首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cochliobolus heterostrophus race T, causal agent of southern corn leaf blight, requires T-toxin (a family of C35 to C49 polyketides) for high virulence on T-cytoplasm maize. Production of T-toxin is controlled by two unlinked loci, Tox1A and Tox1B, carried on 1.2 Mb of DNA not found in race O, a mildly virulent form of the fungus that does not produce T-toxin, or in any other Cochliobolus spp. or closely related fungus. PKS1, a polyketide synthase (PKS)-encoding gene at Tox1A, and DEC1, a decarboxylase-encoding gene at Tox1B, are necessary for T-toxin production. Although there is evidence that additional genes are required for T-toxin production, efforts to clone them have been frustrated because the genes are located in highly repeated, A+T-rich DNA. To overcome this difficulty, ligation specificity-based expression analysis display (LEAD), a comparative amplified fragment length polymorphism/gel fractionation/capillary sequencing procedure, was applied to cDNAs from a near-isogenic pair of race T (Tox1+) and race O (Tox1-) strains. This led to discovery of PKS2, a second PKS-encoding gene that maps at Tox1A and is required for both T-toxin biosynthesis and high virulence to maize. Thus, the carbon chain of each T-toxin family member likely is assembled by action of two PKSs, which produce two polyketides, one of which may act as the starter unit for biosynthesis of the mature T-toxin molecule.  相似文献   

2.
Genes at two unlinked loci (Tox1A and Tox1B) are required for production of the polyketide T-toxin by Cochliobolus heterostrophus race T, a pathogenic fungus that requires T-toxin for high virulence to maize with T-cytoplasm. Previous work indicated that Tox1A encodes a polyketide synthase (PKS1) required for T-toxin biosynthesis and for high virulence. To identify genes at Tox1B, a wild-type race T cDNA library was screened for genes missing in the genome of a Tox1B deletion mutant. The library was probed, first with a 415-kb NotI restriction fragment from the genome of the Tox1B mutant, then with the corresponding 560-kb fragment from the genome of wild type. Two genes, DEC1 (similar to acetoacetate decarboxylase-encoding genes) and RED1 (similar to genes encoding members of the medium-chain dehydrogenase/reductase superfamily), were recovered. Targeted disruption of DEC1 drastically reduced both T-toxin production and virulence of race T to T-cytoplasm maize, whereas specific inactivation of RED1 had no apparent effect on T-toxin production (as determined by bioassay) or on virulence. DEC1 and RED1 map within 1.5 kb of each other on Tox1B chromosome 6;12 and are unique to the genome of race T, an observation consistent with the hypothesis that these genes were acquired by C. heterostrophus via a horizontal transfer event.  相似文献   

3.
We identified a polyketide synthase (PKS) gene, pksN, from a strain of Nectria haematococca by complementing a mutant unable to synthesize a red perithecial pigment. pksN encodes a 2,106-amino-acid polypeptide with conserved motifs characteristic of type I PKS enzymatic domains: beta-ketoacyl synthase, acyltransferase, duplicated acyl carrier proteins, and thioesterase. The pksN product groups with the Aspergillus nidulans WA-type PKSs involved in conidial pigmentation and melanin, bikaverin, and aflatoxin biosynthetic pathways. Inactivation of pksN did not cause any visible change in fungal growth, asexual sporulation, or ascospore formation, suggesting that it is involved in a specific developmental function. We propose that pksN encodes a novel PKS required for the perithecial red pigment biosynthesis.  相似文献   

4.
A contiguous region of about 30 kbp of DNA putatively encoding reactions in daunomycin biosynthesis was isolated from Streptomyces sp. strain C5 DNA. The DNA sequence of an 8.1-kbp EcoRI fragment, which hybridized with actI polyketide synthase (PKS) and actIII polyketide reductase (PKR) gene probes, was determined, revealing seven complete open reading frames (ORFs), two in one cluster and five in a divergently transcribed cluster. The former two genes are likely to encode PKR and a bifunctional cyclase/dehydrase. The five latter genes encode: (i) a homolog of TcmH, an oxygenase of the tetracenomycin biosynthesis pathway; (ii) a PKS Orf1 homolog; (iii) a PKS Orf2 homolog (chain length factor); (iv) a product having moderate sequence identity with Escherichia coli beta-ketoacyl acyl carrier protein synthase III but lacking the conserved active site; and (v) a protein highly similar to several acyltransferases. The DNA within the 8.1-kbp EcoRI fragment restored daunomycin production to two dauA non-daunomycin-producing mutants of Streptomyces sp. strain C5 and restored wild-type antibiotic production to Streptomyces coelicolor B40 (act VII; nonfunctional cyclase/dehydrase), and to S. coelicolor B41 (actIII) and Streptomyces galilaeus ATCC 31671, strains defective in PKR activity.  相似文献   

5.
G. Yang  B. G. Turgeon    O. C. Yoder 《Genetics》1994,137(3):751-757
Tox1 is the only genetic element identified which controls production of T-toxin, a linear polyketide involved in the virulence of Cochliobolus heterostrophus to its host plant, corn. Previous attempts to induce toxin-deficient (Tox(-)) mutants, using conventional mutagenesis and screening procedures, have been unsuccessful. As a strategy to enrich for Tox(-) mutants, we constructed a Tox1(+) strain that carried the corn T-urf13 gene (which confers T-toxin sensitivity) fused to a fungal mitochondrial signal sequence; the fusion was under control of the inducible Aspergillus nidulans pelA promoter which, in both A. nidulans and C. heterostrophus, is repressed by glucose and induced by polygalacturonic acid (PGA). We expected that a transformant carrying this construction would be sensitive to its own toxin when the T-urf13 gene was expressed. Indeed, the strain grew normally on medium containing glucose but was inhibited on medium containing PGA. Conidia of this strain were treated with ethylmethanesulfonate and plated on PGA medium. Among 362 survivors, 9 were defective in T-toxin production. Authenticity of each mutant was established by the presence of the transformation vector, proper mating type, and a restiction fragment length polymorphism tightly linked to the Tox1(+) locus. Progeny of each mutant crossed to a Tox1(+) tester segregated 1:1 (for wild type toxin production vs. no or reduced toxin production), indicating a single gene mutation in each case. Progeny of each mutant crossed to a Tox1(-) tester segregated 1 : 1 (for no toxin production vs. no or reduced toxin production) indicating that each mutation mapped at the Tox1 locus. Availability of Tox(-) mutants will permit mapping in the Tox1 region without interference from a known Tox1 linked translocation breakpoint.  相似文献   

6.
Fujii I  Mori Y  Watanabe A  Kubo Y  Tsuji G  Ebizuka Y 《Biochemistry》2000,39(30):8853-8858
The Colletotrichum lagenarium PKS1 gene encoding iterative type I polyketide synthase of 1,3,6,8-tetrahydroxynaphthalene (T4HN) was overexpressed in Aspergillus oryzae. SDS-PAGE analysis of the cell-free extract prepared from the transformant showed an intense band of 230000 which corresponded to the molecular weight of the deduced PKS1 protein. By using this cell-free extract, in vitro synthesis of T4HN was successfully confirmed as the first example of the fungal multi-aromatic ring polyketide synthase activity ever detected. To identify the starter unit for T4HN synthesis, (14)C-labeled acetyl CoA and/or (14)C-labeled malonyl CoA were used as substrates for T4HN synthase reaction. Observed was the incorporation of (14)C label into T4HN solely from malonyl CoA even in the absence of acetyl CoA and not from acetyl CoA. This in vitro result unambiguously identified that malonyl CoA serves as the starter as well as extender units in the formation of T4HN by fungal polyketide synthase PKS1.  相似文献   

7.
The Colletotrichum lagenarium PKS1 gene was expressed in the heterologous fungal host, Aspergillus oryzae, under the starch-inducible alpha-amylase promoter to identify the direct product of polyketide synthase (PKS) encoded by the PKS1 gene. The main compound produced by an A. oryzae transformant was isolated and characterized to be 1,3,6,8-tetrahydroxynaphthalene (T4HN) as its tetraacetate. Since the PKS1 gene was cloned from C. lagenarium to complement the nonmelanizing albino mutant, T4HN was assumed to be an initial biosynthetic intermediate, and thus the product of the PKS reaction, but had not been isolated from the fungus. The production of T4HN by the PKS1 transformant unambiguously identified the gene to encode a PKS of pentaketide T4HN. In addition, tetraketide orsellinic acid and pentaketide isocoumarin were isolated, the latter being derived from a pentaketide monocyclic carboxylic acid, as by-products of the PKS1 PKS reaction. Production of the pentaketide carboxylic acid provided insights into the mechanism for the PKS1 polyketide synthase reaction to form T4HN.  相似文献   

8.
Lichens are known to produce a variety of secondary metabolites including polyketides, which have valuable biological activities. Some polyketides are produced solely by lichens. The biosynthesis of these compounds is primarily governed by iterative type I polyketide synthases. Hypogymnia physodes synthesize polyketides such as physodic, physodalic and hydroxyphysodic acid and atranorin, which are non-reducing polyketides. Two novel non-reducing polyketide synthase (PKS) genes were isolated from a fosmid genomic library of a mycobiont of H. physodes using a 409bp fragment corresponding to part of the reductase (R) domain as a probe. H. physodes PKS1 (Hyopks1) and PKS2 (Hypopks2) contain keto synthase (KS), acyl transferase (AT), acyl carrier protein (ACP), methyl transferase (ME) and R domains. Classification based on phylogeny analysis using the translated KS and AT domains demonstrated that Hypopks1 and Hypopks2 are members of the fungal non-reducing PKSs clade III. This is the first report of non-reducing PKSs containing the R domain-mediated release mechanisms in lichens, which are also rare fungal type I PKS in non-lichenized filamentous fungi.  相似文献   

9.
Lichenized and non-lichenized filamentous ascomycetes produce a great variety of polyketide secondary metabolites. Some polyketide synthase (PKS) genes from non-lichenized fungi have been characterized, but the function of PKS genes from lichenized species remains unknown. Phylogenetic analysis of keto synthase (KS) domains allows prediction of the presence or absence of particular domains in the PKS gene. In the current study we screened genomic DNA from lichenized fungi for the presence of non-reducing and 6-methylsalicylic acid synthase (6-MSAS)-type PKS genes. We developed new degenerate primers in the acyl transferase (AT) region to amplify a PKS fragment spanning most of the KS region, the entire linker between KS and AT, and half of the AT region. Phylogenetic analysis shows that lichenized taxa possess PKS genes of the 6-MSAS-type. The extended alignment confirms overall phylogenetic relationships between fungal non-reducing, 6-MSAS-type and bacterial type I PKS genes.  相似文献   

10.
A standard type II polyketide synthase (PKS) gene cluster was isolated while attempting to clone the biosynthetic gene for lipstatin from Streptomyces toxytricini NRRL 15,443. This result was observed using a Southern blot of a PstI-digested S. toxytricini chromosomal DNA library with a 444 bp amplified probe of a ketosynthase (KS) gene fragment. Four open reading frames [thioesterase (TE), beta-ketoacyl systhase (KAS), chain length factor (CLF), and acyl carrier protein (ACP)], were identified through the nucleotide sequence determination and analysis of a 4.5 kb cloned DNA fragment. In order to confirm the involvement of a cloned gene in lipstatin biosynthesis, a gene disruption experiment for the KS gene was performed. However, the resulting gene disruptant did not show any significant difference in lipstatin production when compared to wild-type S. toxytricini. This result suggests that lipstatin may not be synthesized by a type II PKS.  相似文献   

11.
The reducing polyketide synthases found in filamentous fungi are involved in the biosynthesis of many drugs and toxins. Lichens produce bioactive polyketides, but the roles of reducing polyketide synthases in lichens remain to be clearly elucidated. In this study, a reducing polyketide synthase gene (U1PKS3) was isolated and characterized from a cultured mycobiont of Usnea longissima. Complete sequence information regarding U1PKS3 (6,519 bp) was obtained by screening a fosmid genomic library. A U1PKS3 sequence analysis suggested that it contains features of a reducing fungal type I polyketide synthase with β-ketoacyl synthase (KS), acyltransferase (AT), dehydratase (DH), enoyl reductase (ER), ketoacyl reducatse (KR), and acyl carrier protein (ACP) domains. This domain structure was similar to the structure of ccRadsl, which is known to be involved in resorcylic acid lactone biosynthesis in Chaetomium chiversii. The results of phylogenetic analysis located U1PKS3 in the clade of reducing polyketide synthases. RT-PCR analysis results demonstrated that UIPKS3 had six intervening introns and that UIPKS3 expression was upregulated by glucose, sorbitol, inositol, and mannitol.  相似文献   

12.
Streptomyces coelicolor A3(2) and Streptomyces violaceoruber Tü22 produce the antibiotics actinorhodin and granaticin, respectively. Both the aglycone of granaticin and the half-molecule of actinorhodin are derived from one acetyl coenzyme A starter unit and seven malonyl coenzyme A extender units via the polyketide pathway to produce benzoisochromane quinone moieties with identical structures (except for the stereochemistry at two chiral centers). In S. coelicolor and S. violaceoruber, the type II polyketide synthase (PKS) is encoded by clusters of five and six genes, respectively. We complemented a series of S. coelicolor mutants (act) defective in different components of the PKS (actI for carbon chain assembly, actIII for ketoreduction, and actVII for cyclization-dehydration) by the corresponding genes (gra) from S. violaceoruber introduced in trans on low-copy-number plasmids. This procedure showed that four of the act PKS components could be replaced by a heterologous gra protein to give a functional PKS. The analysis also served to identify which of three candidate open reading frames (ORFs) in the actI region had been altered in each of a set of 13 actI mutants. It also proved that actI-ORF2 (whose putative protein product shows overall similarity to the beta-ketoacyl synthase encoded by actI-ORF1 but whose function is unclear) is essential for PKS function. Mutations in each of the four complemented act genes (actI-ORF1, actI-ORF2, actIII, and actVII) were cloned and sequenced, revealing a nonsense or frameshift mutation in each mutant.  相似文献   

13.
Ceratocystis resinifera hyphae produce a black melanin pigment causing a deep stain in softwood logs. We exploited the homology of polyketide synthases to clone PKS1, a gene responsible for dihydroxynaphthalene-melanin biosynthesis in C. resinifera. Sequence analysis indicated that PKS1 has two introns near its 5(') end and encodes a 2188-amino acid polypeptide with five functional domains: beta-ketoacyl synthase, acyl transferase, two acyl carrier proteins and a thioesterase/Claisen cyclase. A gene disruption construct designed to replace a portion of PKS1 with a hygromycin resistance cassette was transformed into C. resinifera through Agrobacterium tumefaciens-mediated transformation. PKS1 null mutants had an albino phenotype, and pigmentation was restored by the addition of scytalone, a melanin pathway intermediate. The disruption of PKS1 and restoration of pigmentation with scytalone confirmed the presence of a dihydroxynaphthalene-melanin pathway in C. resinifera. The transformation method described in this paper is the first reported for a Ceratocystis species.  相似文献   

14.
Cloning of polyether polyketide synthase (PKS) genes for salinomycin biosynthesis was attempted from Streptomyces albus. Seven beta-ketoacyl synthase (KS) core regions were obtained by PCR amplification using primers designed based on the conserved KS domains of type I PKSs. Using the KS fragment as a probe, screening of an S. albus genomic DNA library was carried out by colony hybridization. From the positive cosmid clone isolated, a 4.5-kbBamHI fragment was subcloned and sequenced. It showed high homology with bacterial type I PKSs and was deduced to code for KS, malonyl transferase, and ketoreductase motifs. By gene disruption with this 4.5-kb BamHI fragment, the cloned gene was shown to be a part of the salinomycin biosynthetic gene cluster of S. albus.  相似文献   

15.
To investigate docosahexaenoic acid (DHA, C22:6n-3) biosynthesis pathway in marine fungus Schizochytrium sp. FJU-512, a cDNA library of the fungus was constructed and analyzed. The titers of primary library were up to 5.0 x 10(6). A total of 4005 ESTs were assembled into 1947 unigenes. Sequences annotation and function analysis were carried out by using Blast, GO and KEGG programs. Compared with other eukaryote genomes, Schizochytrium sp. FJU-512 ESTs shared at least 26.6% genes with Arabidopsis thaliana (E < or = 10(-10)). The cDNA (Contig46, assembled by EH401977 and EH404532) and EH40321 were found to encode serine/threonine protein phosphatase type 1 and cell division control protein 2 which were involved in successive binary cell division. Notably, the key enzymes involved in biosynthesis of fatty acid via polyketide synthases (PKS) such as beta-ketoacyl synthase, beta-ketoacyl reductase, hydroxyacyl dehydrogenase, enoyl-CoA hydratase/isomerase, and enoyl reductase were found in the cDNA library. The results indicated that DHA synthesis in Schizochytrium sp. FJU-512 had undergone PKS pathway.  相似文献   

16.
LaeA and VeA coordinate secondary metabolism and differentiation in response to light signals in Aspergillus spp. Their orthologs, ChLae1 and ChVel1, were identified in the maize pathogen Cochliobolus heterostrophus, known to produce a wealth of secondary metabolites, including the host selective toxin, T-toxin. Produced by race T, T-toxin promotes high virulence to maize carrying Texas male sterile cytoplasm (T-cms). T-toxin production is significantly increased in the dark in wild type (WT), whereas Chvel1 and Chlae1 mutant toxin levels are much reduced in the dark compared to WT. Correspondingly, expression of T-toxin biosynthetic genes (Tox1) is up-regulated in the dark in WT, while dark-induced expression is much reduced/minimal in Chvel1 and Chlae1 mutants. Toxin production and Tox1 gene expression are increased in ChVEL1 overexpression (OE) strains grown in the dark and in ChLAE1 strains grown in either light or dark, compared to WT. These observations establish ChLae1 and ChVel1 as the first factors known to regulate host selective toxin production. Virulence of Chlae1 and Chvel1 mutants and OE strains is altered on both T-cms and normal cytoplasm maize, indicating that both T-toxin mediated super virulence and basic pathogenic ability are affected. Deletion of ChLAE1 or ChVEL1 reduces tolerance to H2O2. Expression of CAT3, one of the three catalase genes, is reduced in the Chvel1 mutant. Chlae1 and Chvel1 mutants also show decreased aerial hyphal growth, increased asexual sporulation and female sterility. ChLAE1 OE strains are female sterile, while ChVEL1 OE strains are more fertile than WT. ChLae1 and ChVel1 repress expression of 1,8-dihydroxynaphthalene (DHN) melanin biosynthesis genes, and, accordingly, melanization is enhanced in Chlae1 and Chvel1 mutants, and reduced in OE strains. Thus, ChLae1 and ChVel1 positively regulate T-toxin biosynthesis, pathogenicity and super virulence, oxidative stress responses, sexual development, and aerial hyphal growth, and negatively control melanin biosynthesis and asexual differentiation.  相似文献   

17.
We characterized a spontaneous albino mutant of Ceratocystis resinifera. Compared with the wild-type progenitor strain, the albino mutant had a reduced linear growth on culture medium, but its growth on lodgepole pine sapwood was unaffected. The albino mutant did not produce any coloured pigment on agar media or wood. However, upon exposure to exogenous scytalone, an intermediate metabolite of the melanin pathway, the production of a brownish melanin was restored. This suggests that the albino phenotype resulted from a mutation affecting the melanin synthesis pathway, upstream of the scytalone synthesis step. Melanin production was restored in the mutant by transforming it with a wild-type copy of the Ceratocystis resinifera polyketide synthase gene, PKS1. The complemented transformants produced melanin, indicating that the PKS1 gene was defective in the albino mutant. Sequence analysis revealed that the PKS1 allele found in the albino contained a single point mutation that resulted in an amino acid change from serine to proline at the 3' end of the beta-ketoacyl synthase motif.  相似文献   

18.
The Mycobacterium tuberculosis genome has revealed a remarkable array of polyketide synthases (PKSs); however, no polyketide product has been isolated thus far. Most of the PKS genes have been implicated in the biosynthesis of complex lipids. We report here the characterization of two novel type III PKSs from M. tuberculosis that are involved in the biosynthesis of long-chain alpha-pyrones. Measurement of steady-state kinetic parameters demonstrated that the catalytic efficiency of PKS18 protein was severalfold higher for long-chain acyl-coenzyme A substrates as compared with the small-chain precursors. The specificity of PKS18 and PKS11 proteins toward long-chain aliphatic acyl-coenzyme A (C12 to C20) substrates is unprecedented in the chalcone synthase (CHS) family of condensing enzymes. Based on comparative modeling studies, we propose that these proteins might have evolved by fusing the catalytic machinery of CHS and beta-ketoacyl synthases, the two evolutionarily related members with conserved thiolase fold. The mechanistic and structural importance of several active site residues, as predicted by our structural model, was investigated by performing site-directed mutagenesis. The functional identification of diverse catalytic activity in mycobacterial type III PKSs provide a fascinating example of metabolite divergence in CHS-like proteins.  相似文献   

19.
The genetic manipulation of the biosynthesis of fungal reduced polyketides has been challenging due to the lack of knowledge on the biosynthetic mechanism, the difficulties in the detection of the acyclic, non-aromatic metabolites, and the complexity in genetically manipulating filamentous fungi. Fumonisins are a group of economically important mycotoxins that contaminate maize-based food and feed products worldwide. Fumonisins contain a linear dimethylated C18 chain that is synthesized by Fum1p, which is a single module polyketide synthase (PKS). Using a genetic system that allows the specific manipulation of PKS domains in filamentous fungus Fusarium verticillioides, we replaced the KS domain of fumonisin FUM1 with the KS domain of T-toxin PKS1 from Cochliobolus heterostrophus. Although PKS1 synthesizes different polyketides, the F. verticillioides strain carrying the chimeric PKS produced fumonisins. This represents the first successful domain swapping in PKSs for fungal reduced polyketides and suggests that KS domain alone may not be sufficient to control the product’s structure. To further test if the whole fumonisin PKS could be functionally replaced by a PKS that has a similar domain architecture, we replaced entire FUM1 with PKS1. This strain did not produce any fumonisin or new metabolites, suggesting that the intrinsic interactions between the intact PKS and downstream enzymes in the biosynthetic pathway may play a role in the control of fungal reduced polyketides.  相似文献   

20.

Background

Cochliobolus heterostrophus is a dothideomycete that causes Southern Corn Leaf Blight disease. There are two races, race O and race T that differ by the absence (race O) and presence (race T) of ~ 1.2-Mb of DNA encoding genes responsible for the production of T-toxin, which makes race T much more virulent than race O. The presence of repetitive elements in fungal genomes is considered to be an important source of genetic variability between different species.

Results

A detailed analysis of class I and II TEs identified in the near complete genome sequence of race O was performed. In total in race O, 12 new families of transposons were identified. In silico evidence of recent activity was found for many of the transposons and analyses of expressed sequence tags (ESTs) demonstrated that these elements were actively transcribed. Various potentially active TEs were found near coding regions and may modify the expression and structure of these genes by acting as ectopic recombination sites. Transposons were found on scaffolds carrying polyketide synthase encoding genes, responsible for production of T-toxin in race T. Strong evidence of ectopic recombination was found, demonstrating that TEs can play an important role in the modulation of genome architecture of this species. The Repeat Induced Point mutation (RIP) silencing mechanism was shown to have high specificity in C. heterostrophus, acting only on transposons near coding regions.

Conclusions

New families of transposons were identified. In C. heterostrophus, the RIP silencing mechanism is efficient and selective. The co-localization of effector genes and TEs, therefore, exposes those genes to high rates of point mutations. This may accelerate the rate of evolution of these genes, providing a potential advantage for the host. Additionally, it was shown that ectopic recombination promoted by TEs appears to be the major event in the genome reorganization of this species and that a large number of elements are still potentially active. So, this study provides information about the potential impact of TEs on the evolution of C. heterostrophus.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-536) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号