首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We tested the hypothesis that constriction of cerebral arterioles during acute increases in blood pressure is attenuated by activation of potassium (K(+)) channels. We tested the effects of inhibitors of calcium-dependent K(+) channels [iberiotoxin (50 nM) and tetraethylammonium (TEA, 1 mM)] on changes in arteriolar diameter during acute hypertension. Diameter of cerebral arterioles (baseline diameter = 46 +/- 2 microm, mean +/- SE) was measured using a cranial window in anesthetized rats. Arterial pressure was increased from a control value of 96 +/- 1 mmHg to 130, 150, 170, and 200 mmHg by intravenous infusion of phenylephrine. Increases in arterial pressure from baseline to 130 and 150 mmHg decreased the diameter of cerebral arterioles by 5-10%. Greater increases in arterial pressure produced large increases in arteriolar diameter (i.e., "breakthrough of autoregulation"). Iberiotoxin or TEA inhibited increases in arteriolar diameter when arterial pressure was increased to 170 and 200 mmHg. The change in arteriolar diameter at 200 mmHg was 20 +/- 3% and -1 +/- 4% in the absence and presence of iberiotoxin, respectively. These findings suggest that calcium-dependent K(+) channels attenuate cerebral microvascular constriction during acute increases in arterial pressure, and that increases in arteriolar diameter at high levels of arterial pressure are not simply a passive phenomenon.  相似文献   

2.
P Sandor  W de Jong  D de Wied 《Peptides》1988,9(2):215-219
The influence of intracerebroventricularly (ICV) administered thyrotropin-releasing hormone pGlu-His-Pro-NH2 (TRH), pGlu-His-Phe-NH2 (TRH analog, (TRHa)), Met-Glu-His-Phe(ACTH-(4-7)) and His-Phe-Arg-Trp-Gly (ACTH-(6-10)) on autoregulation of cerebral blood flow was studied in anesthetized, ventilated rats. Autoregulatory capacity of the cerebrovascular bed was tested by hypothalamic blood flow (HBF) and total cerebral blood volume (CBV) determinations during consecutive stepwise lowering of the systemic mean arterial pressure to 80, 60 and 40 mmHg, by hemorrhage. None of the peptides caused a change in resting HBF or CBV upon ICV administration (5 micrograms/kg). However, the same dose of TRH, TRHa and ACTH-(4-7) resulted in impairment of autoregulation. ACTH-(6-10) was not effective. Thus, the disturbed autoregulation may be due to the presence of the dipeptide Glu-His which is common to TRH, TRHa and ACTH-(4-7).  相似文献   

3.
A mathematical model of the cerebral circulation has been formulated. It was based on non-linear equations of pulsatile fluid flow in distensible conduits and applied to a network simulating the entire cerebral vasculature, from the carotid and vertebral arteries to the sinuses and the jugular veins. The quasilinear hyperbolic system of equations was numerically solved using the two-step Lax-Wendroff scheme. The model's results were in good agreement with pressure and flow data recorded in humans during rest. The model was also applied to the study of autoregulation during arterial hypotension. A close relationship between cerebral blood flow (CBF) and capillary pressure was obtained. At arterial pressure of 80 mmHg, the vasodilation of the pial arteries was unable to maintain CBF at its control value. At the lower limit of autoregulation (60 mm Hg), CBF was maintained with a 25% increase of zero transmural pressure diameter of nearly the whole arterial network.  相似文献   

4.
To determine the dependence of cerebral blood flow (CBF) on arterial pressure over prolonged time periods, we measured beat-to-beat changes in mean CBF velocity in the middle cerebral artery (transcranial Doppler) and mean arterial pressure (Finapres) continuously for 2 h in six healthy subjects (5 men and 1 woman, 18-40 yr old) during supine rest. Fluctuations in velocity and pressure were quantified by the range [(peak - trough)/mean] and coefficients of variation (SD/mean) in the time domain and by spectral analysis in the frequency domain. Mean velocity and pressure over the 2-h recordings were 60 +/- 7 cm/s and 83 +/- 8 mmHg, associated with ranges of 77 +/- 8 and 89 +/- 10% and coefficients of variation of 9.3 +/- 2.2 and 7.9 +/- 2.3%, respectively. Spectral power of the velocity and pressure was predominantly distributed in the frequency range of 0.00014-0.1 Hz and increased inversely with frequency, indicating characteristics of an inverse power law (1/f(alpha)). However, linear regression on a log-log scale revealed that the slope of spectral power of pressure and velocity was steeper in the high-frequency (0.02-0.5 Hz) than in the low-frequency range (0.002-0.02 Hz), suggesting different regulatory mechanisms in these two frequency ranges. Furthermore, the spectral slope of pressure was significantly steeper than that of velocity in the low-frequency range, consistent with the low transfer function gain and low coherence estimated at these frequencies. We conclude that 1) long-term fluctuations in CBF velocity are prominent and similar to those observed in arterial pressure, 2) spectral power of CBF velocity reveals characteristics of 1/f(alpha), and 3) cerebral attenuation of oscillations in CBF velocity in response to changes in pressure may be more effective at low than that at high frequencies, emphasizing the frequency dependence of cerebral autoregulation.  相似文献   

5.
Hypotension and shock are risk factors for death, renal insufficiency, and stroke in preterm neonates. Goal-directed neonatal hemodynamic management lacks end-organ monitoring strategies to assess the adequacy of perfusion. Our aim is to develop a clinically viable, continuous metric of renovascular reactivity to gauge renal perfusion during shock. We present the renovascular reactivity index (RVx), which quantifies passivity of renal blood volume to spontaneous changes in arterial blood pressure. We tested the ability of the RVx to detect reductions in renal blood flow. Hemorrhagic shock was induced in 10 piglets. The RVx was monitored as a correlation between slow waves of arterial blood pressure and relative total hemoglobin (rTHb) obtained with reflectance near-infrared spectroscopy (NIRS) over the kidney. The RVx was compared with laser-Doppler measurements of red blood cell flux, and renal laser-Doppler measurements were compared with cerebral laser-Doppler measurements. Renal blood flow decreased to 75%, 50%, and 25% of baseline at perfusion pressures of 60, 45, and 40 mmHg, respectively, whereas in the brain these decrements occurred at pressures of 30, 25, and 15 mmHg, respectively. The RVx compared favorably to the renal laser-Doppler data. Areas under the receiver operator characteristic curves using renal blood flow thresholds of 50% and 25% of baseline were 0.85 (95% CI, 0.83-0.87) and 0.90 (95% CI, 0.88-0.92). Renovascular autoregulation can be monitored and is impaired in advance of cerebrovascular autoregulation during hemorrhagic shock.  相似文献   

6.
Although cerebral autoregulation (CA) appears well maintained during mild to moderate intensity dynamic exercise in young subjects, it is presently unclear how aging influences the regulation of cerebral blood flow during physical activity. Therefore, to address this question, middle cerebral artery blood velocity (MCAV), mean arterial pressure (MAP), and the partial pressure of arterial carbon dioxide (Pa(CO(2))) were assessed at rest and during steady-state cycling at 30% and 50% heart rate reserve (HRR) in 9 young (24 +/- 3 yr; mean +/- SD) and 10 older middle-aged (57 +/- 7 yr) subjects. Transfer function analysis between changes in MAP and mean MCAV (MCAV(mean)) in the low-frequency (LF) range were used to assess dynamic CA. No age-group differences were found in Pa(CO(2)) at rest or during cycling. Exercise-induced increases in MAP were greater in older subjects, while changes in MCAV(mean) were similar between groups. The cerebral vascular conductance index (MCAV(mean)/MAP) was not different at rest (young 0.66 +/- 0.04 cm x s(-1) x mmHg(-1) vs. older 0.67 +/- 0.03 cm x s(-1) x mmHg(-1); mean +/- SE) or during 30% HRR cycling between groups but was reduced in older subjects during 50% HRR cycling (young 0.67 +/- 0.03 cm x s(-1) x mmHg(-1) vs. older 0.56 +/- 0.02 cm x s(-1) x mmHg(-1); P < 0.05). LF transfer function gain and phase between MAP and MCAV(mean) was not different between groups at rest (LF gain: young 0.95 +/- 0.05 cm x s(-1) x mmHg(-1) vs. older 0.88 +/- 0.06 cm x s(-1) x mmHg(-1); P > 0.05) or during exercise (LF gain: young 0.80 +/- 0.05 cm x s(-1) x mmHg(-1) vs. older 0.72 +/- 0.07 cm x s(-1) x mmHg(-1) at 50% HRR; P > 0.05). We conclude that despite greater increases in MAP, the regulation of MCAV(mean) is well maintained during dynamic exercise in healthy older middle-aged subjects.  相似文献   

7.
Tissue engineered cartilage can be grown in vitro if the necessary physical and biochemical factors are present in the tissue culture environment. Cell metabolism and tissue composition were studied for engineered cartilage cultured for 5 weeks using bovine articular chondrocytes, polymer scaffolds (5 mm diameter x 2 mm thick fibrous discs), and rotating bioreactors. Medium pH and concentrations of oxygen, carbon dioxide, glucose, lactate, ammonia, and glycosoaminoglycan (GAG) were varied by altering the exchange rates of gas and medium in the bioreactors. Cell-polymer constructs were assessed with respect to histomorphology, biochemical composition and metabolic activity. Low oxygen tension ( approximately 40 mmHg) and low pH ( approximately 6.7) were associated with anaerobic cell metabolism (yield of lactate on glucose, YL/G, of 2.2 mol/mol) while higher oxygen tension ( approximately 80 mmHg) and higher pH ( approximately 7.0) were associated with more aerobic cell metabolism (YL/G of 1.65-1.79 mol/mol). Under conditions of infrequent medium replacement (50% once per week), cells utilized more economical pathways such that glucose consumption and lactate production both decreased, cell metabolism remained relatively aerobic (YL/G of 1.67 mol/mol) and the resulting constructs were cartilaginous. More aerobic conditions generally resulted in larger constructs containing higher amounts of cartilaginous tissue components, while anaerobic conditions suppressed chondrogenesis in 3D tissue constructs.  相似文献   

8.
Complete ganglion blockade alters dynamic cerebral autoregulation, suggesting links between systemic autonomic traffic and regulation of cerebral blood flow velocity. We tested the hypothesis that acute head-down tilt, a physiological maneuver that decreases systemic sympathetic activity, would similarly disrupt normal dynamic cerebral autoregulation. We studied 10 healthy young subjects (5 men and 5 women; age 21 +/- 0.88 yr, height 169 +/- 3.1 cm, and weight 76 +/- 6.1 kg). ECG, beat-by-beat arterial pressure, respiratory rate, end-tidal CO2 concentration, and middle cerebral blood flow velocity were recorded continuously while subjects breathed to a metronome. We recorded data during 5-min periods and averaged responses from three Valsalva maneuvers with subjects in both the supine and -10 degrees head-down tilt positions (randomized). Controlled-breathing data were analyzed in the frequency domain with power spectral analysis. The magnitude of input-output relations were determined with cross-spectral techniques. Head-down tilt significantly reduced Valsalva phase IV systolic pressure overshoot from 36 +/- 4.0 (supine position) to 25 +/- 4.0 mmHg (head down) (P = 0.03). Systolic arterial pressure spectral power at the low frequency decreased from 5.7 +/- 1.6 (supine) to 4.4 +/- 1.6 mmHg2 (head down) (P = 0.02), and mean arterial pressure spectral power at the low frequency decreased from 3.3 +/- 0.79 (supine) to 2.0 +/- 0.38 mmHg2 (head down) (P = 0.05). Head-down tilt did not affect cerebral blood flow velocity or the transfer function magnitude and phase angle between arterial pressure and cerebral blood flow velocity. Our results show that in healthy humans, mild physiological manipulation of autonomic activity with acute head-down tilt has no effect on the ability of the cerebral vasculature to regulate flow velocity.  相似文献   

9.
We tested the hypothesis that, following exposure to high altitude, cerebrovascular reactivity to CO2 and cerebral autoregulation would be attenuated. Such alterations may predispose to central sleep apnea at high altitude by promoting changes in brain PCO2 and thus breathing stability. We measured middle cerebral artery blood flow velocity (MCAv; transcranial Doppler ultrasound) and arterial blood pressure during wakefulness in conditions of eucapnia (room air), hypocapnia (voluntary hyperventilation), and hypercapnia (isooxic rebeathing), and also during non-rapid eye movement (stage 2) sleep at low altitude (1,400 m) and at high altitude (3,840 m) in five individuals. At each altitude, sleep was studied using full polysomnography, and resting arterial blood gases were obtained. During wakefulness and polysomnographic-monitored sleep, dynamic cerebral autoregulation and steady-state changes in MCAv in relation to changes in blood pressure were evaluated using transfer function analysis. High altitude was associated with an increase in central sleep apnea index (0.2 +/- 0.4 to 20.7 +/- 23.2 per hour) and an increase in mean blood pressure and cerebrovascular resistance during wakefulness and sleep. MCAv was unchanged during wakefulness, whereas there was a greater decrease during sleep at high altitude compared with low altitude (-9.1 +/- 1.7 vs. -4.8 +/- 0.7 cm/s; P < 0.05). At high altitude, compared with low altitude, the cerebrovascular reactivity to CO2 in the hypercapnic range was unchanged (5.5 +/- 0.7 vs. 5.3 +/- 0.7%/mmHg; P = 0.06), while it was lowered in the hypocapnic range (3.1 +/- 0.7 vs. 1.9 +/- 0.6%/mmHg; P < 0.05). Dynamic cerebral autoregulation was further reduced during sleep (P < 0.05 vs. low altitude). Lowered cerebrovascular reactivity to CO2 and reduction in both dynamic cerebral autoregulation and MCAv during sleep at high altitude may be factors in the pathogenesis of breathing instability.  相似文献   

10.
Abstract: The effects of chronic treatment with N G-nitro- l -arginine methyl ester, a potent inhibitor of nitric oxide synthase activity, on local cerebral glucose utilization were examined in conscious rats. Intraperitoneal injections of 50 mg/kg of the nitroarginine twice daily for 4 days have been found to result in almost complete inhibition of nitric oxide synthase activity in brain. Local cerebral glucose utilization was determined by means of the quantitative autoradiographic [14C]deoxyglucose method in an experimental group (n = 7) of rats that were treated with the nitroarginine according to this schedule and in a normal control group (n = 7) treated similarly with saline. The rats were conscious but partially restrained during the determinations of local cerebral glucose utilization. The nitroarginine treatment raised mean arterial blood pressure statistically significantly to 147 ± 3 mm Hg (mean ± SEM) from a level of 120 ± 5 mm Hg in the saline controls ( p < 0.001 by grouped t test), but there were no statistically significant effects on glucose utilization in any of 39 brain structures examined. It is concluded that nitric oxide normally exerts no significant influence on energy metabolism in the rat brain.  相似文献   

11.
Occasionally, lifting of a heavy weight leads to dizziness and even to fainting, suggesting that, especially in the standing position, expiratory straining compromises cerebral perfusion. In 10 subjects, the middle cerebral artery mean blood velocity (V(mean)) was evaluated during a Valsalva maneuver (mouth pressure 40 mmHg for 15 s) both in the supine and in the standing position. During standing, cardiac output decreased by 16 +/- 4 (SE) % (P < 0.05), and at the level of the brain mean arterial pressure (MAP) decreased from 89 +/- 2 to 78 +/- 3 mmHg (P < 0.05), as did V(mean) from 73 +/- 4 to 62 +/- 5 cm/s (P < 0.05). In both postures, the Valsalva maneuver increased central venous pressure by approximately 40 mmHg with a nadir in MAP and cardiac output that was most pronounced during standing (MAP: 65 +/- 6 vs. 87 +/- 3 mmHg; cardiac output: 37 +/- 3 vs. 57 +/- 4% of the resting value; P < 0.05). Also, V(mean) was lowest during the standing Valsalva maneuver (39 +/- 5 vs. 47 +/- 4 cm/s; P < 0.05). In healthy individuals, orthostasis induces an approximately 15% reduction in middle cerebral artery V(mean) that is exaggerated by a Valsalva maneuver performed with 40-mmHg mouth pressure to approximately 50% of supine rest.  相似文献   

12.
We investigated whether dynamic cerebral autoregulation is affected by exhaustive exercise using transfer-function gain and phase shift between oscillations in mean arterial pressure (MAP) and middle cerebral artery (MCA) mean blood flow velocity (V(mean)). Seven subjects were instrumented with a brachial artery catheter for measurement of MAP and determination of arterial Pco(2) (Pa(CO(2))) while jugular venous oxygen saturation (Sv(O(2))) was determined to assess changes in whole brain blood flow. After a 10-min resting period, the subjects performed dynamic leg-cycle ergometry at 168 +/- 5 W (mean +/- SE) that was continued to exhaustion with a group average time of 26.8 +/- 5.8 min. Despite no significant change in MAP during exercise, MCA V(mean) decreased from 70.2 +/- 3.6 to 57.4 +/- 5.4 cm/s, Sv(O(2)) decreased from 68 +/- 1 to 58 +/- 2% at exhaustion, and both correlated to Pa(CO(2)) (5.5 +/- 0.2 to 3.9 +/- 0.2 kPa; r = 0.47; P = 0.04 and r = 0.74; P < 0.001, respectively). An effect on brain metabolism was indicated by a decrease in the cerebral metabolic ratio of O(2) to [glucose + one-half lactate] from 5.6 to 3.8 (P < 0.05). At the same time, the normalized low-frequency gain between MAP and MCA V(mean) was increased (P < 0.05), whereas the phase shift tended to decrease. These findings suggest that dynamic cerebral autoregulation was impaired by exhaustive exercise despite a hyperventilation-induced reduction in Pa(CO(2)).  相似文献   

13.
Conscious sheep (n = 6), exposed to 3.5 h of normobaric hypoxia (arterial PO2 = 40 Torr) while allowed varying arterial PCO2, showed striking early increments of cerebral blood flow (CBF; +200-250%, by radiolabeled microspheres) and decrements of cerebral vascular resistance (CVR) in association with an early temporary elevation of cerebral O2 consumption (CMRO2; +25-60%). After 2 h, CMRO2 returned to normoxic levels, while CBF declined to a lower but still elevated level (+150%). CBF/CMRO2 increased twofold, while cerebral fractional extraction of O2 was unchanged. Mean arterial pressure was unchanged, but cerebral venous pressure rose (+11 mmHg) in a stable fashion such that cerebral perfusion pressure declined by 13%. Cerebral venous hematocrit and hemoglobin concentration were both elevated (+2.2-2.7% Hct units; +1.0-1.3 g/dl, respectively) above the corresponding arterial values between 150 and 210 min of hypoxia, suggesting venous hemoconcentration in possible association with a transcapillary fluid shift. CBF, and especially CVR, were well correlated with arterial O2 content.  相似文献   

14.
The aim of this study was to determine whether inhibition of nitric oxide synthase (NOS) alters dynamic cerebral autoregulation in humans. Beat-to-beat blood pressure (BP) and cerebral blood flow (CBF) velocity (transcranial Doppler) were measured in eight healthy subjects in the supine position and during 60 degrees head-up tilt (HUT). NOS was inhibited by intravenous NG-monomethyl-L-arginine (L-NMMA) infusion. Dynamic cerebral autoregulation was quantified by transfer function analysis of beat-to-beat changes in BP and CBF velocity. Pressor effects of L-NMMA on cerebral hemodynamics were compared with those of phenylephrine infusion. In the supine position, L-NMMA increased mean BP from 83+/-3 to 94+/-3 mmHg (P < 0.01). However, CBF velocity remained unchanged. Consequently, cerebrovascular resistance index (CVRI) increased by 15% (P < 0.05). BP and CBF velocity variability and transfer function gain at the low frequencies of 0.07-0.20 Hz did not change with L-NMMA infusion. Similar changes in mean BP, CBF velocity, and CVRI were observed after phenylephrine infusion, suggesting that increase in CVRI after L-NMMA was mediated myogenically by increase in arterial pressure rather than a direct effect of cerebrovascular NOS inhibition. During baseline tilt without L-NMMA, steady-state BP increased and CBF velocity decreased. BP and CBF velocity variability at low frequencies increased in parallel by 277% and 217%, respectively (P < 0.05). However, transfer function gain remained unchanged. During tilt with L-NMMA, changes in steady-state hemodynamics and BP and CBF velocity variability as well as transfer gain and phase were similar to those without L-NMMA. These data suggest that inhibition of tonic production of NO does not appear to alter dynamic cerebral autoregulation in humans.  相似文献   

15.
We examined changes in cerebral circulation in 15 healthy men during exposure to mild +Gz hypergravity (1.5 Gz, head-to-foot) using a short-arm centrifuge. Continuous arterial pressure waveform (tonometry), cerebral blood flow (CBF) velocity in the middle cerebral artery (transcranial Doppler ultrasonography), and partial pressure of end-tidal carbon dioxide (ETco(2)) were measured in the sitting position (1 Gz) and during 21 min of exposure to mild hypergravity (1.5 Gz). Dynamic cerebral autoregulation was assessed by spectral and transfer function analysis between beat-to-beat mean arterial pressure (MAP) and mean CBF velocity (MCBFV). Steady-state MAP did not change, but MCBFV was significantly reduced with 1.5 Gz (-7%). ETco(2) was also reduced (-12%). Variability of MAP increased significantly with 1.5 Gz in low (53%)- and high-frequency ranges (88%), but variability of MCBFV did not change in these frequency ranges, resulting in significant decreases in transfer function gain between MAP and MCBFV (gain in low-frequency range, -17%; gain in high-frequency range, -13%). In contrast, all of these indexes in the very low-frequency range were unchanged. Transfer from arterial pressure oscillations to CBF fluctuations was thus suppressed in low- and high-frequency ranges. These results suggest that steady-state global CBF was reduced, but dynamic cerebral autoregulation in low- and high-frequency ranges was improved with stabilization of CBF fluctuations despite increases in arterial pressure oscillations during mild +Gz hypergravity. We speculate that this improvement in dynamic cerebral autoregulation within these frequency ranges may have been due to compensatory effects against the reduction in steady-state global CBF.  相似文献   

16.
The measurement of peripheral blood flow by plethysmography assumes that the cuff pressure required for venous occlusion does not decrease arterial inflow. However, studies in five normal subjects suggested that calf blood flow measured with a plethysmograph was less than arterial inflow calculated from Doppler velocity measurements. We hypothesized that the pressure required for venous occlusion may have decreased arterial velocity. Further studies revealed that systolic diameter of the superficial femoral artery under a thigh cuff decreased from 7.7 +/- 0.4 to 5.6 +/- 0.7 mm (P less than 0.05) when the inflation pressure was increased from 0 to 40 mmHg. Cuff inflation to 40 mmHg also reduced mean velocity 38% in the common femoral artery and 47% in the popliteal artery. Inflation of a cuff on the arm reduced mean velocity in the radial artery 22% at 20 mmHg, 26% at 40 mmHg, and 33% at 60 mmHg. We conclude that inflation of a cuff on an extremity to low pressures for venous occlusion also caused a reduction in arterial diameter and flow velocity.  相似文献   

17.
The new two-breath CO(2) method was employed to test the hypotheses that small alterations in arterial P(CO(2)) had an impact on the magnitude and dynamic response time of the CO(2) effect on cerebrovascular resistance (CVRi) and the dynamic autoregulatory response to fluctuations in arterial pressure. During a 10-min protocol, eight subjects inspired two breaths from a bag with elevated P(CO(2)), four different times, while end-tidal P(CO(2)) was maintained at three levels: hypocapnia (LoCO(2), 8 mmHg below resting values), normocapnia, and hypercapnia (HiCO(2), 8 mmHg above resting values). Continuous measurements were made of mean blood pressure corrected to the level of the middle cerebral artery (BP(MCA)), P(CO(2)) (estimated from expired CO(2)), and mean flow velocity (MFV, of the middle cerebral artery by Doppler ultrasound), with CVRi = BP(MCA)/MFV. Data were processed by a system identification technique (autoregressive moving average analysis) with gain and dynamic response time of adaptation estimated from the theoretical step responses. Consistent with our hypotheses, the magnitude of the P(CO(2))-CVRi response was reduced from LoCO(2) to HiCO(2) [from -0.04 (SD 0.02) to -0.01 (SD 0.01) (mmHg x cm(-1) x s) x mmHg Pco(2)(-1)] and the time to reach 95% of the step plateau increased from 12.0 +/- 4.9 to 20.5 +/- 10.6 s. Dynamic autoregulation was impaired with elevated P(CO(2)), as indicated by a reduction in gain from LoCO(2) to HiCO(2) [from 0.021 +/- 0.012 to 0.007 +/- 0.004 (mmHg x cm(-1) x s) x mmHg BP(MCA)(-1)], and time to reach 95% increased from 3.7 +/- 2.8 to 20.0 +/- 9.6 s. The two-breath technique detected dependence of the cerebrovascular CO(2) response on P(CO(2)) and changes in dynamic autoregulation with only small deviations in estimated arterial P(CO(2)).  相似文献   

18.
Aerobic fitness may be associated with reduced orthostatic tolerance. To investigate whether trained individuals have less effective regulation of cerebral vascular resistance, we studied the middle cerebral artery (MCA) mean blood velocity (V(mean)) response to a sudden drop in mean arterial pressure (MAP) after 2.5 min of leg ischemia in endurance athletes and untrained subjects (maximal O(2) uptake: 69 ± 7 vs. 42 ± 5 ml O(2)·min(-1)·kg(-1); n = 9 for both, means ± SE). After cuff release when seated, endurance athletes had larger drops in MAP (94 ± 6 to 62 ± 5 mmHg, -39%, vs. 99 ± 5 to 73 ± 4 mmHg, -26%) and MCA V(mean) (53 ± 3 to 37 ± 2 cm/s, -30%, vs. 58 ± 3 to 43 ± 2 cm/s, -25%). The athletes also had a slower recovery to baseline of both MAP (25 ± 2 vs. 16 ± 1 s, P < 0.01) and MCA V(mean) (15 ± 1 vs. 11 ± 1 s, P < 0.05). The onset of autoregulation, determined by the time point of increase in the cerebrovascular conductance index (CVCi = MCA V(mean)/MAP) appeared later in the athletes (3.9 ± 0.4 vs. 2.7 ± 0.4s, P = 0.01). Spectral analysis revealed a normal MAP-to-MCA V(mean) phase in both groups but ~40% higher normalized MAP to MCA V(mean) low-frequency transfer function gain in the trained subjects. No significant differences were detected in the rates of recovery of MAP and MCA V(mean) and the rate of CVCi regulation (18 ± 4 vs. 24 ± 7%/s, P = 0.2). In highly trained endurance athletes, a drop in blood pressure after the release of resting leg ischemia was more pronounced than in untrained subjects and was associated with parallel changes in indexes of cerebral blood flow. Once initiated, the autoregulatory response was similar between the groups. A delayed onset of autoregulation with a larger normalized transfer gain conforms with a less effective dampening of MAP oscillations, indicating that athletes may be more prone to instances of symptomatic cerebral hypoperfusion when MAP declines.  相似文献   

19.
Cerebral artery vasospasm is a major cause of death and disability in patients experiencing subarachnoid hemorrhage (SAH). Currently, little is known regarding the impact of SAH on small diameter (100-200 microm) cerebral arteries, which play an important role in the autoregulation of cerebral blood flow. With the use of a rabbit SAH model and in vitro video microscopy, cerebral artery diameter was measured in response to elevations in intravascular pressure. Cerebral arteries from SAH animals constricted more (approximately twofold) to pressure within the physiological range of 60-100 mmHg compared with control or sham-operated animals. Pressure-induced constriction (myogenic tone) was also enhanced in arteries from control animals organ cultured in the presence of oxyhemoglobin, an effect independent of the vascular endothelium or nitric oxide synthesis. Finally, arteries from both control and SAH animals dilated as intravascular pressure was elevated above 140 mmHg. This study provides evidence for a role of oxyhemoglobin in impaired autoregulation (i.e., enhanced myogenic tone) in small diameter cerebral arteries during SAH. Furthermore, therapeutic strategies that improve clinical outcome in SAH patients (e.g., supraphysiological intravascular pressure) are effective in dilating small diameter cerebral arteries isolated from SAH animals.  相似文献   

20.
The lower limits of cerebral blood flow autoregulation shift toward high pressures in aged compared with young rats. Intraluminal pressure stimulates contractile mechanisms in cerebral arteries that might, in part, cause an age-dependent shift in autoregulation. The present project tested two hypotheses. First, cerebral artery tone is greater in isolated arteries from aged compared with mature adult rats. Second, aging decreases the modulatory effect of endothelium-derived nitric oxide (NO) and increases vascular smooth muscle Ca2+ sensitivity. Isolated segments of middle cerebral arteries from male 6-, 12-, 20-, and 24-mo-old Fischer 344 rats were cannulated and loaded with fura-2. Diameter and Ca2+ responses to increasing pressure were measured in HEPES, during NO synthase inhibition [NG-nitro-l-arginine methyl ester (l-NAME)], and after removal of the endothelium. Cerebral artery tone (with endothelium) increased with age. Only at the lowest pressure (20 and 40 mmHg) was intracellular Ca2+ concentration ([Ca2+]i) greater in arteries from 24-mo-old rats compared with the other age groups. l-NAME-sensitive constriction increased significantly in arteries from 6- to 20-mo-old rats but declined significantly thereafter in arteries from 24-mo-old rats. [Ca2+]i was less in arteries from 24-mo-old rats compared with the other groups after treatment with l-NAME. Another endothelial-derived factor, insensitive to l-NAME, also decreased significantly with age. For example, at 60 mmHg, the l-NAME-insensitive constriction decreased from 47 +/- 10, 42 +/- 5, 21 +/- 2, and 3 +/- 1 microm in 6-, 12-, 20-, and 24-mo-old rats, respectively. Our data suggest that aging alters cerebral artery tone and [Ca2+]i responses through endothelial-derived NO synthase-sensitive and -insensitive mechanisms. The combined effect of greater cerebral artery tone with less endothelium-dependent modulation may in part contribute to the age-dependent shift in cerebral blood flow autoregulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号