首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Axons in the adult mammalian central nervous system (CNS) exhibit little regeneration after injury. It has been suggested that several axonal growth inhibitors prevent CNS axonal regeneration. Recent research has demonstrated that semaphorin3A (Sema3A) is one of the major inhibitors of axonal regeneration. We identified a strong and selective inhibitor of Sema3A, SM-216289, from the fermentation broth of a fungal strain. To examine the effect of SM-216289 in vivo, we transected the spinal cord of adult rats and administered SM-216289 into the lesion site for 4 weeks. Rats treated with SM-216289 showed substantially enhanced regeneration and/or preservation of injured axons, robust Schwann cell-mediated myelination and axonal regeneration in the lesion site, appreciable decreases in apoptotic cell number and marked enhancement of angiogenesis, resulting in considerably better functional recovery. Thus, Sema3A is essential for the inhibition of axonal regeneration and other regenerative responses after spinal cord injury (SCI). These results support the possibility of using Sema3A inhibitors in the treatment of human SCI.  相似文献   

2.
In vertebrate embryos, neural crest cells migrate only through the anterior half of each somite while avoiding the posterior half. We demonstrate that neural crest cells express the receptor neuropilin 2 (Npn2), while its repulsive ligand semaphorin 3F (Sema3f) is restricted to the posterior-half somite. In Npn2 and Sema3f mutant mice, neural crest cells lose their segmental migration pattern and instead migrate as a uniform sheet, although somite polarity itself remains unchanged. Furthermore, Npn2 is cell autonomously required for neural crest cells to avoid Sema3f in vitro. These data show that Npn2/Sema3f signaling guides neural crest migration through the somite. Interestingly, neural crest cells still condense into segmentally arranged dorsal root ganglia in Npn2 nulls, suggesting that segmental neural crest migration and segmentation of the peripheral nervous system are separable processes.  相似文献   

3.
Semaphorin 3E/collapsin-5 inhibits growing retinal axons   总被引:2,自引:0,他引:2  
During development, the formation of neural networks is reflected by the oriented extension of neurites. Using retinal ganglion cells (RGCs) as a model, we identified the yet uncharacterized chick semaphorin Sema3E/collapsin-5 as a repulsive cue for outgrowing axons. Sema3E/collapsin-5 was highly regulated during retinal histogenesis, with peak expression during the period of intraretinal axon growth. Polymerase chain reaction analysis demonstrated Sema3E/collapsin-5 mRNA in retina layers, from which RGC axons are excluded. Neither isolated RGCs nor purified retinal Müller glia cells synthesized Sema3E/collapsin-5. Sema3E/collapsin-5 receptor sites were visualized by alkaline phosphatase fusion proteins in the axon-rich optic fiber layer. Time-lapse video recording of chick in vitro cultures revealed a growth cone collapsing activity of recombinant Sema3E/collapsin-5. This effect was specific for RGCs, since dorsal root ganglia (DRG) neurons of the peripheral nervous system were not affected. Comparison with Sema3A/collapsin-1 displayed a reciprocal specificity, because Sema3A/collapsin-1 hampered exclusively DRG but not RGC growth cones. The collapsing effect was mediated by low cGMP levels, but not cAMP, as revealed by a set of agonists. In summary, the data suggest a possible role of chick Sema3E/collapsin-5 in restricting growth of retinal ganglion cell axons to the optic fiber layer.  相似文献   

4.
The semaphorin gene family contains a large number of secreted and transmembrane proteins; some function as repulsive and attractive cues of axon guidance during development. Here, we report cloning and characterization of zebrafish transmembrane semaphorin gene, semaphorin 6D (sema6D). Sema6D is expressed predominantly in the nervous system during embryogenesis, as determined by in situ hybridization. We also found that Sema6D binds Plexin-A1 in vitro, but not other Plexins. It induces the repulsion of dorsal root ganglion axons, but not sympathetic axons. Consequently, Sema6D might use Plexin-A1 as a receptor to repel specific types of axons during development.  相似文献   

5.
Regeneration of embryonic and adult dorsal root ganglion (DRG) sensory axons is highly impeded when they encounter neuronal growth cone-collapsing factor semaphorin3A (Sema3A). On the other hand, increasing evidence shows that DRG axon’s regeneration can be stimulated by nerve growth factor (NGF). In this study, we aimed to evaluate whether increased NGF concentrations can counterweight Sema3A-induced inhibitory responses in 15-day-old mouse embryo (E15) DRG axons. The DRG explants were grown in Neurobasal-based medium with different NGF concentrations ranging from 0 to 100 ng/mL and then treated with Sema3A at constant 10 ng/mL concentration. To evaluate interplay between NGF and Sema3A number of DRG axons, axon outgrowth distance and collapse rate were measured. We found that the increased NGF concentrations abolish Sema3A-induced inhibitory effect on axon outgrowth, while they have no effect on Sema3A-induced collapse rate.  相似文献   

6.
Sema3A (Sema III, SemD, collapsin-1) can induce neuronal growth cone collapse and axon repulsion of distinct neuronal populations. To study Sema3A function in patterning afferent projections into the developing spinal cord, we employed the recombinant adenoviral vector technique in embryonic rat spinal cord slices. Virus solution was injected in the dorsal aspect of organotypic spinal cord cultures with segmentally attached dorsal root ganglia (sc-DRG). In cultures grown in the presence of nerve growth factor (NGF), injected either with the control virus AdCMVLacZ or with vehicle only, afferent innervation patterns were similar to those of control. However, unilateral injection of AdCMVSema3A/AdCMVLacZ in sc-DRG slices revealed a strong inhibitory effect on NGF-dependent sensory afferent growth. Ectopic Sema3A in the dorsal spinal cord, the target area of NGF-responsive DRG fibers in vivo, created an exclusion zone for these fibers and as a result they failed to reach and innervate their appropriate target zones. Taken together, gain of Sema3A function in the dorsal aspect of sc-DRG cultures revealed a dominant inhibitory effect on NGF-dependent, nociceptive sensory DRG afferents, an observation in line with the model proposed by E. K. Messersmith et al. (1995, Neuron 14, 949-959), suggesting that Sema3A secreted by spinal cord cells can act to repel central sensory fibers during the formation of lamina-specific connections in the spinal cord.  相似文献   

7.
Regulation of axon growth is a critical event in neuronal development. Nerve growth factor (NGF) is a strong inducer of axon growth and survival in the dorsal root ganglia (DRG). Paradoxically, high concentrations of NGF are present in the target region where axon growth must slow down for axons to accurately identify their correct targets. Semaphorin3A (Sema3A), a powerful axonal repellent molecule for DRG neurons, is also situated in their target regions. NGF is a modulator of Sema3A-induced repulsion and death. We show that Sema3A is a regulator of NGF-induced neurite outgrowth via the TrkA receptor, independent of its growth cone repulsion activity. First, neurite outgrowth of DRG neurons is more sensitive to Sema3A than repulsion. Second, at concentrations sufficient to significantly inhibit Sema3A-induced repulsion, NGF has no effect on Sema3A-induced axon growth inhibition. Third, Sema3A-induced outgrowth inhibition, but not repulsion activity, is dependent on NGF stimulation. Fourth, Sema3A attenuates TrkA-mediated growth signaling, but not survival signaling, and over-expression of constitutively active TrkA blocks Sema3A-induced axon growth inhibition, suggesting that Sema3A activity is mediated via regulation of NGF/TrkA-induced growth. Finally, quantitative analysis of axon growth in vivo supports the possibility that Sema3A affects axon growth, in addition to its well-documented role in axon guidance. We suggest a model whereby NGF at high concentrations in the target region is important for survival, attraction and inhibition of Sema3A-induced repulsion, while Sema3A inhibits its growth-promoting activity. The combined and cross-modulatory effects of these two signaling molecules ensure the accuracy of the final stages in axon targeting.  相似文献   

8.

Background  

Fps/Fes and Fer are the only two members of a distinct subclass of cytoplasmic protein tyrosine kinases. Fps/Fes was previously implicated in Semaphorin 3A (Sema3A)-induced growth cone collapse signaling in neurons from the dorsal root ganglion (DRG) through interaction with and phosphorylation of the Sema3A receptor component PlexinA1, and members of the collapsin response mediator protein (CRMP) family of microtubule regulators. However, the potential role of the closely related Fer kinase has not been examined.  相似文献   

9.
Ezrin-radixin-moesin (ERM) proteins are involved in the linkage of membranes to theactin filament (F-actin) cytoskeleton. Phosphorylation of the C-terminus activates the F-actin binding domain of ERM proteins by preventing the action of an autoinhibitory domain. In this study, we investigated whether a growth cone collapsing signal, semaphorin 3A (Sema3A), alters the state of ERM C-terminus phosphorylation. In the growth cones of dorsal root ganglion axons, phosphorylated ERM proteins localize to filopodia. We report that Sema3A inhibits ERM protein phosphorylation in growth cone filopodia. Significantly, Sema3A decreased ERM phosphorylation prior to the onset of growth cone collapse. Over-expression of the F-actin binding fragment of ERM proteins, which competes with endogenous ERM proteins for binding to F-actin, inhibited filopodial initiation and dynamics. Sema3A has been previously shown to inhibit phosphoinositide 3-kinase (PI3K) activity. Inhibition of PI3K resulted in the loss of phosphorylated ERM proteins from growth cone filopodia, and treatment with a PI3K activating peptide blocked the effects of Sema3A on ERM phosphorylation. Collectively, these observations demonstrate that inactivation of PI3K in response to Sema3A results in decreased phosphorylation of ERM proteins in filopodia thereby contributing to growth cone collapse.  相似文献   

10.
The amyloid precursor protein (APP) is well known for giving rise to the amyloid-β peptide and for its role in Alzheimer's disease. Much less is known, however, on the physiological roles of APP in the development and plasticity of the central nervous system. We have used phage display of a peptide library to identify high-affinity ligands of purified recombinant human sAPPα(695) (the soluble, secreted ectodomain from the main neuronal APP isoform). Two peptides thus selected exhibited significant homologies with the conserved extracellular domain of several members of the semaphorin (Sema) family of axon guidance proteins. We show that sAPPα(695) binds both purified recombinant Sema3A and Sema3A secreted by transfected HEK293 cells. Interestingly, sAPPα(695) inhibited the collapse of embryonic chicken (Gallus gallus domesticus) dorsal root ganglia growth cones promoted by Sema3A (K(d)≤8·10(-9) M). Two Sema3A-derived peptides homologous to the peptides isolated by phage display blocked sAPPα binding and its inhibitory action on Sema3A function. These two peptides are comprised within a domain previously shown to be involved in binding of Sema3A to its cellular receptor, suggesting a competitive mechanism by which sAPPα modulates the biological action of semaphorins.  相似文献   

11.
Myelin-derived axon growth inhibitors, such as Nogo, bind to Nogo receptor-1 (NgR1) and thereby limit the action of axonal regeneration after injury in the adult central nervous system. Recently, we have found that cartilage acidic protein-1B (Crtac1B)/lateral olfactory tract usher substance (LOTUS) binds to NgR1 and functions as an endogenous NgR1 antagonist. To examine the functional domain of LOTUS in the antagonism to NgR1, analysis using the deletion mutants of LOTUS was performed and revealed that the carboxyl-terminal region (UA/EC domain) of LOTUS bound to NgR1. The UA/EC fragment of LOTUS overexpressed together with NgR1 in COS7 cells abolished the binding of Nogo66 to NgR1. Overexpression of the UA/EC fragment in cultured chick dorsal root ganglion neurons suppressed Nogo66-induced growth cone collapse. These findings suggest that the UA/EC region is a functional domain of LOTUS serving for an antagonistic action to NgR1.  相似文献   

12.
Semaphorins are a large family of secreted and cell surface molecules that guide neural growth cones to their targets during development. Some semaphorins are expressed in cells and tissues beyond the nervous system suggesting the possibility that they function in the development of non-neural tissues as well. In the trunk of zebrafish embryos endothelial precursors (angioblasts) are located ventral and lateral to the somites. The angioblasts migrate medially and dorsally along the medial surface of the somites to form the dorsal aorta just ventral to the notochord. Here we show that in zebrafish Sema3a1 is involved in angioblast migration in vivo. Expression of sema3a1 in somites and neuropilin 1, which encodes for a component of the Sema3a receptor, in angioblasts suggested that Sema3a1 regulates the pathway of the dorsally migrating angioblasts. Antisense knockdown of Sema3a1 inhibited the formation of the dorsal aorta. Induced ubiquitous expression of sema3a1 in hsp70:(gfp)sema3a1(myc) transgenic embryos inhibited migration of angioblasts ventral and lateral to the somites and retarded development of the dorsal aorta, resulting in severely reduced blood circulation. Furthermore, analysis of cells that express angioblast markers following induced expression of sema3a1 or in a mutant that changes the expression of sema3a1 in the somites confirmed these results. These data implicate Sema3a1, a guidance factor for neural growth cones, in the development of the vascular system.  相似文献   

13.
Collapsin response mediator proteins (CRMPs)/TOAD64/Ulips/DRPs and CRAM have emerged as strong candidates for a role in semaphorin signaling. In this study we identified Fes/Fps (Fes) tyrosine kinase in the CRMP-CRAM complex and investigated whether Fes was involved in semaphorin3A (Sema3A) signaling. In COS-7 cells, the interaction between Fes and plexinA1 (PlexA1) and the tyrosine phosphorylation of PlexA1 by Fes were observed; however, these events were significantly attenuated by co-expression of neuropilin-1 (NP-1). Even with NP-1 co-expression, Sema3A was able to enhance the association of Fes with PlexA1 and Fes-mediated tyrosine phosphorylation of PlexA1, CRAM and CRMP2. Co-expression of Fes with PlexA1 exhibited COS-7 cell contraction activity, indicating that Fes can convert inactive PlexA1 to its active form, whereas combination of Fes/NP-1/PlexA1 or Fes kinase-negative mutants/PlexA1 did not alter cell morphology. Finally, Sema3A-induced growth cone collapse of dorsal root ganglion neurons was suppressed by expression of Fes kinase-negative mutants. Taken together, our findings suggest that Fes links Sema3A signals to CRMP-CRAM, and that NP-1 negatively regulates PlexA1 activation by Fes in resting condition.  相似文献   

14.
Failure of injured axons to regenerate in the central nervous system (CNS) is the main obstacle for repair of stroke and traumatic injuries to the spinal cord and sensory roots. This regeneration failure is high-lighted at the dorsal root transitional zone (DRTZ), the boundary between the peripheral (PNS) and central nervous system where sensory axons enter the spinal cord. Injured sensory axons regenerate in the PNS compartment of the dorsal root but are halted as soon as they reach the DRTZ. The failure of regenerating dorsal root axons to re-enter the mature spinal cord is a reflection of the generally nonpermissive nature of the CNS environment, in contrast to the regeneration supportive properties of the PNS. The dorsal root injury paradigm is therefore an attractive model for studying mechanisms underlying CNS regeneration failure in general and how to overcome the hostile CNS environment. Here we review the main lines that have been pursued to achieve growth of injured dorsal root axons into the spinal cord: (i) modifying the inhibitory nature of the DRTZ by breaking down or blocking the effect of growth repelling molecules, (ii) stimulate elongation of injured dorsal root axons by a prior conditioning lesion or administration of specific growth factors, (iii) implantation of olfactory ensheathing cells to provide a growth supportive cellular terrain at the DRTZ, and (iv) replacing the regeneration deficient adult dorsal root ganglion neurons with embryonic neurons or neural stem cells.  相似文献   

15.
The Plexin family of transmembrane proteins appears to function as repulsive receptors for most if not all Semaphorins. Here, we use genetic and biochemical analysis in Drosophila to show that the transmembrane protein Off-track (OTK) associates with Plexin A, the receptor for Sema 1a, and that OTK is a component of the repulsive signaling response to Semaphorin ligands. In vitro, OTK associates with Plexins. In vivo, mutations in the otk gene lead to phenotypes resembling those of loss-of-function mutations of either Sema1a or PlexA. The otk gene displays strong genetic interactions with Sema1a and PlexA, suggesting that OTK and Plexin A function downstream of Sema 1a.  相似文献   

16.
17.
Molecular basis of semaphorin-mediated axon guidance   总被引:10,自引:0,他引:10  
The semaphorin family of proteins constitute one of the major cues for axonal guidance. The prototypic member of this family is Sema3A, previously designated semD/III or collapsin-1. Sema3A acts as a diffusible, repulsive guidance cue in vivo for the peripheral projections of embryonic dorsal root ganglion neurons. Sema3A binds with high affinity to neuropilin-1 on growth cone filopodial tips. Although neuropilin-1 is required for Sema3A action, it is incapable of transmitting a Sema3A signal to the growth cone interior. Instead, the Sema3A/neuropilin-1 complex interacts with another transmembrane protein, plexin, on the surface of growth cones. Certain semaphorins, other than Sema3A, can bind directly to plexins. The intracellular domain of plexin is responsible for initiating the signal transduction cascade leading to growth cone collapse, axon repulsion, or growth cone turning. This intracellular cascade involves the monomeric G-protein, Rac1, and a family of neuronal proteins, the CRMPs. Rac1 is likely to be involved in semaphorin-induced rearrangements of the actin cytoskeleton, but how plexin controls Rac1 activity is not known. Vertebrate CRMPs are homologous to the Caenorhabditis elegans unc-33 protein, which is required for proper axon morphology in worms. CRMPs are essential for Sema3A-induced, neuropilin-plexin-mediated growth cone collapse, but the molecular interactions of growth cone CRMPs are not well defined. Mechanistic aspects of plexin-based signaling for semaphorin guidance cues may have implications for other axon guidance events and for the basis of growth cone motility.  相似文献   

18.
The cornea, one of the most highly innervated tissues of the body, is innervated by trigeminal sensory afferents. During development, axons are initially repelled at the corneal margin, resulting in the formation of a circumferential nerve ring. The nature and source of guidance molecules that regulate this process remain a mystery. Here, we show that the lens, which immediately underlies the cornea, repels trigeminal axons in vivo and in vitro. Lens ablation results in premature, disorganized corneal innervation and disruption of the nerve ring and ventral plexus. We show that Semaphorin3A (Sema3A) is expressed in the lens epithelium and its receptor Neuropilin-1 (Npn1) is expressed in the trigeminal ganglion during cornea development. Inhibition of Sema3A signaling abrogates axon repulsion by the lens and cornea in vitro and phenocopies lens removal in vivo. These results demonstrate that lens-derived Sema3A mediates initial repulsion of trigeminal sensory axons from the cornea and is necessary for the proper formation of the nerve ring and positioning of the ventral plexus in the choroid fissure.  相似文献   

19.
Semaphorin III/collapsin-1 (Sema3A) guides a specific subset of neuronal growth cones as a repulsive molecule. In this study, we have investigated a possible role of non-neuronal Sema3A in lung morphogenesis. Expression of mRNAs of Sema3A and neuropilin-1 (NP-1), a Sema3A receptor, was detected in fetal and adult lungs. Sema3A-immunoreactive cells were found in airway and alveolar epithelial cells of the fetal and adult lungs. Immunoreactivity for NP-1 was seen in fetal and adult alveolar epithelial cells as well as endothelial cells. Immunoreactivity of collapsin response mediator protein CRMP (CRMP-2), an intracellular protein mediating Sema3A signaling, was localized in alveolar epithelial cells, nerve tissue and airway neuroendocrine cells. The expression of CRMP-2 increased during the fetal, neonate and adult periods, and this pattern paralleled that of NP-1. In a two-day culture of lung explants from fetal mouse lung (E11.5), with exogenous Sema3A at a dose comparable to that which induces growth cone collapse of dorsal root ganglia neurons, the number of terminal buds was reduced in a dose-dependent manner when compared with control or untreated lung explants. This decrease was not accompanied with any alteration of the bromodeoxyuridine-positive DNA-synthesizing fraction. A soluble NP-1 lacking the transmembrane and intracellular region, neutralized the inhibitory effect of Sema3A. The fetal lung explants from neuropilin-1 homozygous null mice grew normally in vitro regardless of Sema3A treatment. These results provide evidence that Sema3A inhibits branching morphogenesis in lung bud organ cultures via NP-1 as a receptor or a component of a possible multimeric Sema3A receptor complex.  相似文献   

20.
The repellent semaphorin 3A (Sema3A) causes growth cone turning or collapse by triggering cytoskeletal rearrangements and detachment of adhesion sites. Growth cone detachment is dependent on eicosanoid activation of protein kinase C epsilon (PKCε), but the characterization of the phospholipase A(2) (PLA(2) ) that releases arachidonic acid (AA) for eicosanoid synthesis has remained elusive. Here, we show, in rat dorsal root ganglion (DRG) neurons, that Sema3A stimulates PLA(2) activity, that Sema3A-induced growth cone turning and collapse are dependent on the release of AA, and that the primary PLA(2) involved is the group IV α isoform (GIVA). Silencing GIVA expression renders growth cones resistant to Sema3A-induced collapse, and GIVA inhibition reverses Sema3A-induced repulsion into attraction. These studies identify a novel, early step in Sema3A-signaling and a PLA(2) necessary for growth cone repulsion and collapse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号