首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Binary and ternary complexes of bovine adrenocortical mitochondrial cytochrome P-450scc with adrenodoxin and adrenodoxin reductase.adrenodoxin complex are formed in the presence of cholesterol and Emulgen 913. Both cholesterol and Emulgen 913 are required for the binding of cytochrome P-450scc with adrenodoxin. Since phospholipids are able to replace Emulgen 913 in this reaction, in vivo phospholipids of the mitochondrial inner membrane appear to play the function of the detergent. The dissociation constants of the cytochrome.adrenodoxin complex are 0.3 to 0.4 microM at 130 microM dimyristoylphosphatidylcholine and 0.9 microM at 120 microM Emulgen 913, whereas the dissociation constant for the ternary complex of cytochrome P-450scc with adrenodoxin reductase and adrenodoxin is 4.0 microM at 150 microM Emulgen 913. The stoichiometry of binary and ternary complexes reveals the 1:1 and 1:1:1 molar ratios, respectively, judging from chemical analyses after the fractionation of the complexes by gel filtration. Emulgen 913, Tween 20, ethylene glycol, myristoyllysophosphatidylcholine, dimyristoylphosphatidylcholine, and phosphatidylethanolamine show the enhanced activity of cholesterol side chain cleavage reaction with cytochrome P-450scc, adrenodoxin, adrenodoxin reductase, and NADPH. These results, in conjunction with earlier experiments, lead us to the proposal on the structure of the hydroxylase complex in the membrane and to the hypothesis on the regulation of the enzymatic activity by the availability of substrate cholesterol to the cytochrome. Hence, we propose a mobile P-450scc hypothesis for the response of the mitochondrion to adrenocorticotropic hormone stimuli.  相似文献   

2.
We have shown (Seybert, D., Lambeth, D., and Kamin, H. (1978), J. Biol. Chem. 253, 8355-8358) that, whereas the 1:1 complex between adrenodoxin reductase and adrenodoxin is the active species for cytochrome c reduction, the complex is not sufficient to allow cytochrome P-45011 beta-mediated hydroxylations;adrenodoxin in excess of reductase is required. In the present studies, reduction by NADPH of excess adrenodoxin is shown to occur at a rate sufficient to support both cytochrome P-450 11 beta-mediated hydroxylation of deoxycorticosterone, and cytochrome P-450sec-mediated side chain cleavage of cholesterol. Oxidation-reduction potential and ion effect studies indicate that the mechanism of steroidogenic electron transport involves an adrenodoxin electron "shuttle" rather than a macromolecular complex of reductase, adrenodoxin, and cytochrome. The oxidation-reduction potential of adrenodoxin is shifted about -100 mV when bound to reductase, and reduction of the iron-sulfur protein thus promotes dissociation of the complex. The rate of adrenodoxin reduction is first stimulated, then inhibited by increasing salt; the effect is ion-specific, with Ca2+ approximately Mg2+ greater than Na+ greater than NH/+. Similar ion-specific rate effects are observed for both of the cytochrome P-450-mediated hydroxylations, indicating that the same reduction mechanism is required for these reactions. Increasing salt concentrations caused dissociation of the complex; dissociation of the form of the complex containing reduced adrenodoxin occurred at lower salt concentrations than that containing oxidized adrenodoxin. The order of effectiveness of ions in causing dissociation is the same as the order for stimulation of adrenodoxin reduction, suggesting a dissociation step in the mechanism. This proposed model, together with dissociation constants for the form of the complex containing either oxidized or reduced adrenodoxin, allows accurate prediction of the salt rate effects curve. For all ions, an activity maximum is seen at the ion concentration which produces the largest molar difference between associated-oxidized and dissociated-reduced states, and the model predicts the positions of the maxima for adrenodoxin reduction, 11 beta-hydroxylation, and side chain cleavage. Thus reduction-induced dissociation of adrenodoxin from adrenodoxin reductase appears to be a required step in steroidogenic electron transport by this system, and a role for adrenodoxin as a mobile electron shuttle is proposed.  相似文献   

3.
In order to elucidate the mechanism of the electron transfer reaction of mitochondrial steroid hydroxylase, the reduction reaction of cytochrome P-450scc (P-450scc) catalyzed by covalently cross-linked complexes between adrenodoxin reductase (AR) and adrenodoxin (AD) was studied. The reduction rate with the covalent AR-AD complex was very slow (0.030 min-1, as the flavin turnover number) compared with the reduction catalyzed by AR and AD (4.6 min-1). When free AD was added to the reaction mixture containing the AR-AD complex, the rate increased about 30 times. The AD dimer [(AD)2], and a complex between AR and the AD dimer [AR-(AD)2] were then prepared. The Vmax for the P-450scc reduction activity of AR with (AD)2 was 50% of that of AR with AD. The Km value for the total concentration of AD in the P-450scc reduction reaction mixture containing AR and (AD)2 was found to be the same as that in the reaction mixture containing AR and AD. P-450scc reduction by AR-(AD)2 was about 5 times faster than that by AR-AD. The addition of free AD to the AR-(AD)2 complex enhanced the P-450scc reduction about 30 times. AR-AD and AR-(AD)2 were able to reduce external AD, cytochrome c, and acetylated cytochrome c.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Covalent modification of cytochrome P-450scc (purified from bovine adrenocortical mitochondria) with pyridoxal 5'-phosphate (PLP) was found to cause inhibition of the electron-accepting ability of this enzyme from its physiological electron donor, adrenodoxin, without conversion to the "P-420" form. Reaction conditions leading to the modification level of 0.82 and 2.85 PLP-Lys residues per cytochrome P-450scc molecule resulted in 60% and 98% inhibition, respectively, of electron-transfer rate from adrenodoxin to cytochrome P-450scc (with beta-NADPH as an electron donor via NADPH-adrenodoxin reductase and with phenyl isocyanide as the exogenous heme ligand of the cytochrome). It was found that covalent PLP modification caused a drastic decrease of cholesterol side-chain cleavage activity when the cholesterol side-chain cleavage enzyme system was reconstituted with native (or PLP-modified) cytochrome P-450scc, adrenodoxin, and NADPH-adrenodoxin reductase. Approximately 60% of the original enzymatic activity of cytochrome P-450scc was protected against inactivation by covalent PLP modification when 20% mole excess adrenodoxin was included during incubation with PLP. Binding affinity of substrate (cholesterol) to cytochrome P-450scc was found to be increased slightly upon covalent modification with PLP by analyzing a substrate-induced spectral change. The interaction of adrenodoxin with cytochrome P-450scc in the absence of substrate (cholesterol) was analyzed by difference absorption spectroscopy with a four-cuvette assembly, and the apparent dissociation constant (Ks) for adrenodoxin binding was found to be increased from 0.38 microM (native) to 33 microM (covalently PLP modified).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
We have utilized 11beta-hydroxylase activity and visible absorption spectrophotometry to detect possible complex formation among adrenodoxin reductase, adrenodoxin, and cytochrome P-450(11)beta. At low ionic strength, a 1:1 complex between adrenodoxin reductase and adrenodoxin occurs but does not support maximal rates of 11beta hydroxylation; at least 1 additional molecule of adrenodoxin in excess of the 1:1 complex is required for full hydroxylase activity. Spectrophotometric titration of a mixture of adrenodoxin reductase and cytochrome P-450(11)beta with adrenodoxin indicates sequential formation of 1:1 complexes between adrenodoxin reductase and adrenodoxin and then between a second adrenodoxin and cytochrome P-450(11beta; the adrenodoxin-cytochrome P-450(11)beta complex is only detectable when the concentration of adrenodoxin exceeds that of adrenodoxin reductase.  相似文献   

6.
18- and 11beta-Hydroxylation of deoxycorticosterone and side chain cleavage of cholesterol were studied in mitochondria and submitochondrial reconstituted systems prepared from rat and bovine adrenals. A mass fragmentographic technique was used that allows determination of hydroxylation of both exogenous and endogenous cholesterol. The following results were obtained. (1) Treatment of rats with excess potassium chloride in drinking fluid increased mitochondrial cytochrome P-450 as well as 18- and 11beta-hydroxylase activity in the adrenals. Cholesterol side chain cleavage was not affected. In the presence of excess adrenodoxin and adrenodoxin reductase, cytochrome P-450 isolated from potassium chloride-treated rats had higher 18- and 11beta-hydroxylase activity per nmol than cytochrome P-450 isolated from control rats. The stimulatory effects on 18- and 11beta-hydroxylation were of similar magnitude. (2) Long-term treatment with ACTH increased cholesterol side chain cleavage in the adrenals but had no effect on 18- and 11beta-hydroxylase activity. The amount of cytochrome P-450 in the adrenals was not affected by the treatment. It was shown with isolated mitochondrial cytochrome P-450 in the presence of excess adrenodoxin and adrenodoxin reductase that the effect of ACTH was due to increase of side chain cleavage activity per nmol cytochrome P-450. Side chain cleavage of exogenous cholesterol was affected more than that of endogenous cholesterol. (3) Gel chromatography of soluble cytochrome P-450 prepared from rat and bovine adrenal mitochondria yielded chromatographic fractions having either a high 18- and 11beta-hydroxylase activity and a low cholesterol side chain cleavage activity or the reverse. The ratio between 18- and 11beta-hydroxylase activity was approximately constant, provided the origin of cytochrome P-450 was the same. (4) Addition of progesterone to incubations of deoxycorticosterone with soluble or insoluble rat adrenal cytochrome P-450 competitively inhibited 18- and 11beta-hydroxylation of deoxycorticosterone to the same degree. Addition of deoxycorticosterone competitively inhibited 11beta-hydroxylation of progesterone with the same system. Progesterone was not 18-hydroxylated by the system. From the results obtained, it is concluded that 18- and 11beta-hydroxylation have similar properties and that the binding site for deoxycorticosterone is similar or identical in the two hydroxylations. The possibility that the same specific type of cytochrome P-450 is responsible for both 18- and 11beta-hydroxylation of deoxycorticosterone is discussed.  相似文献   

7.
Three histidine residues of bovine adrenodoxin, His-10, His-56, and His-62, were modified with diethyl pyrocarbonate. The order of the modification among the three histidines were monitored by measuring the proton NMR spectra. The modified adrenodoxin exhibited reduced affinity for adrenodoxin reductase as determined in cytochrome c reductase activity. In the presence of cholesterol, the modified adrenodoxin induced a high spin form of cytochrome P-450scc on complex formation in the same manner as native adrenodoxin. The spectral titration showed that adrenodoxin modified with diethyl pyrocarbonate exhibited a 5-fold higher Kd value than that of native adrenodoxin. These effects of the modification of adrenodoxin on the affinities for the redox partners were not proportional to the number of modified histidines determined by the optical absorbance change at 240 nm. Modification of adrenodoxin up to 2 histidine residues did not affect the affinity for the redox partners, but further modification on the third one resulted in an increase of apparent Km in cytochrome c reductase activity by 2-fold and of Kd for cytochrome P-450scc by 5-fold. The 1H NMR spectra of the modified adrenodoxin unequivocally demonstrated that histidine residues at His-10 and His-62 reacted more readily with diethyl pyrocarbonate than His-56 did, indicating that modification of His-56 was responsible for the reduction of binding affinities of adrenodoxin for redox partners. These results are consistent with the proposal that the residue of His-56 in adrenodoxin has an essential role in the electron transfer mechanism where adrenodoxin functions as a mobile shuttle.  相似文献   

8.
The recently reported heterologous expression and purification of both human cytochrome P450SCC and adrenodoxin [Woods, S.T., Sadleir, J., Downs, T., Triantopoulos, T., Haedlam, M.J. & Tuckey, R.C. (1998) Arch. Biochem. Biophys. 353, 109-115] has enabled us to perform studies with the membrane-reconstituted human enzymes to better understand the side-chain cleavage reaction in humans. Human P450SCC was successfully reconstituted into dioleoylphosphatidylcholine vesicles with and without cardiolipin and its enzymatic properties characterized in the membrane-bound state. Enhancement of the P450SCC activity and significant activation by cardiolipin were observed when human adrenodoxin instead of bovine adrenodoxin was used as electron donor. In the absence of cardiolipin, Km for cholesterol was decreased twice in the case of human adrenodoxin indicating enhanced cholesterol binding. On the other hand, in the presence of cardiolipin in the membrane both Km and V for cholesterol were decreased with human adrenodoxin as electron donor. Kinetic analysis of the interaction between human P450SCC and its redox partners provided evidence for enhanced binding of the human electron donor to human P450SCC indicated by both an increased V and decreased Kd for human adrenodoxin compared with the values with bovine adrenodoxin. Because no similar effects were observed in Tween 20 micelles, these results suggest that the phospholipid membrane may play an important role in the interaction of human adrenodoxin with human P450SCC.  相似文献   

9.
Bifunctional reagents 3,3'-dithiobis(succinimidyl propionate), 1-ethyl 3-(3-dimethylaminopropyl)carbodiimide and N-succinimidyl 3-(2-pyridyldithio)propionate have been used in an attempt to study molecular organization and covalent cross-linking of adrenodoxin reductase with adrenodoxin, the components of steroidogenic electron transfer system in bovine adrenocortical mitochondria. There was no cross-linking of individual proteins by the bifunctional reagents used, except for adrenodoxin cross-linking with water-soluble carbodiimide. Substantial cross-linking of adrenodoxin reductase with adrenodoxin was observed when water-soluble carbodiimide was used as cross-linking reagent. However, the cross-linked complex failed to transfer electrons. Significant amounts of the functional cross-linked complex (up to 42%) were observed when the proteins were cross-linked with N-succinimidyl 3-(2-pyridyldithio)propionate. Using gel filtration, ion-exchange chromatography and affinity chromatography on adrenodoxin-Sepharose, the complex was obtained in a highly purified form. In the presence of cytochrome P-450scc or cytochrome c, the cross-linked complex of adrenodoxin reductase with adrenodoxin was active in electron transfer from NADPH to heme proteins. The data obtained indicate that there are distinct binding sites on the adrenodoxin molecule responsible for the adrenodoxin reductase and cytochrome P-450scc binding, which suggests that steroidogenic electron transfer may be realized in an organized complex.  相似文献   

10.
Cytochrome P450scc and adrenodoxin are redox proteins of the electron transfer chain of the inner mitochondrial membrane steroid hydroxylases. In the present work site-directed mutagenesis of the charged residues of cytochrome P450scc and adrenodoxin, which might be involved in interaction, was used to study the nature of electrostatic contacts between the hemeprotein and the ferredoxin. The target residues for mutagenesis were selected based on the theoretical model of cytochrome P450scc-adrenodoxin complex and previously reported chemical modification studies of cytochrome P450scc. In the present work, to clarify the molecular mechanism of hemeprotein interaction with ferredoxin, we constructed cytochrome P450scc Lys267, Lys270, and Arg411 mutants and Glu47 mutant of adrenodoxin and analyzed their possible role in electrostatic interaction and the role of these residues in the functional activity of the proteins. Charge neutralization at positions Lys267 or Lys270 of cytochrome P450scc causes no significant effect on the physicochemical and functional properties of cytochrome P450scc. However, cytochrome P450scc mutant Arg411Gln was found to exhibit decreased binding affinity to adrenodoxin and lower activity in the cholesterol side chain cleavage reaction. Studies of the functional properties of Glu47Gln and Glu47Arg adrenodoxin mutants indicate that a negatively charged residue in the loop covering the Fe2S2 cluster, being important for maintenance of the correct architecture of these structural elements of ferredoxin, is not directly involved in electrostatic interaction with cytochrome P450scc. Moreover, our results indicate the presence of at least two different binding (contact) sites on the proximal surface of cytochrome P450scc with different electrostatic input to interaction with adrenodoxin. In the binary complex, the positively charged sites of the proximal surface of cytochrome P450scc well correspond to the two negatively charged sites of adrenodoxin: the "interaction" domain site and the "core" domain site.  相似文献   

11.
Cytochrome P-450scc can be reconstituted into a phospholipid bilayer in the absence of added detergent by incubation of purified hemoprotein with preformed phosphatidylcholine vesicles. Salt effects demonstrate that the primary interaction between the cytochrome and phospholipid vesicles is hydrophobic rather than ionic; in contrast, neither adrenodoxin reductase nor adrenodoxin will bind to phosphatidylcholine vesicles by hydrophobic interactions. Insertion of cytochrome P-450scc into a phospholipid bilayer results in conversion of the optical spectrum to a low spin type, but this transition is markedly diminished if cholesterol is incorporated within the bilayer. Vesicle-reconstituted cytochrome P-450scc metabolizes cholesterol within the bilayer (turnover = 13 nmol/min/nmol of cytochrome P-450scc); virtually all (greater than 94%) of the cholesterol within the vesicle is accessible to the enzyme. "Dilution" of cholesterol within the bilayer by increasing the phospholipid/cholesterol ratio at a constant amount of cholesterol and cytochrome P-450scc results in a decreased rate of side chain cleavage, and cytochrome P-450scc incorporated into a cholesterol-free vesicle cannot metabolize cholesterol within a separate vesicle. In addition, activity of the reconstituted hemoprotein is sensitive to the fatty acid composition of the phospholipid. These results indicate that the cholesterol binding site on vesicle-reconstituted cytochrome P-450scc is in communication with the hydrophobic bilayer of the membrane. The reducibility of vesicle-reconstituted cytochrome P-450scc as well as spectrophotometric and activity titration experiments show that all of the reconstituted cytochrome P-450scc molecules possess an adrenodoxin binding site which is accessible from the exterior of the vesicle. Activity titrations with adrenodoxin reductase also demonstrate that a ternary or quaternary complex among adrenodoxin reductase, adrenodoxin, and cytochrome P-450scc is not required for catalysis, a finding consistent with our proposed mechanism of steroidogenic electron transport in which adrenodoxin acts as a mobile electron shuttle between adrenodoxin reductase and cytochrome P-450 (Lambeth, J.D., Seybert, D.W., and Kamin, H. (1979) J. Biol. Chem. 254, 7255-7264.  相似文献   

12.
NADPH-dependent adrenodoxin reductase, adrenodoxin and several diverse cytochromes P450 constitute the mitochondrial steroid hydroxylase system of vertebrates. During the reaction cycle, adrenodoxin transfers electrons from the FAD of adrenodoxin reductase to the heme iron of the catalytically active cytochrome P450 (P450scc). A shuttle model for adrenodoxin or an organized cluster model of all three components has been discussed to explain electron transfer from adrenodoxin reductase to P450. Here, we characterize new covalent, zero-length crosslinks mediated by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide between bovine adrenodoxin and adrenodoxin reductase, and between adrenodoxin and P450scc, respectively, which allow to discriminate between the electron transfer models. Using Edman degradation, mass spectrometry and X-ray crystallography a crosslink between adrenodoxin reductase Lys27 and adrenodoxin Asp39 was detected, establishing a secondary polar interaction site between both molecules. No crosslink exists in the primary polar interaction site around the acidic residues Asp76 to Asp79 of adrenodoxin. However, in a covalent complex of adrenodoxin and P450scc, adrenodoxin Asp79 is involved in a crosslink to Lys403 of P450scc. No steroidogenic hydroxylase activity could be detected in an adrenodoxin -P450scc complex/adrenodoxin reductase test system. Because the acidic residues Asp76 and Asp79 belong to the binding site of adrenodoxin to adrenodoxin reductase, as well as to the P450scc, the covalent bond within the adrenodoxin-P450scc complex prevents electron transfer by a putative shuttle mechanism. Thus, chemical crosslinking provides evidence favoring the shuttle model over the cluster model for the steroid hydroxylase system.  相似文献   

13.
The conversion of cholesterol to pregnenolone by cytochrome P450scc is the rate-determining step in placental progesterone synthesis. The limiting component for placental cytochrome P450scc activity is the concentration of adrenodoxin reductase in the mitochondria, where it permits cytochrome P450scc to work at only 16% of maximum velocity. Adrenodoxin reductase serves to reduce adrenodoxin as part of the electron transfer from NADPH to cytochrome P450scc. We therefore measured the proportion of adrenodoxin in the reduced form in intact mitochondria from the human placenta during active pregnenolone synthesis, using EPR. We found that the adrenodoxin pool was only 30% reduced, indicating that the adrenodoxin reductase concentration was insufficient to maintain the adrenodoxin in the fully reduced state. As both oxidized and reduced adrenodoxin can bind to cytochrome P450scc we tested the ability of oxidized adrenodoxin to act as a competitive inhibitor of pregnenolone synthesis. This was done in a fully reconstituted system comprising 0.3% Tween 20 and purified proteins, and in a partially reconstituted system comprising submitochondrial particles, purified adrenodoxin and adrenodoxin reductase. We found that oxidized adrenodoxin is an effective competitive inhibitor of placental cytochrome P450scc with a Ki value half that of the Km for reduced adrenodoxin. We conclude that the limiting concentration of adrenodoxin reductase present in placental mitochondria has a two-fold effect on cytochrome P450scc activity. It limits the amount of reduced adrenodoxin that is available to donate electrons to cytochrome P450scc and the oxidized adrenodoxin that remains, competitively inhibits the cytochrome.  相似文献   

14.
The effect of 3-methoxybenzidine on the conversion of cholesterol to pregnenolone was investigated using a reconstituted enzyme system comprised of adrenodoxin, adrenodoxin reductase and cytochrome P-450scc purified from bovine adrenal cortex. Under conditions where the cytochrome P-450scc concentration was rate-limiting, 3-methoxybenzidine was found to be a potent inhibitor, causing 50% inhibition at 7 μM when using a cholesterol concentration of 70 μM. The parent compound, benzidine, was much less effective, exhibiting an Icn value of approximately 40 μM. No effect of 3-methoxybenzidine was observed on the adrenodoxin reductase and adrenodoxin-catalyzed reduction of cytochrome c by NADPH, and it is concluded that 3-methoxybenzidine acts on cytochrome P-450scc in inhibiting cholesterol side chain cleavage.  相似文献   

15.
Treatment of cytochrome P-450scc with fluorescein isothiocyanate (FITC) resulted in covalent labeling with 1.0 +/- 0.1 eq of FITC. Reverse-phase high performance liquid chromatography of tryptic and chymotryptic digests of the labeled protein revealed that a single FITC-labeled peptide accounted for 75% of the label. This peptide was found to be specifically labeled at lysine 338 by amino acid sequencing. The modification of lysine 338 with FITC resulted in 85 +/- 15% inhibition of adrenodoxin binding to cytochrome P-450scc. In a complementary experiment it was found that if a complex between adrenodoxin and native cytochrome P-450scc was formed in the presence of cholesterol and then treated with FITC, there was almost no labeling of lysine 338. The modification of lysine 338 by FITC was not inhibited by 22(R)-hydroxycholesterol, the first intermediate in the side chain cleavage reaction which binds to the active site 300 times more tightly than cholesterol itself. These experiments suggest that lysine 338 is located at the binding site for adrenodoxin and electrostatically interacts with one of the carboxylate groups on adrenodoxin that has been implicated in binding. The fluorescence emission of the FITC label on cytochrome P-450scc was only 14% as large as that of an equivalent concentration of FITC-labeled bovine serum albumin, suggesting that it was quenched by Forster energy transfer to the heme group.  相似文献   

16.
Adrenocortical mitochondrial cytochrome P-450 specific to the cholesterol side-chain cleavage (desmolase) reaction differs from that for the 11beta-hydroxylation reaction of deoxycorticosterone. The former cytochrome appears to be more loosely bound to the inner membrane than the latter. Upon ageing at 0 degrees C or by aerobic treatment with ferrous ions, the desmolase P-450 was more stable than the 11beta-hydroxylase P-450. By utilizing artificial hydroxylating agents such as cumene hydroperoxide, H2O2, and sodium periodate, the hydroxylation reaction of deoxycorticosterone to corticosterone in the absence of NADPH was observed to a comparable extent with the reaction in the presence of adrenodoxin reductase, adrenodoxin and NADPH. However, the hydroxylation reaction of cholesterol to pregnenolone was not supported by these artificial agents. Immunochemical cross-reactivity of bovine adrenal desmolase P-450 with rabbit liver microsomal P-450LM4 was also investigated. We found a weak but significant cross-reactivity between the adrenal mitochondrial P-450 and liver microsomal P-450LM4, indicating to some extent a homology between adrenal and liver cytochromes P-450.  相似文献   

17.
A solubilized preparation of cytochrome P-450, obtained by treatment of mitochondria from bovine corpora lutea with phospholipase A, contained all of the necessary components for the cholesterol side chain cleavage activity. The solubilized cytochrome -450 preparation could be isolated essentially free of endogenous cholesterol side chain cleavage activity by various fractionation techniques. A cholesterol side chain cleavage enzyme system was reconstituted using the isolated cytochrome P-450 preparation and purified adrenodoxin and adrenodoxin reductase (components of the enzyme system purified from the adrenal cortex). Protein kinase was partially purified from the cytosol fraction of bovine corpora lutea. It was purified 43-fold and the activity was highly dependent on cyclic adenosine 3:5-monophosphate (cyclic AMP). When ATP and this partially purified cyclic AMP-dependent protein kinase were added to the reconstituted cholesterol side chain cleavage enzyme assay in which cytochrome P-450 was limiting, a stimulation (20 to 74%) of the conversion of cholesterol into pregnenolone was observed. This stimulation was statistically significant with p value less than 0.001. The stimulatory effect of the protein kinase appeared to be dependent on ATP and was not mimicked by bovine serum albumin, indicating that the effect was specific for protein kinase. Protein kinase caused a phosphorylation of the cytochrome P-450 preparation when large amounts of this preparation were used in the assay. It is concluded from these results that the direct activation of the cytochrome P-450 component of the cholesterol side chain cleavage by protein kinase may be one of the ways by which cyclic AMP mediates the effect of luteinizine.  相似文献   

18.
A cleavable cross-linking reagent, dimethyl-3,3'-dithiobispropionimidate, was used to study the molecular organization of adrenocortical cytochrome P-450scc. Extensive cross-linking was found to occur, resulting in the formation of heterologous oligomers up to octamer. The covalently cross-linked complex of adrenocortical cytochrome P-450scc with adrenodoxin has been obtained by using dimethyl-3,3'-dithiobispropionimidate. In the presence of NADPH and adrenodoxin reductase, electron transfer to cytochrome P-450scc occurs in the complex, and, in the presence of cholesterol, the latter effectively oxidizes to pregnenolone. By using covalently immobilized adrenodoxin and heterobifunctional reagent, N-succinimidyl-3-(2-pyridyldithio)propionate, the adrenodoxin-binding site was shown to be located in the heme-containing, catalytic domain of cytochrome P-450scc. The data obtained indicate the existence of two different sites on the adrenodoxin molecule that are responsible for the interaction with adrenodoxin reductase and cytochrome P-450scc. This is consistent with the model mechanism of electron transfer in the organized complex.  相似文献   

19.
Summary The flavoprotein NADPH-adrenodoxin reductase and the iron sulfur protein adrenodoxin function as a short electron transport chain which donates electrons one-at-a-time to adrenal cortex mitochondrial cytochromes P-450. The soluble adrenodoxin acts as a mobile one-electron shuttle, forming a complex first with NADPH-reduced adrenodoxin reductase from which it accepts an electron, then dissociating, and finally reassociating with and donating an electron to the membrane-bound cytochrome P-450 (Fig. 9). Dissociation and reassociation with flavoprotein then allows a second cycle of electron transfers. A complex set of factors govern the sequential protein-protein interactions which comprise this adrenodoxin shuttle mechanism; among these factors, reduction of the iron sulfur center by the flavin weakens the adrenodoxinadrenodoxin reductase interaction, thus promoting dissociation of this complex to yield free reduced adrenodoxin. Substrate (cholesterol) binding to cytochrome P-450scc both promotes the binding of the free adrenodoxin to the cytochrome, and alters the oxidation-reduction potential of the heme so as to favor reduction by adrenodoxin. The cholesterol binding site on cytochrome P-450scc appears to be in direct communication with the hydrophobic phospholipid milieu in which this substrate is dissolved. Specific effects of both phospholipid headgroups and fatty acyl side-chains regulate the interaction of cholesterol with its binding side. Cardiolipin is an extremely potent positive effector for cholesterol binding, and evidence supports the existence of a specific effector lipid binding site on cytochrome P.450scc to which this phospho-lipid binds.  相似文献   

20.
Adrenodoxin, purified from bovine adrenal cortex, was subjected to trypsin cleavage to yield a trypsin-resistant form, designated TT-adrenodoxin. Sequencing with carboxypeptidase Y identified the trypsin cleavage site as Arg-115, while Edman degradation indicated no NH2-terminal cleavage. Native adrenodoxin and TT-adrenodoxin exhibited similar affinity for adrenodoxin reductase as determined in cytochrome c reductase assays. In side chain cleavage assays using cytochrome P-450scc, however, TT-adrenodoxin demonstrated greater activity than adrenodoxin with cholesterol, (22R)-22-hydroxycholesterol, or (20R,22R)-20,22-dihydroxycholesterol as substrate. This enhanced activity is due to increased affinity of TT-adrenodoxin for cytochrome P-450scc; TT-adrenodoxin exhibits a 3.8-fold lower apparent Km for the conversion of cholesterol to pregnenolone. TT-Adrenodoxin was also more effective in coupling with cytochrome P-450(11) beta, exhibiting a 3.5-fold lower apparent Km for the 11 beta-hydroxylation of deoxycorticosterone. In the presence of partially saturating cholesterol, TT-adrenodoxin elicited a type I spectral shift with cytochrome P-450scc similar to that induced by adrenodoxin, and spectral titrations showed that oxidized TT-adrenodoxin exhibited a 1.5-fold higher affinity for cytochrome P-450scc. These results establish that COOH-terminal residues 116-128 are not essential for the electron transfer activity of bovine adrenodoxin, and the differential effects of truncation at Arg-115 on interactions with adrenodoxin reductase and cytochromes P-450 suggest that the residues involved in the interactions are not identical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号