiotics. We have used a systematic five-alanine substitution method (called ASS [alanine stretch scanning] mutagenesis) to investigate the functional or structural role of various stretches of amino acids in the PBP1b of Escherichia coli. To probe the specific activity of each variant, the antibiotic discs assay was used with strain QCB1 (delta ponB) in the presence of cefaloridine, which totally inhibits the complementing action of PBP1a. This in vivo test has been combined with a quick and efficient in vitro test of the penicillin-binding activity of each of these variants with fluorescent penicillin. This approach has enabled us to show an unexpected role of the N-terminal and C-terminal tails of PBP1b. Moreover, we have established the correct position in PBP1b of the SMN motif that, with the SXXK and the KTG motifs, constitutes the signature of the penicilloyl serine transferases family. Finally, we have shown that the transglycosylase and the transpeptidase domains are separated by an inert linker region, where substitutions and insertions can be made without hindering the in vivo and in vitro activity of the protein.  相似文献   

11.
The widespread use of antibiotics has encouraged the development of drug resistance in pathogenic bacteria. In order to overcome this problem, the modification of existing antibiotics and/or the identification of targets for the design of new antibiotics is currently being undertaken. Bifunctional penicillin-binding proteins (PBPs) are membrane-associated molecules whose transpeptidase (TP) activity is irreversibly inhibited by beta-lactam antibiotics and whose glycosyltransferase (GT) activity represents a potential target in the antibacterial fight. In this work, we describe the expression and the biochemical characterization of the soluble extracellular region of Streptococcus pneumoniae PBP1b (PBP1b*). The acylation efficiency for benzylpenicillin and cefotaxime was characterized by stopped-flow fluorometry and a 40-kDa stable TP domain was generated after limited proteolysis. In order to analyze the GT activity of PBP1b*, we developed an electrophoretic assay which monitors the fluorescence signal from PBP1b*-bound dansylated lipid II. This binding was inhibited by the antibiotic moenomycin and was specific for the GT domain, since no signal was observed in the presence of the purified functional TP domain. Binding studies performed with truncated forms of PBP1b* demonstrated that the first conserved motif of the GT domain is not required for the recognition of lipid II, whereas the second motif is necessary for such interaction.  相似文献   

12.
The penicillin-binding proteins (PBPs) are ubiquitous bacterial enzymes involved in cell wall biosynthesis, and are the targets of the beta-lactam antibiotics. The low molecular mass Neisseria gonorrhoeae PBP 4 (NG PBP 4) is the fourth PBP revealed in the gonococcal genome. NG PBP 4 was cloned, overexpressed, purified, and characterized for beta-lactam binding, DD-carboxypeptidase activity, acyl-donor substrate specificity, transpeptidase activity, inhibition by a number of active site directed reagents, and pH profile. NG PBP 4 was efficiently acylated by penicillin (30,000 m-1.s-1). Against a set of five alpha- and epsilon-substituted l-Lys-D-Ala-D-Ala substrates, NG PBP 4 exhibited wide variation in specificity with a preference for N epsilon-acylated substrates, suggesting a possible preference for crosslinked pentapeptide substrates in the cell wall. Substrates with an N epsilon-Cbz group demonstrated pronounced substrate inhibition. NG PBP 4 showed 30-fold higher activity against the depsipeptide Lac-ester substrate than against the analogous peptide substrate, an indication that k2 (acylation) is rate determining for carboxypeptidase activity. No transpeptidase activity was apparent in a model transpeptidase reaction. Among a number of active site-directed agents, N-chlorosuccinimide, elastinal, iodoacetamide, iodoacetic acid, and phenylglyoxal gave substantial inhibition, and methyl boronic acid gave modest inhibition. The pH profile for activity against Ac2-l-Lys-D-Ala-d-Ala (kcat/Km) was bell-shaped, with pKa values at 6.9 and 10.1. Comparison of the enzymatic properties of NG PBP 4 with other DD-carboxypeptidases highlights both similarities and differences within these enzymes, and suggests the possibility of common mechanistic roles for the two highly conserved active site lysines in Class A and C low molecular mass PBPs.  相似文献   

13.
Penicillin-binding protein 1Bs of Escherichia coli (Mr ca. 9 × 104) gave three protein bands with slightly different mobilities on sodium dodecylsulfate — polyacrylamide gel electrophoresis. The enzymatic activities of each of these proteins were identified after renaturation of the proteins separated by electrophoresis. Each of them had two enzymatic activities of the last steps of synthesis of peptidoglycan from lipid-linked precursor, i. e., activity of transglycosylase, which extends the glycan chain, and activity of penicillin-sensitive transpeptidase, which crosslinks glycan chains with peptide cross-bridges. Trypsin treatment of each of the three proteins resulted in formation of a doublet of penicillin-binding proteins (Mr ca. 5 × 104). The results strongly indicate that penicillin-binding protein 1Bs are bifunctional peptidoglycan synthetase proteins differing slightly in molecular structure.  相似文献   

14.
Seven or eight penicillin-binding proteins (PBPs) were detected in Bacillus subtilis membranes. By introducing covalent affinity chromatography employing cephalosporins as ligands, milligram amounts of three high molecular weight PBPs (PBP 1 ab, Mr = 120,000; PBP 2b, Mr = 94,000; and PBP 4, Mr = 78,000) were obtained without any contamination of the major PBP 5, the D-alanine carboxypeptidase. Small amounts of pure PBP 2b could be isolated by manipulation of the affinity chromatography conditions. Structural and physical properties of these proteins as well as the generation of one major penicilloyl peptide from each PBP by digestion with pepsin suggest that each PBP is the product of a separate gene. No enzymatic activity could be found in mixtures of these high molecular weight PBPs employing substrates used for the transpeptidase and D-alanine carboxypeptidase assays in particulate membrane fractions.  相似文献   

15.
Enlargement of the stress-bearing murein sacculus of bacteria depends on the coordinated interaction of murein synthases and hydrolases. To understand the mechanism of interaction of these two classes of proteins affinity chromatography and surface plasmon resonance (SPR) studies were performed. The membrane-bound lytic transglycosylase MltA when covalently linked to CNBr-activated Sepharose specifically retained the penicillin-binding proteins (PBPs) 1B, 1C, 2, and 3 from a crude Triton X-100 membrane extract of Escherichia coli. In the presence of periplasmic proteins also PBP1A was specifically bound. At least five different non-PBPs showed specificity for MltA-Sepharose. The amino-terminal amino acid sequence of one of these proteins could be obtained, and the corresponding gene was mapped at 40 min on the E. coli genome. This MltA-interacting protein, named MipA, in addition binds to PBP1B, a bifunctional murein transglycosylase/transpeptidase. SPR studies with PBP1B immobilized to ampicillin-coated sensor chips showed an oligomerization of PBP1B that may indicate a dimerization. Simultaneous application of MipA and MltA onto a PBP1B sensor chip surface resulted in the formation of a trimeric complex. The dissociation constant was determined to be about 10(-6) M. The formation of a complex between a murein polymerase (PBP1B) and a murein hydrolase (MltA) in the presence of MipA represents a first step in a reconstitution of the hypothetical murein-synthesizing holoenzyme, postulated to be responsible for controlled growth of the stress-bearing sacculus of E. coli.  相似文献   

16.
Dengue fever and its more severe form, dengue hemorrhagic fever, are major global concerns. Infection-enhancing antibodies are major factors hypothetically contributing to increased disease severity. In this study, we generated 26 monoclonal antibodies (MAbs) against the dengue virus type 1 Mochizuki strain. We selected this strain because a relatively large number of unique and rare amino acids were found on its envelope protein. Although most MAbs showing neutralizing activities exhibited enhancing activities at subneutralizing doses, one MAb (D1-IV-7F4 [7F4]) displayed neutralizing activities without showing enhancing activities at lower concentrations. In contrast, another MAb (D1-V-3H12 [3H12]) exhibited only enhancing activities, which were suppressed by pretreatment of cells with anti-FcγRIIa. Although antibody engineering revealed that antibody subclass significantly affected 7F4 (IgG3) and 3H12 (IgG1) activities, neutralizing/enhancing activities were also dependent on the epitope targeted by the antibody. 7F4 recognized an epitope on the envelope protein containing E118 (domain II) and had a neutralizing activity 10- to 1,000-fold stronger than the neutralizing activity of previously reported human or humanized neutralizing MAbs targeting domain I and/or domain II. An epitope-blocking enzyme-linked immunosorbent assay (ELISA) indicated that a dengue virus-immune population possessed antibodies sharing an epitope with 7F4. Our results demonstrating induction of these antibody species (7F4 and 3H12) in Mochizuki-immunized mice may have implications for dengue vaccine strategies designed to minimize induction of enhancing antibodies in vaccinated humans.  相似文献   

17.
Three types of mono- and disaccharides 3a,b, 4a–c, 5, and some chaetomellic acid A analogs 6 and 42–44 were synthesized as potential inhibitors of the transglycosylase activity of penicillin-binding protein 1b (PBP1b), a key bacterial enzyme responsible for the formation of the polysaccharide backbone of peptidoglycan as well as for cross-linking of its peptide portions. The target compounds combine structural features of both the active portion of moenomycin and the natural PBP1b substrate, lipid II. The desired skeletons were obtained in a convergent fashion involving attachment of the lipid-alkylated glyceric acid moieties 11a,b to the corresponding carbohydrate-containing phosphonic acids 23, 24a, and 24b. Compounds 3a,b were prepared to verify the distance requirements between the sugar and the noncleavable C-phosphonate moieties. Compounds 4a–c were synthesized to examine the importance of the first sugar unit of moenomycin, a known inhibitor of transglycosylase catalysis by PBP1b, with respect to antibiotic activity. These were prepared by condensation of 11a,b with 28a and 28c, which were made by glycosylation of 3-bromopropanol with oxazolines 25a,b, and Arbuzov reaction with triethyl or trimethyl phosphite, followed by dealkylation with bromotrimethylsilane. Compound 5 was generated to verify the possibility of using a dicarboxylate group to mimic the diphosphate of lipid II. It was synthesized by coupling of alcohol 31 with -trichloroacetimidate 34. Chaetomellic acid A analogs were prepared by a Michael addition to dimethyl acetylenedicarboxylate. With the exception of 3b, all of the target compounds were found to inhibit PBP1b, albeit with modest potency.  相似文献   

18.
The transpeptidase activity of the essential penicillin‐binding protein 2x (PBP2x) of Streptococcus pneumoniae is believed to be important for murein biosynthesis required for cell division. To study the molecular mechanism driving localization of PBP2x in live cells, we constructed a set of N‐terminal GFP–PBP2x fusions under the control of a zinc‐inducible promoter. The ectopic fusion protein localized at mid‐cell. Cells showed no growth defects even in the absence of the genomic pbp2x, demonstrating that GFP–PBP2x is functional. Depletion of GFP–PBP2x resulted in severe morphological alterations, confirming the essentiality of PBP2x and demonstrating that PBP2x is required for cell division and not for cell elongation. A genetically or antibiotic inactivated GFP–PBP2x still localized at septal sites. Remarkably, the same was true for a GFP–PBP2x derivative containing a deletion of the central transpeptidase domain, although only in the absence of the protease/chaperone HtrA. Thus localization is independent of the catalytic transpeptidase domain but requires the C‐terminal PASTA domains, identifying HtrA as targeting GFP–PBP2x derivatives. Finally, PBP2x was positioned at the septum similar to PBP1a and the PASTA domain containing StkP protein, confirming that PBP2x is a key element of the divisome complex.  相似文献   

19.
The effects of inactivation of the genes encoding penicillin-binding protein 1a (PBP1a), PBP1b, and PBP2a in Streptococcus pneumoniae were examined. Insertional mutants did not exhibit detectable changes in growth rate or morphology, although a pbp1a pbp1b double-disruption mutant grew more slowly than its parent did. Attempts to generate a pbp1a pbp2a double-disruption mutant failed. The pbp2a mutants, but not the other mutants, were more sensitive to moenomycin, a transglycosylase inhibitor. These observations suggest that individually the pbp1a, pbp1b, and pbp2a genes are dispensable but that either pbp1a or pbp2a is required for growth in vitro. These results also suggest that PBP2a is a functional transglycosylase in S. pneumoniae.  相似文献   

20.
Penicillin-binding protein 1b (PBP1b) is the major high-molecular-weight PBP in Escherichia coli. Although it is coded by a single gene, it is usually found as a mixture of three isoforms which vary with regard to the length of their N-terminal cytoplasmic tail. We show here that although the cytoplasmic tail seems to play no role in the dimerization of PBP1b, as was originally suspected, only the full-length protein is able to protect the cells against lysis when both PBP1a and PBP3 are inhibited by antibiotics. This suggests a specific role for the full-length PBP1b in the multienzyme peptidoglycan-synthesizing complex that cannot be fulfilled by either PBP1a or the shorter PBP1b proteins. Moreover, we have shown by alanine-stretch-scanning mutagenesis that (i) residues R(11) to G(13) are major determinants for correct translocation and folding of PBP1b and that (ii) the specific interactions involving the full-length PBP1b can be ascribed to the first six residues at the N-terminal end of the cytoplasmic domain. These results are discussed in terms of the interactions with other components of the murein-synthesizing complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号