首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study demonstrated how the impact of eutrophication in a deep lake at the southern border of the Alps (Lake Garda) was regulated by specific modes of atmospheric circulation relevant for the Mediterranean area. At the decadal scale, nutrients and phytoplankton increased concurrently since the 1970s. At the annual scale, year-to-year fluctuations in nutrients and phytoplankton were controlled through a chain of causal factors centred on deeply penetrative mixing events determining an upward transport of phosphorus from the hypolimnion to the trophogenic layers. The extent of mixing was in turn controlled by lake and air winter temperature, which were ultimately regulated by the winter fluctuations of the East Atlantic pattern (EA). In its negative state, the EA shows an intense high pressure over the West Atlantic, causing a north-easterly air flow bringing cold air from continental Europe to Mediterranean, thus favouring greater lake mixing and nutrient fertilisation. Cyanobacteria (mostly Planktothrix rubescens) were the organisms which greatly benefitted from the long-term increase in phosphorus concentrations and the year-to-year fluctuations in surface phosphorus availability controlled by the EA. Given the same availability of phosphorus in the water column, positive winter EA phases weakened the eutrophication effects and phytoplankton development.  相似文献   

2.
Water quality of the shallow, mesotrophic, and macrophyte-dominated Lake Kaljasjärvi has been monitored at three to four year intervals since 1978. During the monitoring period, surface-water total phosphorus (TP) concentrations have typically varied between 20 and 25 g P l–1. However, elevated total phosphorus concentrations were measured in 1987, 1991, and 1999. Diatom-based reconstruction of the historical lake-water TP concentrations was therefore employed to study the recent development of the lake. However, the diatom-TP model did not predict the high measured phosphorus concentrations despite the changes observable in diatom assemblages. In addition, the ratio of sedimentary diatom remains to chrysophycean stomatocysts declined towards the top of the sediment core, indicating decreasing trophy rather than eutrophication. Analysis of sedimentary pigments and phosphorus fractions, used to examine further the changes, also produced results that contradicted the simple eutrophication hypothesis. In particular, the proportion of chlorophyll derivatives instead of carotenoids increased and there was a rise in the concentration of refractory instead of NaOH-extracted phosphorus. These features appear to be related to the extensive littoral areas of the lake since enhanced littoral production can explain both the observed changes in sediment chemistry and the low diatom-inferred TP (DI-TP). Littoral primary producers are suggested to have benefited from the increased phosphorus inputs to the lake, transferring some of the phosphorus to the detrital pool and contributing to the increased pigment concentrations of sedimentary organic matter. High proportions of non-planktonic diatoms in the samples lower DI-TP because periphytic taxa are assigned low TP optima in the inference models used. Abundant aquatic macrophytes may also have made the lake resistant to eutrophication by assimilating nutrients, providing refuge for zooplankton, and having an allelopathic effect on phytoplankton. Since 1980, however, the sedimentary diatom assemblages also indicate increasingly eutrophic conditions. Additional loading from numerous cottages during the last 20 years seems to have caused observable changes in the phytoplankton communities.  相似文献   

3.
Phytoplankton populations in perennially ice-covered Lake Bonney, Antarctica grow in a unique non-turbulent environment. The absence of turbulence generated by winds or major streams, combined with strong vertical gradients in temperature and nutrients, create vertically stratified environmental conditions that support three discrete phytoplankton populations in the east lobe of this lake. Phytoplankton biomass and photosynthesis were measured in the east lobe of Lake Bonney during the winter-spring transicion (September) to mid-summer (January). During this period, irradiance beneath the ice increased from 0.03 to 1.9 mol quanta m−2 d−1. Chlorophylla concentrations ranged from 0.03 to 3.8 μl−1 within the trophogenic zone (just beneath the permanent ice cover to 20 m) and photosynthesis ranged from below detection to 3.2 μg Cl−1 d−1. Our results indicate: (1) phytoplankton photosynthesis began in late winter (before 9 September, our earliest sampling date); (2) maxima for phytoplankton biomass and production developed sequentially in time from the top to the bottom of the trophogenic zone, following the seasoral increase in irradiance; and (3) the highest photosynthetic efficiencies occurred in early spring, then decreased over the remainder of the phytoplankton growth season. The spring decrease in photosynthetic rates for shallower phytoplankton appeared to be related to nutrient availability, while photosynthesis in the deeper populations was solely lightdependent.  相似文献   

4.
1. A long‐term monitoring programme on phytoplankton and physicochemical characteristics of Esthwaite Water (England) that started in 1945 provides a rare opportunity to understand the effects of climate and nutrients on a lake ecosystem. 2. Monitoring records show that the lake experienced nutrient enrichment from the early 1970s, particularly after 1975, associated with inputs from a local sewage treatment plant, resulting in marked increases in concentration of soluble reactive phosphorus (SRP). Climatic variables, such as air temperature (AirT) and rainfall, exhibit high variability with increasing trends after 1975. 3. Diatom analyses of an integrated 210Pb‐dated lake sediment core from Esthwaite Water, covering the period from 1945 to 2004, showed that fossil diatoms exhibited distinct compositional change in response to nutrient enrichment. 4. Redundancy analysis (RDA) based on diatom and environmental data sets over the past 60 years showed that the most important variables explaining diatom species composition were winter concentrations of SRP, followed by AirT, independently explaining 22% and 8% of the diatom variance, respectively. 5. Additive models showed that winter SRP was the most important factor controlling the diatom assemblages for the whole monitoring period. AirT had little effect on the diatom assemblages when nutrient levels were low prior to 1975. With the increase in nutrient availability during the eutrophication phase after 1975, climate became more important in regulating the diatom community, although SRP was still the major controlling factor. 6. The relative effects of climate and nutrients on diatom communities vary depending on the timescale. RDA and additive model revealed that climate contributed little to diatom dynamics at an annual or decadal scale. 7. The combination of monitoring and palaeolimnological records employed here offers the opportunity to explore how nutrients and climate have affected a lake ecosystem over a range of timescales. This dual approach can potentially be extended to much longer timescales (e.g. centuries), where long‐term, reliable observational records exist.  相似文献   

5.
Only a combination of nutrient load abatement and food-web management proved efficient for the management of water quality in the deep stratifying Wupper Reservoir. Reduction of nutrient loading, was completed in winter 1992/1993, but resulted only in reduced winter/spring mixing of phosphorus concentrations. Since the capacity of the diatom spring bloom to remove nutrients from the trophogenic layer of this slightly eutrophic water-body was never exhausted, the surplus of total phosphorus available to support summer algal growth remained unchanged. Thus, nutrient reduction alone did not improve the water quality, as expected. Subsequent replacement of the smaller Daphnia cucullata by the larger Daphnia galeata-hyalina complex that was attributable to successful food-web management did, however, result in a shift from a turbid to a clear water regime in 1999. Clearly, the zooplankton community, and therefore food-web structure, played an integral role in nutrient recycling and in the repartitioning of the phosphorus pool. As diatom settling and grazing became much more tightly linked with the appearance of the larger-bodied Daphnia galeata-hyalina complex, which exploits lower-level food resources as early as May, daphnids increasingly acted as a sink for phosphorus. This increased export fluxes out of the pelagic zone and leaves a smaller surplus of total phosphorus to support the accumulation of summer algae. Consequently, water transparency and total chlorophyll concentrations in summer improved with food-web restructuring, indicating real oligotrophication of Wupper Reservoir driven by internal feedbacks. Handling editor: S. I. Dodson  相似文献   

6.
This paper presents nitrogen and phosphorus budgets for spring and summer for the trophogenic (0–9 m) and tropholytic (9–27 m) zones of Lake Sammamish. The objective of constructing the budgets is to evaluate the efficiency of nutrient recycling and increase knowledge of the overall nutrient dynamics.The budgets reveal that uptake and solubilization are the dominant fluxes and that nutrient recycling is generally efficient, with the possible exception of early spring during the diatom bloom. This leads to greater reductions in the dissolved N and P pools in spring than summer. Sedimentation is greater in spring because of a pulse immediately following the diatom bloom.Solubilization of particulates is much less in the tropholytic zone than the trophogenic zone. This is due to slower decomposition rates there and to the efficiency of solubilization in the overlying trophogenic zone which results in a relatively small particulate influx. Turnover times for the N and P pools are therefore much faster in the trophogenic zone than in the tropholytic zone. In the trophogenic zone, however, the dissolved N pool turns over much more slowly than the dissolved P pool because of its larger size relative to algal growth requirements.Overall there is a net loss of N and P from the water column in spring primarily due to sedimentation and denitrification whilst in summer there is a small net gain because of sediment release and a slight excess of inflow over outflow.The work was supported by National Science Foundation grants DEB 74-20744, BMS 74-20744 and GB 36810F to the International Biological Program, Western Coniferous Biome (US/IBP) and grant R 008512 from the US Environmental Protection Agency. Contribution no. 373 by the Western Coniferous Biome.The work was supported by National Science Foundation grants DEB 74-20744, BMS 74-20744 and GB 36810F to the International Biological Program, Western Coniferous Biome (US/IBP) and grant R 008512 from the US Environmental Protection Agency. Contribution no. 373 by the Western Coniferous Biome.  相似文献   

7.
SUMMARY. Barton Broad, Norfolk is a shallow, eutrophic lake. During the last 30 years submerged macrophytes have declined and phytoplankton numbers have increased. This change is traced through the stratigraphy of a 60-cm mud core. Diatom frustule counts of 1-cm sections of the core showed that an epiphyte-dominated diatom community was replaced by a planktonic community. From chemical analysis and radio-isotope dating of the core, sedimentation rates and past phosphorus and iron loadings are estimated. Sedimentation rates were between 1.2 mm and 3.1 mm year−1 during the early part of the core but doubled in the 1950s to 5 mm year−1, doubled again in the 1960s and have increased to 12 mm year−1 in the 1970s. Retention of phosphorus in the sediment increased from 0.5 g m−2 year−1 to 18–21 g m−2 year−1 in two steps. A similar trend is shown for iron. The diatom species composition and chemistry of the core sections are correlated with increased nutrient loading and the decline of macrophytes. Contemporary phosphorus and iron budgets are calculated from inflow–outflow data and balanced using sediment retentions estimated from the core data. It is believed a large proportion of phosphorus and iron enters the Broad by movement of sediment along the river bed. A reduction of 25% of the 1975 phosphorus loadings would probably permit re-establishment of some macrophytes. The present chemistry and algal communities of Barton Broad and the River Ant are described.  相似文献   

8.
In situ carbon-14 bioassay techniques were used during 1972–1974 to estimate nutritional preferences and requirements of the pelagial phytoplankton in Lake Ohrid, Yugoslavia.Bioassay measurements, conducted spatially and temporally, and corrected appropriately, showed a strong stimulation to phytoplankton photosynthesis rates during most seasons in epilimnetic waters following microadditions of inorganic silica and iron. Photosynthetic stimulation was additive for individual elements and synergistic when simultaneous additions were made. Marked stimulation occurred for both elements during the spring, especially in upper hypolimnetic waters (50–75 m) and correlated strongly with dominant diatom populations.The addition of an organic chelator, nitrilotriaceticacid (NTA), commonly stimulated photosynthetic rates and, frequently, as deep as 15o m, considerably below the depth of optimal light availability for photosynthesis. With minor exception, the simultaneous addition of this chelator and inorganic iron were always capable of producing stimulatory responses.Inorganic phosphorus was preferred over nitrogen and generally found to be more stimulatory. Phosphorus stimulation was restricted primarily to periods of spring and summer production. The addition of glucose, acetate and glycine produced positive responses, while the addition of several vitamins showed little effect except for a stimulation from microamounts of B12. The addition of two organic growth substances, Gibberellic acid (GA) and Indoleacetic acid (IAA), both stimulated phytoplankton photosynthesis.The results of more than 140 bioassay measurements indicate the pelagial phytoplankton are severely restricted nutritionally due to specific physical-chemical interactions occurring in Lake Ohrid. Similar mechanisms have been postulated and evaluated in other hand-water lake systems. In spite of the great depth of the lake (300 m+) and probable age, these mechanisms are undoubtedly responsible for the low phytoplankton production occuring in the lake.  相似文献   

9.
The correlation of various hydrological factors with the distribution of phytoplankton and bacteria has been studied in Kinjhar Lake, situated 120 km north of Karachi. This lake is highly eutrophic, containing rich concentrations of nutrients, but the temporal distribution of phytoplankton was generally related to the variations of light and temperature. The effects of light and temperature are perhaps modified by nutrients, particularly when nitrogen and phosphorus are present in surprisingly low concentrations. The effect of mechanical disturbances in the artificial lake also has a significant effect on the growth of phytoplankton and indirectly on consumers, especially fishes.  相似文献   

10.
11.
Pulsed river water events can increase nutrient levels potentially translating into enhanced primary production, phytoplankton community shifts, and bloom formation. The Bonnet Carré Spillway is a managed river diversion which can be used to redirect a significant amount of Mississippi River water into Lake Pontchartrain, reducing the risks of flood in the downstream communities during runoff seasons. We investigated nutrient enrichment and consequent changes in phytoplankton biomass, including toxic species in Lake Pontchartrain during and after a 1-month Bonne Carré Spillway opening in 2008. Water samples were collected along a 30 km transect. A freshwater plume was found to have formed by the strong river input that had limited mixing with the lake during the opening. The plume and lake water gradually mixed together after the Spillway was closed, indicated by the reduction of the horizontal salinity gradient. The river pulse increased the lake nitrate and dissolved reactive phosphorus concentrations to more than five times the lake background in the plume stations. Nutrient concentrations decreased rapidly after the Spillway closure as the plume dissipated. Diatoms and chlorophytes dominated the system during the opening. After the Spillway closure, there was a shift over time from diatom dominance to toxic cyanobacteria dominance that corresponded to more stable, warmer, and nutrient-limited water conditions. Associated toxins were present and varied over time and space. Further research on the phytoplankton assemblages on the lake is needed in subsequent, non-Spillway opening years to evaluate the impact of river water pulses on the development of these toxic cyanobacterial blooms.  相似文献   

12.
SUMMARY. 1. This review considers the factors which determine the recovery of eutrophic lakes following a reduction in the external phosphorus loading.
2 The mean phosphorus content of a lake should decrease roughly in proportion to the reduction in phosphorus input. Where the lake phosphorus concentration does not decrease as predicted, then the release of phosphorus from the sediment is implicated.
3. The current understanding of the processes by which sediment phosphorus is mobilized and transported into the photic zone is described. The extent to which phosphorus release can maintain lake phosphorus concentrations following the reduction in external loading is influenced by: lake morphometry, flushing rate, sediment type, trophic state and history of enrichment.
4. A reduction in the phytoplankton biomass of a lake is dependent upon the size of the decrease in lake phosphorus concentration and the degree to which phosphorus limits primary production. The importance of phosphorus in limiting phytoplankton production tends to decrease with increasing lake trophic status.
5. Improvements in the condition of highly eutrophic lakes require very large reductions in external phosphorus loading, whereas in mildly enriched lakes moderate changes in the supply of phosphorus have noticeable effects on phytoplankton biomass.  相似文献   

13.
Kortmann  R. W.  Henry  D. D.  Kuether  A.  Kaufman  S. 《Hydrobiologia》1982,91(1):501-510
Phosphorus regeneration from lake sediments, and subsequent migration to trophogenic surface water, significantly contributes to the lake nutrient budgets and algal bloom conditions in some lake types. Decomposition of organic matter in deep water and sediments results in the accumulation of regenerated nutrients, alternate electron acceptors (reduced products of anaerobic respiration = COD), carbon dioxide, and depletion of dissolved oxygen (electron acceptor in aerobic respiration). Thermal stratification creates spatial segregation of trophogenic and tropholytic environments in the lake, resulting in gradients between sediments, hypolimnion, and the epilimnion. Exchange of oxygen, nutrients, and reduced alternate electron acceptors between the hypolimnion and epilimnion affects the productivity of a lake. Secchi depth, temperature, and dissolved oxygen profiles were determined twice each week from May 1980 to October 1980 at each of five lake stations. Nutrient concentration profiles, including total soluble and total phosphorus, ammonium-N, nitrate, soluble Kjeldahl, and total Kjeldahl nitrogen were determined twice each month. Epilimnetic algal samples were collected twice each week using Kemmerer and water column ‘straw’ amplers. Cell counts of total, green, bluegreen, and diatom algae groups were made. Three methods were used to describe hypolimnetic-epilimnetic exchange, including coefficients of eddy diffusion (based on lake heat budget), a graphical method of defining thermocline location, and relative thermal resistance to mixing (RTRM, based on density differences). All three methods yeilded comparable estimates of net seasonal transport. The graphical and RTRM methods described events occurring at shorter intervals (greater resolution). We find general agreement between the three methods of describing hypolimnetic-epilimnetic transport. The frequency of sampling resulted in increased resolution of thermal profiles (in time), allowing accurate estimation of short-term nutrient flux into epilimnetic waters. An algal bloom event occurred 5 to 12 days following erosion of the top of the metalimnion to below the aerobic-anaerobic interface. The lag time to peak algal concentration, following such events, decreased through the summer (June = 12 days, September = 5 days)  相似文献   

14.
Algal nutrient enrichment bioassays were conducted between May 1975 and August 1978 using water samples collected from Chautauqua Lake, New York. Photosynthetic fixation rates of natural phytoplankton assemblages were enhanced by additions of phosphorus and nitrogen, although enrichment with other nutrients had no significant stimulatory effect on algal photosynthesis. Whereas phosphorus stimulated in spring and early summer, both nitrogen and phosphorus enhanced photosynthesis in midsummer and fall. Relative to the effect of phosphorus enrichment, enhancement of photosynthesis by nitrogen during the summer and fall was highest in the northern part of the lake. During the period of ice cover, photosynthesis did not appear to be limited by nutrients in that nutrient additions (P, N, Si, C, Fe, trace metals) did not enhance fixation rates. Observed temporal fluctuations in the response of the algae to P and N correlated with changes in the lake water N:P ratio as well as with temporal changes in dissolved orthophosphate and nitrate-nitrite nitrogen. The N:P ratio decreased drastically in the summer and remained at ca. 10 or less through mid-fall, suggesting that N concentrations were inadequate for the non-N-fixing phytoplankton. Studies over 3 yr indicate that states of P and N limitation undergo time-space fluctuations that occur in a cyclic pattern in the surface waters of Chautauqua Lake.  相似文献   

15.
Jensen  H. S.  Kristensen  P.  Jeppesen  E.  Skytthe  A. 《Hydrobiologia》1992,235(1):731-743
Analysis of Danish lakes showed that both mean winter and mean summer concentrations of lake water total phosphorus in the trophogenic zone correlated negatively with the total iron to total phosphorus ratio (Fe:P) in surface sediments. No correlation was found between the water total phosphorus concentration and either the sediment phosphorus concentration alone or with sediment calcium concentration. The increase in total phosphorus from winter to summer, which is partly a function of net internal P-loading, was lowest in lakes with high Fe:P ratios in the surface sediment.A study of aerobic sediments from fifteen lakes, selected as representative of Danish lakes with respect to the sediment Fe and phosphorus content, showed that the release of soluble reactive phosphorus was negatively correlated with the surface sediment Fe:P ratio. Analysis of phosphate adsorption properties of surface sediment from 12 lakes revealed that the capability of aerobic sediments to buffer phosphate concentration correlated with the Fe:P ratio while the maximum adsorption capacity correlated with total iron. Thus, the Fe:P ratio may provide a measure of free sorption sites for orthophosphate ions on iron hydroxyoxide surfaces.The results indicate that provided the Fe:P ratio is above 15 (by weight) it may be possible to control internal P-loading by keeping the surface sediment oxidized. Since the Fe:P ratio is easy to measure, it may be a useful tool in the management of shallow lakes.  相似文献   

16.
1. Changes in nutrients and climate have occurred over approximately the same timescales in many European lake catchments. Here, we attempt to interpret the sedimentary diatom record of a large shallow lake, Loch Leven, in relation to these pressures using information gained from analysis of long‐term data sets of water quality, climate and planktonic diatoms. 2. The core data indicate the enrichment of Loch Leven starting in c. 1800–1850, most likely from agricultural practices in the catchment, with a more marked phase since c. 1940–1950 caused by increased phosphorus inputs from sewage treatment works, land drainage and a woollen mill. 3. While the recent diatom plankton remains are dominated by taxa associated with nutrient‐rich conditions, an increase in Aulacoseira subarctica relative to Stephanodiscus taxa since the mid‐1980s suggests that reductions in external catchment sources of nutrients (since 1985) may have resulted in partial recovery. This observation accords well with the long‐term monitoring series of water chemistry and phytoplankton. 4. On a decadal‐centennial scale, the eutrophication signal in the sediment record outweighs any evidence of climate as a control on the diatom community. However, at an inter‐annual scale, while the diatom data exhibit high variability, there are several changes in species composition in the recent fossil record that may be attributed to climatic controls. 5. The study highlights the value of a palaeolimnological approach, particularly when coupled with long‐term data sets, for developing our understanding of environmental change at a range of temporal scales. The diatom record in the sediment can be used effectively to track recovery from eutrophication, but requires greater understanding of contemporary ecology to fully interpret climate impacts. 6. The study illustrates the complexity of ecosystem response to synchronous changes in nutrients and climate, and the difficulty of disentangling the effects of these multiple, interacting pressures.  相似文献   

17.
Köhler  Jan  Nixdorf  Brigitte 《Hydrobiologia》1994,(1):187-195
The influences of imports of nutrients and planktonic algae from the River Spree on the dynamics of phytoplankton were examined in the shallow, eutrophic Müggelsee, which has a retention time of only 42 days. Phytoplankton biomass and nutrient concentrations were measured in both the lake and its inflow from 1980–1990. On a long-term average, mean biomass as well as vitality of most dominant phytoplankton populations in the lake were not significantly different from those in the river. Nevertheless, during distinct periods the external rates of biomass change of single lake populations (due to dilution or enrichment) were as high as the lake internal ones. The import of inocula populations from the river probably induced the formation of the typical community structure in the lake. Growth and decay of phytoplankton populations in the river strongly influenced the load of dissolved nutrients and thus indirectly the dynamics of planktonic algae in the downstream lake. For example, intensive assimilation of phosphorus by riverine algae in spring intensified the P-shortage and supported possible P-limitation of algal growth in the lake at that time. In years with high vernal biomass of centric diatoms in the river, and thus diminished import of dissolved silicon, the growth of diatoms was suppressed and that of cyanobacteria was favoured in the lake during summer.  相似文献   

18.
SUMMARY. 1. Reduced total phosphorus concentrations in the summer which followed the addition of iron aluminium sulphate to White Lough failed to reduce significantly the phytoplankton. which continued to be dominated by Oscitlatoria agardhii var. isothrix Skuja.
This species was present throughout the 4 years studied, forming over 50% of the algal volume in 80% of samples. In contrast, species which occurred principally in the summer months were found to be severely curtailed when sediment release of phosphorus was suppressed.
2. The phosphorus: carotenoid ratio was used to assess the extent of phosphorus limitation because laboratory studies on O. agardhii var. isothrix showed that this ratio was a much beter indicator of cell phosphorus content than the phosphorus: chlorophyll a ratio. Reduced summer phosphorus concentrations in White Lough caused a transition from intermittent to continuous phosphorus limitation rather than a proportional reduction in the summer phytoplankton.
3. Reduced autumn grazing pressure by Daphnia hyatina Leydig allowed large algal populations to develop in the winters following phosphorus reduction despite a 50% decline in total phosphorus. The combination of increased winter phytoplankton and lower total phosphorus reduced soluble reactive phosphorus concentrations to less than 5,μg P l−1 which in turn curtailed the spring diatom pulse.  相似文献   

19.
In meromictic Mahoney Lake, British Columbia, Canada, the heterotrophic bacterial production in the mixolimnion exceeded concomitant primary production by a factor of 7. Bacterial growth rates were correlated neither to primary production nor to the amount of chlorophyll a. Both results indicate an uncoupling of bacteria and phytoplankton. In the chemocline of the lake, an extremely dense population of the purple sulfur bacterium Amoebobacter purpureus is present year round. We investigated whether anoxygenic phototrophs are significant for the growth of aerobic bacterioplankton in the overlaying water. Bacterial growth rates in the mixolimnion were limited by inorganic phosphorus or nitrogen most of the time, and the biomass of heterotrophic bacteria did not increase until, in autumn, 86% of the cells of A. purpureus appeared in the mixolimnion because of their reduced buoyant density. The increase in heterotrophic bacterial biomass, soluble phosphorus concentrations below the detection limit, and an extraordinarily high activity of alkaline phosphatase in the mixolimnion indicate a rapid liberation of organically bound phosphorus from A. purpureus cells accompanied by a simultaneous incorporation into heterotrophic bacterioplankton. High concentrations of allochthonously derived dissolved organic carbon (mean, 60 mg of C(middot)liter(sup-1)) were measured in the lake water. In Mahoney Lake, liberation of phosphorus from upwelling purple sulfur bacteria and degradation of allochthonous dissolved organic carbon as an additional carbon source render heterotrophic bacterial production largely independent of the photosynthesis of phytoplankton. A recycling of inorganic nutrients via phototrophic bacteria also appears to be relevant in other lakes with anoxic bottom waters.  相似文献   

20.
The vertical distribution of microorganisms during spring deep-water renewal in Lake Baikal was studied. The downward advection of trophogenic waters was found to create conditions for the extensive growth of microorganisms capable of decomposing and mineralizing organic carbon, nitrogen, and phosphorus in deep water layers. These processes occur annually at spring thermal bars near the underwater slope of Lake Baikal, whereas in its pelagic zone, the deep intrusions of waters rich in organic material are observed only in the years when enhanced deep-water renewal is accompanied by a high spring yield of phytoplankton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号