首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complement system is involved in the defence against bacterial infection, or in the elimination of tumour cells. However, disturbances in this system contributes to the pathogenesis of various inflammatory diseases. The efficiency of therapeutic anti-tumour antibodies is enhanced when the complement system is stimulated. In contrast, cancer cells are able to inhibit the complement system and thus proliferate. Some marine molecules are currently being developed as new drugs for use in humans. Among them, known exopolyssacharides (EPSs) generally originate from fungi, but few studies have been performed on bacterial EPSs and even fewer on EPSs extracted from deep-sea hydrothermal vent microbes. For use in humans, these high molecular weight EPSs must be depolymerised. Furthermore, the over-sulphation of EPSs can modify their biological activity. The aim of this study was to investigate the immunodulation of the complement system by either native or over-sulphated low molecular weight EPSs isolated from vent bacteria in order to find pro or anti-activators of complement.  相似文献   

2.
The Gram-positive species Streptococcus pneumoniae is a human pathogen causing severe local and life-threatening invasive diseases associated with high mortality rates and death. We demonstrated recently that pneumococcal endopeptidase O (PepO) is a ubiquitously expressed, multifunctional plasminogen and fibronectin-binding protein facilitating host cell invasion and evasion of innate immunity. In this study, we found that PepO interacts directly with the complement C1q protein, thereby attenuating the classical complement pathway and facilitating pneumococcal complement escape. PepO binds both free C1q and C1 complex in a dose-dependent manner based on ionic interactions. Our results indicate that recombinant PepO specifically inhibits the classical pathway of complement activation in both hemolytic and complement deposition assays. This inhibition is due to direct interaction of PepO with C1q, leading to a strong activation of the classical complement pathway, and results in consumption of complement components. In addition, PepO binds the classical complement pathway inhibitor C4BP, thereby regulating downstream complement activation. Importantly, pneumococcal surface-exposed PepO-C1q interaction mediates bacterial adherence to host epithelial cells. Taken together, PepO facilitates C1q-mediated bacterial adherence, whereas its localized release consumes complement as a result of its activation following binding of C1q, thus representing an additional mechanism of human complement escape by this versatile pathogen.  相似文献   

3.
Many invasive bacterial diseases are caused by organisms that are ordinarily harmless components of the human microbiome. Effective interventions against these microbes require an understanding of the processes whereby symbiotic or commensal relationships transition into pathology. Here, we describe bacterial genome-wide association studies (GWAS) of Neisseria meningitidis, a common commensal of the human respiratory tract that is nevertheless a leading cause of meningitis and sepsis. An initial GWAS discovered bacterial genetic variants, including single nucleotide polymorphisms (SNPs), associated with invasive meningococcal disease (IMD) versus carriage in several loci across the meningococcal genome, encoding antigens and other extracellular components, confirming the polygenic nature of the invasive phenotype. In particular, there was a significant peak of association around the fHbp locus, encoding factor H binding protein (fHbp), which promotes bacterial immune evasion of human complement by recruiting complement factor H (CFH) to the meningococcal surface. The association around fHbp with IMD was confirmed by a validation GWAS, and we found that the SNPs identified in the validation affected the 5’ region of fHbp mRNA, altering secondary RNA structures, thereby increasing fHbp expression and enhancing bacterial escape from complement-mediated killing. This finding is consistent with the known link between complement deficiencies and CFH variation with human susceptibility to IMD. These observations demonstrate the importance of human and bacterial genetic variation across the fHbp:CFH interface in determining IMD susceptibility, the transition from carriage to disease.  相似文献   

4.
Sialic acid (N-acetylneuraminic acid, NeuAc) plays an essential role in protecting gram-negative bacteria against the bactericidal activity of serum and may contribute to the pathogenicity of bacteria by mimicking epitopes that resemble host tissue components (molecular mimicry). The role of sialic acid (NeuAc)-containing lipopolysaccharides (LPS) of Salmonella O48 strains in the complement activation of normal human serum (NHS) was investigated. NeuAc-containing lipooligosaccharides cause a downregulation of complement activation and may serve to camouflage the bacterial surface from the immunological response of the host. Serotype O48 Salmonella strains have the O-antigen structure containing NeuAc while its serovars differ in outer membrane protein composition. In this study, the mechanisms of complement activation responsible for killing Salmonella O48 serum-sensitive rods by NHS were established. Four of such mechanisms involving pathways, which are important in the bactericidal mechanism of complement activation, were distinguished: only the classical/lectin pathways, independent activation of the classical/lectin or alternative pathway, parallel activation of the classical/lectin and alternative pathways, and only the alternative pathway important in the bactericidal action of human serum. To further study the role of NeuAc, its content in bacterial cells was determined by gas-liquid chromatography-mass spectrometry in relation to 3-deoxy-D-manno-2-octulosonic acid (Kdo), an inherent constituent of LPS. The results indicate that neither the presence of sialic acid in LPS nor the length of the O-specific part of LPS containing NeuAc plays a decisive role in determining bacterial resistance to the bactericidal activity of complement and that the presence of sialic acid in the structure of LPS is not sufficient to block the activation of the alternative pathway of complement. We observed that for three strains with a very high NeuAc/Kdo ratio the alternative pathways were decisive in the bactericidal action of human serum. The results indicated that those strains are not capable of inhibiting the alternative pathway very effectively. As the pathogenicity of most Salmonella serotypes remains undefined, research into the interactions between these bacterial cells and host organisms is indispensable.  相似文献   

5.
Oversulfated chondroitin sulfate (OSCS) has become the subject of multidisciplinary investigation as a non-traditional contaminant in the heparin therapeutic preparations that were linked to severe adverse events. In this study, it was found that OSCS inhibited complement fixation on bacteria and bacterial lysis mediated by the complement classical pathway. The inhibition of complement by OSCS is not due to interference with antibody/antigen interaction or due to consumption of C3 associated with FXII-dependent contact system activation. However, OSCS complement inhibition is dependent on C1 inhibitor (C1inh) since the depletion of C1inh from either normal or FXII-deficient complement plasma prevents OSCS inhibition of complement activity. Surface plasmon resonance measurements revealed that immobilized C1inhibitor bound greater than 5-fold more C1s in the presence of OSCS than in presence of heparin. Although heparin can also inhibit complement, OSCS and OSCS contaminated heparin are more potent inhibitors of complement. Furthermore, polysulfated glycosaminoglycan (PSGAG), an anti-inflammatory veterinary medicine with a similar structure to OSCS, also inhibited complement in the plasma of dogs and farm animals. This study provides a new insight that in addition to the FXII-dependent activation of contact system, oversulfated and polysulfated chondroitin-sulfate can inhibit complement activity by potentiating the classical complement pathway regulator C1inh. This effect on C1inh may play a role in inhibiting inflammation as well as impacting bacterial clearance.  相似文献   

6.
7.
The bactericidal activity of sera not containing antibodies (sera from precolostral piglets and calves) was tested with strains of gram-negative bacteria with different surfaces. The accuracy of the method of bactericidal test was evaluated statistically the bactericidal unit of complement was defined for comparing the activity of sera of different animals and different species. Various methods used for estimating the character of bacterial surface were compared. It was found that the bactericidal activity of piglet sera is directly dependent on the content of complement in the sera tested and the character of the bacterial surface (in the R-form). In selected strains there is a correlation in all criteria characterizing the surfaces of bacteria, and their susceptibility to bactericidal activity of sera; in a group of 37 strains selected at random, correlation with only one of the surface characteristics (stability in solution after heating to 100°C for 1 hour) was found. In calf sera a component was found which increases the effect of complement to some strains (e.g.Shigella shigae). This component may by absorbed from the serum only in the presence of complement. The nature of this factor is discussed.  相似文献   

8.
Burkholderia pseudomallei is a serum‐resistant Gram‐negative bacterium capable of causing disseminated infections with metastatic complications. However, its interaction with nonphagocytic cells is poorly understood. We observed that exposure of B. pseudomallei and the closely related yet avirulent B. thailandensis to human plasma increased epithelial cell invasion by >20 fold. Enhanced invasion was primarily driven by a plasma factor, which required a functional complement cascade, but surprisingly, was downstream of C3 mediated opsonisation. Receptor blocking studies with RGD‐domain containing peptide and αVβ3 blocking antibody identified complement‐activated vitronectin as the factor facilitating this invasion. Plasma treatment led to the recruitment of vitronectin onto the bacterial surface, and its conversion into the active conformation. Activation of vitronectin, as well as increased invasion, required the complement pathway and was not observed in C3 or C5 depleted serum. The integrin inhibitor cilengitide, currently in clinical trials as an anti‐angiogenesis agent, suppresses plasma‐mediated Burkholderia invasion by ~95%, along with a downstream reduction in intracellular bacterial replication. We extend these findings to serum‐resistant Klebsiella pneumoniae as well. Thus, the potential use of commercially available integrin inhibitors as anti‐infective agents during selective bacterial infections should be explored.  相似文献   

9.
K Inoue  K Yano  T Amano 《Biken journal》1974,17(4):135-140
When an antibody-sensitized, phospholipase A-deficient mutant of Escherichia coli B/SM was treated with complement in the absence of lysozyme, bacterial phosphatidylethanolamine (PE) was liberated into the lipid fraction of the surrounding medium, but only traces of its degradation products were found in this fraction. Therefore, most of the degradation of bacterial PE to FFA and LPE observed in the usual immune bactericidal reaction (Inoue et al., 1974) must be the result of the action of bacterial phospholipase A which is activated or becomes accessible to its substrate on formation of lesions by complement. The mechanism of complement-mediated formation of membrane lesions is discussed on the basis of these results.  相似文献   

10.
The group B streptococcus (GBS) is the most important cause of life-threatening bacterial infections in newborn infants. Protective immunity to GBS infection is elicited by several surface proteins, one of which, the beta protein, is known to bind human IgA-Fc. Here, we show that the beta protein also binds human factor H (FH), a negative regulator of complement activation. Absorption experiments with whole human plasma demonstrated binding of FH to a GBS strain expressing beta protein but not to an isogenic beta-negative mutant. This binding was due to a direct interaction between beta and FH, as shown by experiments with purified proteins. Inhibition tests and studies with beta fragments demonstrated that FH and IgA-Fc bind to separate and nonoverlapping regions in beta. Heparin, a known ligand for FH, specifically inhibited the binding between beta and FH, suggesting that FH has overlapping binding sites for beta and heparin. Bacteria-bound FH retained its complement regulatory activity, implying that beta-expressing GBS may use bound FH to evade complement attack. The finding that beta protein binds FH adds to a growing list of interactions between human pathogens and complement regulatory proteins, supporting the notion that these interactions are of general importance in bacterial pathogenesis.  相似文献   

11.
The opportunistic human pathogen Pseudomonas aeruginosa controls host innate immune and complement attack. Here we identify Dihydrolipoamide dehydrogenase (Lpd), a 57 kDa moonlighting protein, as the first P. aeruginosa protein that binds the two human terminal pathway inhibitors vitronectin and clusterin. Both human regulators when bound to the bacterium inhibited effector function of the terminal complement, blocked C5b-9 deposition and protected the bacterium from complement damage. P. aeruginosa when challenged with complement active human serum depleted from vitronectin was severely damaged and bacterial survival was reduced by over 50%. Similarly, when in human serum clusterin was blocked by a mAb, bacterial survival was reduced by 44%. Thus, demonstrating that Pseudomonas benefits from attachment of each human regulator and controls complement attack. The Lpd binding site in vitronectin was localized to the C-terminal region, i.e. to residues 354–363. Thus, Lpd of P. aeruginosa is a surface exposed moonlighting protein that binds two human terminal pathway inhibitors, vitronectin and clusterin and each human inhibitor when attached protected the bacterial pathogen from the action of the terminal complement pathway. Our results showed insights into the important function of Lpd as a complement regulator binding protein that might play an important role in virulence of P. aeruginosa.  相似文献   

12.
The complement system rapidly detects and kills Gram-negative bacteria and supports bacterial killing by phagocytes. However, bacterial pathogens exploit several strategies to evade detection by the complement system. The alkaline protease (AprA) of Pseudomonas aeruginosa has been associated with bacterial virulence and is known to interfere with complement-mediated lysis of erythrocytes, but its exact role in bacterial complement escape is unknown. In this study, we analyzed how AprA interferes with complement activation and whether it could block complement-dependent neutrophil functions. We found that AprA potently blocked phagocytosis and killing of Pseudomonas by human neutrophils. Furthermore, AprA inhibited opsonization of bacteria with C3b and the formation of the chemotactic agent C5a. AprA specifically blocked C3b deposition via the classical and lectin pathways, whereas the alternative pathway was not affected. Serum degradation assays revealed that AprA degrades both human C1s and C2. However, repletion assays demonstrated that the mechanism of action for complement inhibition is cleavage of C2. In summary, we showed that P. aeruginosa AprA interferes with classical and lectin pathway-mediated complement activation via cleavage of C2.  相似文献   

13.
Neuraminidases (sialidases) catalyse the removal of terminal sialic acid from glycoconjugates. Bacterial pathogens often utilize neuraminidases to scavenge host sialic acid, which can be utilized either as a nutrient or as a decorating molecule to disguise themselves from host immune attacks. Herein, a putative neuraminidase (TDE0471) was identified in Treponema denticola, an oral spirochaete associated with human periodontitis. TDE0471 is a cell surface‐exposed exo‐neuraminidase that removes sialic acid from human serum proteins; it is required for T. denticola to grow in a medium that mimics gingival crevice fluid, suggesting that the spirochaete may use sialic acid as a nutrient in vivo. TDE0471 protects T. denticola from serum killing by preventing the deposition of membrane attack complexes on the bacterial cell surface. Animal studies revealed that a TDE0471‐deficient mutant is less virulent than its parental wild‐type strain in BALB/C mice. However, it causes a level of tissue damage similar to the wild type in complement‐deficient B6.129S4‐C3tm1Crr/J mice albeit the damage caused by both bacterial strains is more severe in these transgenic mice. Based on these results, we propose that T. denticola has evolved a strategy to scavenge host sialic acid using its neuraminidase, which allows the spirochaete to acquire nutrients and evade complement killing.  相似文献   

14.
Chlamydia trachomatis is an obligate intracellular bacterium that causes severe infections, which can lead to infertility and ectopic pregnancy. Although both innate and adaptive immune responses are elicited during chlamydial infection the bacterium succeeds to evade host defense mechanisms establishing chronic infections. Thus, studying the host–pathogen interaction during chlamydial infection is of importance to understand how C. trachomatis can cause chronic infections. Both the complement system and monocytes play essential roles in anti-bacterial defense, and, therefore, we investigated the interaction between the complement system and the human pathogens C. trachomatis D and L2.Complement competent serum facilitated rapid uptake of both chlamydial serovars into monocytes. Using immunoelectron microscopy, we showed that products of complement C3 were loosely deposited on the bacterial surface in complement competent serum and further characterization demonstrated that the deposited C3 product was the opsonin iC3b. Using C3-depleted serum we confirmed that complement C3 facilitates rapid uptake of chlamydiae into monocytes in complement competent serum. Complement facilitated uptake did not influence intracellular survival of C. trachomatis or C. trachomatis-induced cytokine secretion. Hence, C. trachomatis D and L2 activate the complement system leading to chlamydial opsonization by iC3b and subsequent phagocytosis, activation and bacterial elimination by human monocytes.  相似文献   

15.
The periodontal pathogen Porphyromonas gingivalis is highly resistant to the bactericidal activity of human complement, which is present in the gingival crevicular fluid at 70% of serum concentration. All thirteen clinical and laboratory P. gingivalis strains tested were able to capture the human complement inhibitor C4b-binding protein (C4BP), which may contribute to their serum resistance. Accordingly, in serum deficient of C4BP, it was found that significantly more terminal complement component C9 was deposited on P. gingivalis. Moreover, using purified proteins and various isogenic mutants, we found that the cysteine protease high molecular weight arginine-gingipain A (HRgpA) is a crucial C4BP ligand on the bacterial surface. Binding of C4BP to P. gingivalis appears to be localized to two binding sites: on the complement control protein 1 domain and complement control protein 6 and 7 domains of the alpha-chains. Furthermore, the bacterial binding of C4BP was found to increase with time of culture and a particularly strong binding was observed for large aggregates of bacteria that formed during culture on solid blood agar medium. Taken together, gingipains appear to be a very significant virulence factor not only destroying complement due to proteolytic degradation as we have shown previously, but was also inhibiting complement activation due to their ability to bind the complement inhibitor C4BP.  相似文献   

16.
Abstract

The toxicity of PEG-coated liposomes has been examined by testing the ability of such vesicles to (a) initiate a fever response, (b) activate complement and (c) alter various hemodynamic parameters in rabbits. The results indicate that DSPC/Chol/DMPG/Vit.E/ PE-PEG (45.5:40:9:1:4.5) vesicles injected I.V. in rabbits at a lipid dose of ~4 μmole/kg do not elicit a fever response either due to the presence of bacterial contamination, or by activating the release of endogenous pyrogens and, in addition, cause no statistically significant (Mann-Whitney p >0.05) changes in various hemodynamic parameters compared to injection of saline. An in-vitro hemolytic assay indicated that these same vesicles cause no activation of complement over the lipid concentration range 0.06–64 mM. These results are discussed in terms of the potential use of PEG-coated vesicles as blood pool imaging agents in nuclear medicine.  相似文献   

17.
Hemolytic viruses, bacterial and animal toxins, the components of activated complement, cationic proteins, and detergents induce a sequence of permeability changes at the plasma membrane that are in every case sensitive to changes in ionic strength and to divalent cations. Individually, each agent exhibits positive cooperativity; when two agents are present together, they show synergy. It is concluded that such cytotoxic agents damage membranes by a common mechanism. Hence permeability changes are unlikely to depend on the formation of specific, protein-lined channels, as previously envisaged in the case of activated complement or certain bacterial toxins.  相似文献   

18.
Pathogens possess the ability to adapt and survive in some host species but not in others–an ecological trait known as host tropism. Transmitted through ticks and carried mainly by mammals and birds, the Lyme disease (LD) bacterium is a well-suited model to study such tropism. Three main causative agents of LD, Borrelia burgdorferi, B. afzelii, and B. garinii, vary in host ranges through mechanisms eluding characterization. By feeding ticks infected with different Borrelia species, utilizing feeding chambers and live mice and quail, we found species-level differences in bacterial transmission. These differences localize on the tick blood meal, and specifically complement, a defense in vertebrate blood, and a polymorphic bacterial protein, CspA, which inactivates complement by binding to a host complement inhibitor, Factor H (FH). CspA selectively confers bacterial transmission to vertebrates that produce FH capable of allele-specific recognition. CspA is the only member of the Pfam54 gene family to exhibit host-specific FH-binding. Phylogenetic analyses revealed convergent evolution as the driver of such uniqueness, and that FH-binding likely emerged during the last glacial maximum. Our results identify a determinant of host tropism in Lyme disease infection, thus defining an evolutionary mechanism that shapes host-pathogen associations.  相似文献   

19.
In this article we review our researches into the pathogenesis of mixed infections. These may conveniently be divided into in vitro and in vivo studies. In vitro we confirmed that interference with the killing of aerobes by polymorphonuclear leucocytes (PMN’s) is a property of theBacteroides strains tested and appears to depend on competition for opsonins i.e. complement factors. Further studies are in progress to define which complement factors and which bacterial structures are involved. The influence ofB. fragilis on chemotaxis has also been studied. Our preliminary data suggest thatB. fragilis is itself poorly chemotactic and reduces the chemoattractivity ofProteus mirabilis. This observation is surprising when we consider that abscess formation is the hall-mark ofB. fragilis infections and needs clarification. In vivo we have developed a skin infection model in mice which is economical and gives reproducible and quantitative results. In this model we have demonstrated pathogenic synergy betweenEscherichia coli andB. fragilis. Further studies are planned to assess the role of complement and bacterial factors in this in vivo synergy.  相似文献   

20.
J P van Putten 《The EMBO journal》1993,12(11):4043-4051
Phase variation of Neisseria gonorrhoeae lipopolysaccharide (LPS) controls both bacterial entry into human mucosal cells, and bacterial susceptibility to killing by antibodies and complement. The basis for this function is a differential sialylation of the variable oligosaccharide moiety of the LPS. LPS variants that incorporate low amounts of sialic acid enter human mucosal epithelial cells very efficiently, but are susceptible to complement-mediated killing. Phase transition to a highly sialylated LPS phenotype results in equally adhesive but entry deficient bacteria which, however, resist killing by antibodies and complement because of dysfunctional complement activation. Phase variation of N. gonorrhoeae LPS thus functions as an adaptive mechanism enabling bacterial translocation across the mucosal barrier, and, at a later stage of infection, escape from the host immune defence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号