首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Downed woody material (fallen logs) offers ground-dwelling spiders (Araneae) ideal sites for nesting and foraging, but little is known about what characteristics of dead wood influence spider assemblages. In a maple forest of Forillon National Park, in eastern Québec (Canada), spider assemblages on, adjacent to, and away from fallen logs were compared. We also tested how log type (coniferous vs. deciduous) and decomposition stage influenced spider assemblages. Sampling was done for an intensive four-week period using both litter samples and pitfall traps. A total of 5613 spiders representing 83 species from 16 families was collected. Spiders were affected by the presence of logs, as both species diversity and total number of individuals collected were significantly higher on the log surface compared to the forest floor. Ordination analysis revealed a distinct compositional difference between the spider fauna found on the wood surface compared to the forest floor. Wood type and decomposition stage had few significant effects on spider assemblages, except that less decayed logs supported higher spider diversity than logs in advanced stages of decay. Dead wood is clearly important for generalist predators such as spiders, further supporting the conservation importance of fallen logs in northern forest ecosystems.  相似文献   

2.
《Mycoscience》2020,61(1):22-29
Myxomycetes inhabit coarse woody debris in varying stages of decay; however, their ecology in the dead wood of evergreen broadleaf trees is not well known. In this study, we examined the relationships between myxomycete species and the decay stage of wood from fallen trees in an evergreen broadleaf forest in Japan. Myxomycete species richness and abundance were calculated for eight stages of decay in fallen logs, according to the appearance and wood hardness of log portions. A total of 70 myxomycete species (including varieties) were found on the logs. Moderately decayed wood was the preferred habitat of myxomycetes (57 species; 81% of the total) and most species inhabited moist decayed wood. Analysis by nonmetric multidimensional scaling enabled the differentiation of myxomycete assemblages, with five groupings recognized across the progression of decay. Forty-two species preferred a particular decay stage, represented by the decay index. Physarum viride and Stemonitis splendens particularly preferred the less-decayed wood and Stemonitopsis typhina var. similis especially inhabited the well-decayed wood. Species from the order Physarales dominated the less-decayed wood, whereas Trichiales and Liceales species dominated the softer well-decayed wood. Myxomycetes diversity was high in and varied among logs with various stages of decay in a typical Japanese evergreen forest.  相似文献   

3.
Decaying wood plays an important role in forest biodiversity, nutrient cycling and carbon balance. Community structure of wood-inhabiting fungi changes with mass loss of wood, but the relationship between substrate quality and decomposers is poorly understood. This limits the extent to which these ecosystem services can be effectively managed. We studied the fungal community and physico-chemical quality (stage of decay, dimensions, density, moisture, C : N ratio, lignin and water or ethanol extractives) of 543 Norway spruce logs in five unmanaged boreal forest sites of southern Finland. Fungi were identified using denaturing gradient gel electrophoresis and sequencing of DNA extracted directly from wood samples. Macroscopic fruiting bodies were also recorded. Results showed a fungal community succession with decreasing wood density and C : N ratio, and increasing moisture and lignin content. Fungal diversity peaked in the most decayed substrates. Ascomycetes typically colonized recently fallen wood. Brown-rot fungi preferred the intermediate decay stages. White-rot fungi represented approximately one-fifth of sequenced species in all decay phases excluding the final phase, where ectomycorrhizal (ECM) fungi became dominant. Lignin content of logs with white-rot fungi was low, and ECM fungi were associated with substrates containing abundant nitrogen. Macroscopic fruiting bodies were observed for only a small number of species detected with molecular techniques.  相似文献   

4.
Abstract. Since many wood‐living forest species are influenced by the dynamics of coarse woody debris (CWD), information about the spatial pattern of CWD under natural conditions is essential to understand species distributions. In this study we examined the spatial pattern of downed logs and wood‐decaying fungi in an old‐growth boreal Picea abies forest in northwestern Sweden that is governed by gap‐phase dynamics. The spatial pattern of wood‐decaying fungi was studied to draw conclusions about species dispersal abilities. A total of 684 logs with a diameter > 10 cm were mapped and analysed with Ripley's K‐function. The distribution of all logs taken together displayed a significant aggregated pattern up to 45 m. The different decay stages also deviated from random expectations. Fairly fresh logs and logs in the middle decay stage were clumped up to about 25 and 35 m respectively, and late decayed logs aggregated up to 95 m. Logs with diameters from 10–29 cm were aggregated up to 25 m, whereas logs ≥30 cm diameter were randomly distributed. The result suggests that gap‐dynamics do have an impact on the spatial pattern of the CWD, creating fine‐scale clumping. The random distribution of large logs may result from the slightly regular spacing of large living trees. The spatial patterns of 16 species (n > 20) of wood‐decaying fungi were analysed with Ripley's K‐function. Three patterns were aggregated, for Gloeophyllum sepiarium, Coniophora olivacea and Vesiculomyces citrinus. These results indicate that the distribution of most species at the stand level is generally not influenced by dispersal limitations.  相似文献   

5.
Dead wood is an important habitat for forest organisms, and wood decay fungi are the principal agents determining the dead wood properties that influence the communities of organisms inhabiting dead wood. In this study, we investigated the effects of wood decomposer fungi on the communities of myxomycetes and bryophytes inhabiting decayed logs. On 196 pine logs, 72 species of fungi, 34 species and seven varieties of myxomycetes, and 16 species of bryophytes were identified. Although white rot was the dominant decay type in sapwood and heartwood, brown and soft rots were also prevalent, particularly in sapwood. Moreover, white rot and soft rot were positively and brown rot negatively correlated with wood pH. Ordination analyses clearly showed a succession of cryptogam species during log decomposition and showed significant correlations of communities with the pH, water content, and decay type of wood. These analyses indicate that fungal wood decomposer activities strongly influence the cryptogam communities on dead wood.  相似文献   

6.
Fungi, especially basidiomycetes, are the primary agents of woody debris decomposition in terrestrial forest ecosystems. However, quantitative data regarding the abundance and decay activity of wood-inhabiting fungi are lacking, especially for tropical and subtropical areas. This study demonstrates the dynamics of decay columns of wood-inhabiting fungi within decaying woody debris of Castanopsis sieboldii and the wood decay activities of those fungi in a subtropical natural forest. Among six basidiomycetes and two ascomycetes observed as sporocarps on fallen boles of C. sieboldii, Microporus affinis was most abundantly observed in terms of frequency of sporocarps and as percentage area of decay columns within cross-sections of boles, especially those in the early stages of decomposition. In decay columns of M. affinis, both acid-unhydrolyzable residue (AUR) and holocellulose decayed simultaneously, and wood relative density decreased to 45.8% of that of fresh C. sieboldii wood. A pure culture decay test under laboratory conditions showed that M. affinis was a strong decomposer of AUR and holocellulose. These results suggest that M. affinis has a central role in lignocellulose decomposition of wood of C. sieboldii in the early stages of decomposition.  相似文献   

7.
A comparative study was made of one managed forest and one natural forest regarding the supply of decaying wood on the ground and the occurrence of bryophytes on the wood, especially epixylic specialists.
The total substrate surface of wood is larger in the primeval forest. The larger quantity of decaying wood increases the probability of wood occurring in ail decay stages. Logs of Populus tremula occurred only in the natural forest. An important proportion of the wood substrate in the natural forest consisted of logs of large diameter class; these logs were missing in the managed forest. Fiftyfour bryophyte species were found on decaying wood. They were separated into four different groups. Facultative epiphytes first colonized decaying wood, followed by epixylic specialists and finally by competitive epigeics. Opportunistic generalists showed a more irregular pattern of occurrence. The bryophyte flora on decaying wood was most species rich in the natural forest. Sixteen epixylic specialists occurred here, several considered to be threatened by forest management, while only 5 of these species occurred in the managed forest.
The higher frequency of epixylic specialists in the natural forest is related to the greater frequency of favourable habitats, specifically: logs of large diameter, decayed wood, Populus tremula and (to a lesser extent) Picea abies.  相似文献   

8.
A survey of the patterns of lignicolous fungi to record occurrence of fruitbodies on fallen logs of Picea abies . has been performed. Ninetythree forest stands with different ages. ecology, and histories of management in Ser-Trendelag County, Central Norway were investigated. In each stand an investigation plot of 40 m diameter was established, in which five logs were randomly selected. Environmental variables of the logs and plots and geographical positions of the plots were recorded. The numerical methods used include detrended correspondence analysis (DCA) and canonical correspondence analysis (CCA).
A total of 140 species of Aphyllophorales, Agaricales with eccentrically attached caps, heterobasiodomycetes, and prominent ascomycetes and deuteromycetes were registered. More than one third of the species were only found once. The main gradient in the data set was shown to be related to decay. The second gradient was related to size of the logs and some forest management variables (in addition to decay). Of the variation in composition of the species, 13.8 % can be ascribed to solely environmental variance, 6 % to solely spatial structure, and only 0.8 % to the combination of the environment and spatial component of variation. The results are discussed in the light of wood decay, forest management, and landscape fragmentation.  相似文献   

9.
Niche differentiation in soil horizons, host species and natural nutrient gradients contribute to the high diversity of ectomycorrhizal fungi in boreal forests. This study aims at documenting the diversity and community composition of ectomycorrhizal fungi of Norway spruce ( Picea abies ) and silver birch ( Betula pendula ) seedlings in five most abundant microsites in three Estonian old-growth forests. Undisturbed forest floor, windthrow mounds and pits harboured more species than brown- and white-rotted wood. Several species of ectomycorrhizal fungi were differentially represented on either hosts, microsites and sites. Generally, the most frequent species in dead wood were also common in forest floor soil. Ordination analyses suggested that decay type determined the composition of EcM fungal community in dead wood. Root connections with in-growing mature tree roots from below affected the occurrence of certain fungal species on seedling roots systems in dead wood. This study demonstrates that ectomycorrhizal fungi differentially establish in certain forest microsites that is attributable to their dispersal and competitive abilities. Elevated microsites, especially decayed wood, act as seed beds for both ectomycorrhizal forest trees and fungi, thus affecting the succession of boreal forest ecosystems.  相似文献   

10.
The removal of timber during harvesting substantially reduces important invertebrate habitat, most noticeably microhabitats associated with fallen trees. Oribatid mite diversity in downed woody material (DWM) using species-level data has not been well studied. We investigated the influence of decaying logs on the spatial distribution of oribatid mites on the forest floor at the sylviculture et aménagement forestiers écosystémique (SAFE) research station in the Abitibi region in NW Québec. In June 2006, six aspen logs were selected for study, and samples were taken at three distances for each log: directly on top of the log (ON), directly beside the log (ADJ) and at least one metre away from the log and any other fallen wood (AWAY). Samples ON logs consisted of a litter layer sample, an upper wood sample and an inner wood sample. Samples at the ADJ and AWAY distances consisted of litter samples and soil cores. The highest species richness was collected ON logs, and logs harboured a distinct oribatid species composition compared to nearby forest floor. There were species-specific changes in abundance with increasing distance away from DWM, which indicates an influence of DWM in structuring oribatid assemblages on the forest floor. Additionally, each layer (litter, wood and soil) exhibited a unique species composition and hosted a different diversity of oribatid mites. This study further highlights the importance of DWM to forest biodiversity by creating habitat for unique assemblages of oribatid mites.  相似文献   

11.
Coarse woody debris supports large numbers of saproxylic fungal species. However, most of the current knowledge comes from Scandinavia and studies relating the effect of stand or log characteristics on the diversity and composition of decomposer fungi have not been conducted in Northeastern Canada. Logs from five tree species were sampled along a decomposition gradient in nine stands representing three successional stages of the boreal mixed forest of Northwestern Quebec, Canada. Using a molecular fingerprinting technique, we assessed fungal community Shannon–Weaver diversity index, richness, and composition. We used linear mixed models and multivariate analyses to link changes in fungal communities to log and stand characteristics. We found a total of 33 operational taxonomic units (OTUs) including an indicator species for balsam fir (similar to Athelia sp.) and one found only in aspen stands (similar to Calocera cornea). Spruce logs supported the highest fungal Shannon–Weaver diversity index and OTU number. Our results support the hypothesis that log species influences fungal richness and diversity. However, log decay class does not. Stand composition, volume of coarse woody debris, and log chemical composition were all involved in structuring fungal communities. Maintaining the diversity of wood-decomposing communities therefore requires the presence of dead wood from diverse log species.  相似文献   

12.
We studied the decomposition of Cyrilla racemiflora logs over a 13‐yr period in tropical dry and wet forests in Puerto Rico. The mean mass loss, ratio of soft to hard wood, nutrient concentrations, and the diversity of wood‐inhabiting organisms were greater in logs decomposing in the dry forest than in the wet forest. Termites were also more abundant in the logs collected from the tropical dry forest than the tropical wet forest. High moisture content and a low animal diversity on the logs in the wet forest seem to retard wood decay in this habitat. Wood decay rates in the tropical dry forest can be related to the high diversity of species and functional groups of wood‐inhabiting organisms.  相似文献   

13.
Fungal communities within a naturally fallen bough of Japanese beech (Fagus crenata) were investigated with reference to chemical properties of decay columns. Five logs were cut out from the fallen bough, which ranged from 10.7 to 20.5 cm in diameter. Nine fungal species and one sterile fungus were isolated from decay columns that elongated along a longitudinal axis and were delimited by black zone lines and wood discoloration. Lampteromyces japonicus and Trichoderma spp. were isolated from all five logs. Lampteromyces japonicus and Antrodiella albocinnamomea occupied the largest volume in the logs. Lignin and carbohydrate contents, lignocellulose index (LCI), nitrogen content, and water content were different among decay columns colonized by different fungal species in each log. In L. japonicus, LCI of decay column was correlated to that of wood blocks decayed under pure culture condition by the fungi isolated from the decay columns. These results suggest that the small-scale variation in chemical properties within fallen logs of Japanese beech reflects the distribution and the decay ability of colonized fungi.  相似文献   

14.
张铁  于存  戚玉娇 《生态学报》2022,42(7):2774-2783
倒木是森林生态系统的重要组分,其分解调控着土壤的养分循环,同时也影响着土壤微生物群落结构。但目前鲜见关于倒木分解对土壤微生物群落影响方面的报道。选取贵州茂兰喀斯特常绿落叶阔叶混交林中处于轻、中和重度腐烂等级的狭叶润楠(Machilus rehderi)、枫香(Liquidambar formosana)、青冈栎(Cyclobalanopsis glauca)和圆果化香(Platycarya longipes)4种常见树种倒木为研究对象,以距倒木外围的3个不同水平距离(10cm、30cm和50cm)的土壤样品为实验材料,分析倒木树种、腐烂等级和距离对土壤真菌种类及多样性的影响。结果表明:1)喀斯特森林4种树种倒木所影响土壤真菌群落在门级分类上主要为子囊菌门、担子菌门和毛霉门,优势属有Mortierella spp.、Phlebia spp.、Pluteus spp.和Chaetomium spp.等;2)倒木的树种对土壤真菌群落相对丰度的影响有差异,圆果化香倒木下的土壤真菌丰富度Chao1指数显著高于青冈栎;3)随腐烂程度加深,4种树种倒木下的土壤真菌群落多样性呈显著增加趋势;4)土壤真菌群落丰度随着距倒木距离的增大(10-50cm)变化明显,如狭叶润楠影响的Pluteus spp.、Mortierella spp.和Ganoderma spp.,枫香的Chaetomium spp.,圆果化香的Mortierella spp.和青冈栎的Phlebia spp.和Oliveonia spp.等。本研究量化了喀斯特森林倒木所影响的土壤真菌群落组成及分布规律,在一定程度上为倒木分解与土壤微生物群落之间的作用机制的深入探索提供了科学依据。  相似文献   

15.
The effect of tree species composition, stand structure characteristics and substrate availability on ground-floor bryophyte assemblages was studied in mixed deciduous forests of Western Hungary. Species composition, species richness and cover of bryophytes occurring on the soil and logs were analysed as dependent variables. The whole assemblage and functional groups defined on the basis of substrate preference were investigated separately. Substrate availability (open soil, logs) was the most prominent factor in determining species composition, cover and diversity positively, while the litter of deciduous trees had a negative effect on the occurrence of forest floor bryophytes. Besides, bryophyte species richness increased with tree species and stand structural diversity, and for specialist epiphytic and epixylic species log volume was essential. Sapling density and light heterogeneity were influential on bryophyte cover, especially for the dominant terricolous species. Many variables of the forest floor bryophyte community can be estimated efficiently by examining stand structure in the studied region. Selective cutting increasing tree species diversity, stand structural heterogeneity and dead wood volume can maintain higher bryophyte diversity in this region than the shelter-wood system producing even-aged, monodominant, structurally homogenous stands.  相似文献   

16.
Abstract. Seedling densities on the forest floor and on elevated microsites (logs and stumps) were compared for eight woody species in a temperate rain forest in southern Chile. Degree of association with elevated microsites varied significantly between species, showed no systematic relationship with reported shade tolerance, but was significantly negatively correlated with seed mass. Large-seeded Podocarpus nubigena established preferentially on undisturbed forest floor sites, whereas seedlings of small-seeded species such as Nothofagus nitida and Laurelia philippiana were found mainly on fallen logs and stumps. The abundance of large seedlings and saplings of N. nitida on logs/stumps, and the growth forms of canopy trees, confirm that recruitment of this species occurs mainly on decaying wood. The relationship between seed size and microsite preferences may be caused by effects of seed size on (1) ability to establish in forest floor litter and (2) retention of seeds on logs. Seedling occupancy of logs and stumps varied with state of decay. Few seedlings of any species were present on logs in the early stages of decay. N. nitida established earlier than the other species, attaining maximum abundance on wood in the middle decay classes. Species richness and overall seedling abundance were highest on wood in advanced stages of decay. Seed size differences are suggested as a determinant of differential utilization of forest floor heterogeneity, and hence of plant species coexistence.  相似文献   

17.
We studied the mesostigmatid mite community in four classes of wood decay in mixed (pine-oak) forest stands in the Wielkopolska region, Cental-West Poland. A total of 80 samples, including bark, phloem and rotten wood of coniferous and deciduous species logs, were taken in August 2006 and 2007. Decay classes were a qualitative, categorical index based on visual assessment of decomposition in coarse woody debris. A total of 3621 mesostigmatid mites were counted and identified to 91 species. In general the total number of species was diverse in the decay classes and ranged from 35 (classes I and II) to 58 (class IV). The average number of species did not differ significantly among wood decay classes. Also the abundance of mesostigmatids did not differ significantly among wood decay classes, but the highest abundance was observed in the last class (IV). Cluster analysis of the species identity index showed that the microhabitats were divided into two main clusters: relatively undecayed wood and decayed wood. Species accumulation curves showed that relatively decayed wood (class IV) had a greater rate of species accumulation than undecayed wood from the class I decomposition.  相似文献   

18.
Effects of snag characteristics on saproxylic beetles were studied in an area of managed beech forest in southern Sweden. A snag survey was combined with a beetle survey using 30 small window traps directly attached to beech snags. The total number of species was lower in the snags which were most decayed than in the three younger decay classes, while the number of red-listed species remained the same regardless of the stage of decay. The number of fresh wood species declined and the number of rot hole species increased with increasing snag decay. The diversity of fungicolous and decayed wood species peaked at the intermediate stage of decay in the snags. CCA ordination confirmed that the stage of decay in the snags was most important for species composition, followed by sun exposure. There were no general differences in species density and composition between managed and unmanaged stands. Our study suggests that most species are able to find suitable habitat within a radius of a few kilometres and that the total amount of habitat in an unfragmented forest area is more important for species diversity than the spatial distribution of this habitat. Our data also shows that species diversity increases with habitat diversity. Snags formed from giant beech trees seem to be particularly important for rare species living in rot holes. We conclude that for a high species diversity there is a requirement for snags in different stages of decay, size and degree of sun exposure.  相似文献   

19.
Bryophyte and fungal communities were investigated on fallen trees representing seven deciduous tree species in a mixed near natural nemoral forest. Bryophytes were represented by 41 taxa, including several very frequent species. Of the 296 fungal species, most were recorded with very low frequency and the share of high frequent species was much lower than among the bryophytes. Species turnover was bigger in the fungal communities, compared to the bryophyte communities, and related to a higher extent to measured differences in environmental conditions. Tree species diversity was found to be an important factor for fungal species composition, while only small differences in bryophyte species composition were found between the different tree species. On the other hand bryophyte species richness showed distinct relations to tree species and microclimatic variables, a tendency which was not evident for fungal diversity. It is concluded that the two organism groups to some extent differ in their conservation demands. Thus, conservation of wood-inhabiting bryophytes requires prioritising of large, coherent forest stands in which a stable humid microclimate and a reasonable supply of dead wood is secured. Successful conservation of fungi requires that substantial amounts of dead wood are left for natural decay in a variety of natural forest environments representing different tree species, so that heterogeneity in dead wood types is secured.  相似文献   

20.
Hicks  William T.  Harmon  Mark E. 《Plant and Soil》2002,243(1):67-79
O2 is an important regulator of physiological processes involved in the decomposition of woody debris, yet O2 levels and diffusion rates within decomposing logs are largely unknown. We examined how O2 diffusion rates in decayed and sound wood varied with moisture and density, and we compared predicted with observed seasonal changes in oxygen concentration in logs in a Pacific Northwest old-growth Pseudotsuga menziesii forest. In the laboratory, the oxygen diffusion coefficient (DO2) was determined in the longitudinal and radial (or tangential) directions on wood cores of varying moisture content and density. In the field, O2 was measured in tubes inserted to three radial depths (2, 6 and 15 cm) within logs of two species (Pseudotsuga menziesii and Tsuga heterophylla) and five decay classes (where class 5 = most decayed). In both the radial and longitudinal directions, DO2 increased exponentially as the air filled pore space (AFPS) increased and as density decreased. In the field, mean O2 concentrations in logs were not significantly different between species. Mean O2 concentrations were significantly lower in the least decayed logs as compared to the most decayed logs. Mean O2 concentrations decreased with radial depth only in decay class two logs. Seasonal O2 levels did not consistently vary with log moisture, respiration, or air temperature. The comparison of the results from a model that assumes oxygen diffuses only in the radial direction to field data indicates that laboratory measurements of oxygen diffusion may underestimate field oxygen concentrations. Cracks, insect galleries and other passages in decayed logs, and longitudinal oxygen diffusion may account for this discrepancy. In the field, log oxygen concentrations were rarely as low as 2%, indicating anaerobic conditions may not be as common in logs as we previously thought. Oxygen limitations on decomposition may occur in relatively sound and/or water soaked wood, but probably not in decayed logs in a terrestrial setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号