首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T Sato  H Uemura  Y Izumoto  J Nakao  Y Nakamura  K Matsubara 《Gene》1989,83(2):355-365
The yeast Saccharomyces cerevisiae expresses the cloned cDNA (Amy) encoding human salivary alpha-amylase (Amy) under control of the yeast PHO5 promoter, and secretes the active enzyme into the culture medium. Two approaches were utilized to define the moiety of Amy, which is required for proper secretion and glycosylation. In one approach, chimeras were constructed with a variety of secretion signal sequences (yeast mating factor precursor sequence, yeast acid phosphatase signal sequence and human gastrin signal sequence) fused to the secretion signal-deleted Amy cDNA. The other approach involved analysis of a set of deletion series and a set of point mutations in the Amy-encoding region. The results showed that heterologous signal sequences were sufficient for proper secretion in yeast, irrespective of the insertion of some extra amino acids. In most cases, enzymes with deletions and Cys-465 substitution were not secreted, even though they had complete secretion signal sequences. Instead, they accumulated in the cell in a glycosylated form. Thus, proper secretion seems to require an appropriate conformation in the polypeptide moiety to be secreted.  相似文献   

2.
The expression and secretion of Bacillus amyloliquefaciens alpha-amylase was studied in yeast Saccharomyces cerevisiae. The Bacillus promoter was removed by BAL 31 digestion and three forms of the alpha-amylase gene were constructed: the Bacillus signal sequence was either complete (YEp alpha a1), partial (YEp alpha a2) or missing (YEp alpha a3). Secretion of alpha-amylase into the culture medium was obtained with the complete signal sequence only. The secreted alpha-amylase was glycosylated and its signal peptide was apparently processed. The glycosylated alpha-amylase remained active. The enzyme produced by the other constructions was not glycosylated and thus probably remained in the cytoplasm.  相似文献   

3.
Saccharomyces cerevisiae harboring linear dsDNA plasmids, pGKL1 and pGKL2, secretes a killer toxin consisting of 97, 31 and 28 kilodalton subunits (Nucleic Acids Res., 15, 1031-1046, 1987). We isolated the DNA encoding the N-terminal pre-sequence of the 28K precursor protein and constructed a new secretion vector in S. cerevisiae. Mouse alpha-amylase fused to the 28K signal sequence was secreted into the culture medium with a high efficiency similar to those fused to the mating factor alpha and 97K-31K killer signal sequences. This data clearly indicates that 28K presequence functions as a secretion signal. Glycosylated and nonglycosylated alpha-amylase molecules were detected in the culture medium. The secretion of alpha-amylase was blocked by sec18-1 mutation. The secreted alpha-amylase recovered from the medium was found to migrate faster in SDS-polyacrylamide gel than the precursor form of alpha-amylase synthesized in vitro. These lines of evidence suggest that mouse alpha-amylase fused to 28K killer signal sequence was processed, glycosylated and secreted through the normal secretion pathway of the yeast.  相似文献   

4.
A novel amylase gene (amy3) that differs in nucleotide sequence from salivary amylase gene (amy1) and pancreatic amylase gene (amy2) has been described [Tomita et al., Gene 76 (1989) 11-18], but whether this gene can ever code for an active enzyme has not been shown. We prepared cDNA of this gene from an mRNA obtained from lung carcinoid tissue, and expressed it in Saccharomyces cerevisiae under the control of an acid phosphatase promoter. The product was secreted into culture media, and showed enzymatic activity, demonstrating that this novel alpha-amylase gene (amy3) can code for a functional isozyme. We purified this enzyme, and compared its biological properties with those of salivary and pancreatic human amylases similarly expressed in yeast. We observed that the novel amylase isozyme is more heat-sensitive than others, and that its substrate specificity is different from the other two isozymes.  相似文献   

5.
We investigated the nature of signal recognition, transport, and secretion of mutant hemagglutinins (HAs) of a human influenza virus by the yeast Saccharomyces cerevisiae. The cDNA sequences encoding variant forms of influenza HA were expressed in S. cerevisiae. The HA polypeptides (HA500 and HA325) that were synthesized with their N-terminal signal peptides were correctly targeted to the membrane compartment where they were glycosylated. In contrast, the HA polypeptides (HA484 and HA308) lacking the signal peptide were expressed in the cytoplasm and did not undergo any glycosidic modification, demonstrating the importance of the heterologous signal sequence in the early steps of translocation in S. cerevisiae. The analysis of the N-terminal amino acid sequence of HA500 and HA325 polypeptides demonstrated the correct cleavage of the signal peptide, indicating the structural compatibility of a heterologous signal peptide for efficient recognition and processing by the yeast translocation machinery. The membrane-sequestered and glycosylated HA polypeptides were relatively stable in S. cerevisiae compared with the signal-minus, nonglycosylated HA molecules. Although both the anchor-minus HA (HA500) and HA1 (HA325) polypeptides were targeted efficiently to the membrane, their glycosylation and transport patterns were shown to be different. During pulse-chase, the HA500 remained cell-associated with no detectable secretion into the extracellular medium, whereas the HA325 secreted into the medium. Furthermore, only the cell-associated and secreted forms of HA325 and not HA500 appeared to have undergone hyperglycosylation with the extensive addition of high-molecular-weight outer-chain mannans. Possible reasons for the observed phenotypic behavior of these two mutant HAs are discussed.  相似文献   

6.
The linear double-stranded DNA plasmid pGKL1 in yeast encodes a killer toxin consisting of 97-kDa, 31-kDa and 28-kDa subunits. A 128-kDa protein precursor of the 97-kDa and 31-kDa subunits, was first synthesized with a 29-amino-acid extension at its NH2-terminus as a secretion signal sequence. In the present study, the property of this signal sequence was studied by the analysis of a fusion protein with mouse alpha-amylase. Using the secretion signal sequence of the killer protein, the mouse alpha-amylase was successfully secreted into the culture medium. An intracellular precursor form of alpha-amylase was identified and purified. Analysis of the NH2-terminal sequence of this precursor molecule indicated that it corresponded to the secretory intermediate (pro form) of alpha-amylase with the removal of the hydrophobic segment (Met1-Gly16) of the secretion signal. Both the secretion of alpha-amylase into the culture medium and the detection of the pro-alpha-amylase species in the cells were prohibited by a sec 11 mutation, or by the conversion of Gly to Val at the 16th position of the secretion signal. These results strongly suggest that the cleavage occurs between Gly16 and Leu17 by a signal peptidase, and that this cleavage is required for the secretion of alpha-amylase into the medium. Based on the data from the NH2-terminal amino acid sequences of secreted alpha-amylases, we conclude that the 29-amino-acid secretion signal present in the 128-kDa killer toxin precursor protein is a prepro structure.  相似文献   

7.
alpha-Amylase cDNA was cloned and sequenced from Aspergillus shirousamii RIB2504. The putative protein deduced from the cDNA open reading frame (ORF) consisted of 499 amino acids with a molecular weight of 55,000. The amino acid sequence was identical to that of the ORF of the Taka-amylase A gene of Aspergillus oryzae, while the nucleotide sequence was different at two and six positions in the cDNA ORF and 3' non-coding regions, respectively, so far determined. The alpha-amylase cDNA was expressed in Saccharomyces cerevisiae under the control of the yeast ADH1 promoter using a YEp-type plasmid, pYcDE1. The cDNA of glucoamylase, which was previously cloned from the same organism, was also expressed under the same conditions. Consequently, active alpha-amylase and glucoamylase were efficiently secreted into the culture medium. The amino acid sequence of the N-terminal regions of these enzymes purified from the yeast culture medium confirmed that the signal sequences of these enzymes were cleaved off at the same positions as those of the native enzymes of A. shirousamii.  相似文献   

8.
Alpha-amylase from Bacillus amyloliquefaciens, synthesized in yeast Saccharomyces cerevisiae without substitution of the signal sequence, is efficiently secreted from yeast cells: 60-70% of the overall amount of the enzyme is found in the culture fluid. In contrast to many yeast secretory proteins, which accumulate in the periplasmic space and in the cell wall, intracellular alpha-amylase is localized mainly in the cytoplasm. Obviously, transfer across the cell wall is not a rate-limiting step in alpha-amylase export from the cell. The glycosylated forms of proteins are predominantly found both inside the cell and in the culture medium.  相似文献   

9.
10.
The NH2-terminal signal region comprising of approximately 70% length of the prepro-sequence of the pGKL killer precursor protein was found to direct an efficient secretion of the mouse alpha-amylase into the culture medium of Saccharomyces cerevisiae. The alpha-amylase molecule secreted into the culture medium was identified by both immuno-blotting and assay of the enzyme activity. The amount of alpha-amylase secreted via the killer toxin signal was comparable to that directed by the leader sequence of mating factor alpha. The secretion of alpha-amylase using the killer toxin signal was blocked at 37C but not at 25C in sec18-1 host, indicating that alpha-amylase is exported through the normal secretion pathway of S. cerevisiae.  相似文献   

11.
Synthesis and secretion of wheat alpha-amylase in Saccharomyces cerevisiae   总被引:1,自引:0,他引:1  
A wheat alpha-amylase cDNA clone has been fused to the phosphoglycerate kinase initiator methionine to enable synthesis in the yeast Saccharomyces cerevisiae of an alpha-amylase enzyme that is identical in size to the wild-type alpha-amylase. The alpha-amylase is synthesized with an N-terminal plant signal peptide which is recognized in the yeast host, leading to efficient processing and secretion into the medium. The secretion of alpha-amylase into the medium is quite efficient in rich medium, but barely detectable in a minimal medium.  相似文献   

12.
We have cloned and characterized the alpha-amylase gene (AMY1) of the yeast Schwanniomyces occidentalis. A cosmid gene library of S. occidentalis DNA was screened in Saccharomyces cerevisiae for alpha-amylase secretion. The positive clone contained a DNA fragment harbouring an open reading frame of 1536 nucleotides coding for a 512-amino-acid polypeptide with a calculated Mr of 56,500. The deduced amino acid sequence reveals significant similarity to the sequence of the Saccharomycopsis fibuligera and Aspergillus oryzae alpha-amylases. The AMY l gene was found to be expressed from its original promoter in S. cerevisiae, Kluyveromyces lactis and Schizo-saccharomyces pombe leading to an active secreted gene product and thus enabling the different yeast transformants to grow on starch as a sole carbon source.  相似文献   

13.
Y Nakamura  T Sato  M Emi  A Miyanohara  T Nishide  K Matsubara 《Gene》1986,50(1-3):239-245
A cDNA fragment coding for human salivary alpha-amylase precursor was joined to the promoter of the Saccharomyces cerevisiae PHO5 gene, and the recombinant gene was inserted into a vector plasmid capable of autonomous replication in yeast. Yeast cells transformed with this recombinant plasmid synthesized about 5 X 10(5) molecules of the enzyme per cell when synthesis was induced by deprivation of inorganic phosphate and released about half of the synthesized enzyme into the medium. The enzyme is stable, and exhibited the same specific activity as alpha-amylase in human saliva. The amylase-producing yeast grew on starch and produced alcohol.  相似文献   

14.
A set of nested 3'-terminal deletions of the prepropeptide of the Bacillus amyloliquefaciens neutral protease gene was constructed. Alpha-amylase and human growth hormone were secreted using these truncated genes in Bacillus subtilis. The level of the secreted alpha-amylase varied with the region for the truncated prepropeptide contained in the fusion gene but was independent of its length. Even though length of the prepropeptide varied, the mobilities of secreted alpha-amylases were the same as that of the control alpha-amylase derived from the alpha-amylase clone, pTUB4 (Yamazaki et al., 1983). Analyses of the secreted N-terminal amino acid sequences confirmed that they were all identical to that of the authentic one. Precursor proteins of the alpha-amylase were found in the cell-associated fraction, suggesting that the prepropeptide portion was processed during secretion. On the other hand, the N-terminus of hGH secreted using one of these prepropeptide portions varied by 1 to 4 additional N-terminal amino acid residues derived from the junction sequence between the sequence for propeptide portion and mature hGH or from C-terminal region of the propeptide portion. These results suggest that the prepropeptide portion can be generally processed even in the heterogeneous fusion. A probable mechanism of processing and maturation of the fusion gene products is also discussed.  相似文献   

15.
Analysis of signals for secretion in the staphylococcal protein A gene.   总被引:16,自引:1,他引:15  
L Abrahmsn  T Moks  B Nilsson  U Hellman    M Uhln 《The EMBO journal》1985,4(13B):3901-3906
Different constructs of the gene encoding staphylococcal protein A were introduced in Staphylococcus aureus and S. xylosus as well as Escherichia coli. The product of the gene without the cell wall anchoring domain was efficiently secreted in all three hosts. N-terminal sequencing of the affinity-purified mature protein revealed a common processing site after the alanine residue at position 36. In contrast, when an internal IgG-binding fragment of protein A (region B) was inserted after the protein A signal sequence, the product was poorly secreted and N-terminal sequencing revealed no processing at the normal site. This demonstrates that the structure of the polypeptide chain beyond the signal peptide cleavage site can affect cleavage. Another construct, containing the N-terminal IgG-binding part of the mature protein A (region E) followed by region B, gave correct processing and efficient secretion. Unexpectedly, the gene product, EB, was not only secreted and correctly processed, but was also excreted to the culture medium of E. coli. Secretion vectors containing the protein A signal sequence were constructed to facilitate secretion of foreign gene products. Insertion of the E. coli gene phoA, lacking its own promoter and signal sequence, led to efficient secretion of alkaline phosphatase both in E. coli and S. aureus.  相似文献   

16.
The lactose-assimilating yeast, Kluyveromyces lactis, has been developed as a microbial host for the synthesis and secretion of human proteins. Here, we report the use of multi-copy vectors based on the 2 mu-like plasmid pKD1 from Kluyveromyces drosophilarum [Chen et al., Nucleic Acids Res. 14 (1986) 4471-4481] for the secretion of recombinant human interleukin-1 beta (reIL-1 beta). High levels of reIL-1 beta were secreted into the growth medium when the structural gene was fused in-frame to a synthetic secretion signal derived from the 'pre'-region of the K. lactis killer toxin. N-terminal sequencing of the excreted protein showed highly efficient (greater than 95%) maturation of the signal sequence. Synthesis as prepro-IL-1 beta, the 'pro'-sequence being derived from the human serum albumin-encoding gene, resulted in equally efficient secretion of mature IL-1 beta. Cytoplasmic production of Met-IL-1 beta, without a secretion signal, was found to be toxic to K. lactis. As in Saccharomyces cerevisiae [Baldari et al., EMBO J. 6 (1987) 229-234], but unlike native human IL-1 beta, K. lactis reIL-1 beta is glycosylated. This glycosylation led to a 95% loss of its biological activity. Removal of the carbohydrate chains by endo-beta-N-acetyl-glucosamidase H treatment fully restored the biological activity. A modified form of IL-1 beta (Asn7----Gln7), in which the unique site for Asn-linked glycosylation was deleted, exhibited the same biological activity as native IL-1 beta. The level of secretion of mature recombinant IL-1 beta ws glycosylation-independent.  相似文献   

17.
The maltose phosphorylase (MPase) gene of Bacillus sp. strain RK-1 was cloned by PCR with oligonucleotide primers designed on the basis of a partial N-terminal amino acid sequence of the purified enzyme. The MPase gene consisted of 2,655 bp encoding a theoretical protein with a Mr of 88,460, and had no secretion signal sequence, although most of the MPase activity was detected in the culture supernatant of RK-1. This cloned MPase gene and the trehalose phosphorylase (TPase) gene from Bacillus stearothermophilus SK-1 were efficiently expressed intracellularly under the control of the Bacillus amyloliquefaciens alpha-amylase promoter in Bacillus subtilis. The production yields were estimated to be more than 2 g of enzyme per liter of medium, about 250 times the production of the original strains, in a simple shake flask. About 60% of maltose was converted into trehalose by the simultaneous action of both enzymes produced in B. subtilis.  相似文献   

18.
Clostridium sp. G0005 produces a cell-bound glucoamylase (CGA). The gene encoding CGA has been sequenced. The deduced amino acid sequence begins with a putative 21-residue signal sequence for secretion of bacterial lipoproteins, which suggests that a putative CGA precursor is modified and secreted like other bacterial lipoproteins in Clostridium sp. G0005, and that the modified residue is important in the cell-bound form of mature CGA. Comparison of the amino acid sequence of the CGA precursor with known eukaryotic enzymes showed several regions of high similarity in spite of low similarity throughout the overall primary structure. CGA is the first bacterial glucoamylase to be cloned. The CGA gene was expressed in Escherichia coli cells with an inducible expression plasmid, in which the 5' non-coding region and the N-terminal coding region of the gene were replaced with the lac promoter. Kinetic studies of the cloned enzyme purified from E. coli were performed with a set of linear malto-oligosaccharides as substrates, and the subsite affinity was calculated from the kinetic parameters. CGA had typical kinetic properties for a glucoamylase, but this bacterial enzyme had higher isomaltose-hydrolyzing activity than other eukaryotic glucoamylases.  相似文献   

19.
The coding region for a secreted proteinaceous inhibitor of the human alpha-amylase (tendamistat; HOE 467) was identified by using a synthetic oligonucleotide probe. The gene is part of a 37-kilobase amplified genomic sequence found in an overproducing mutant of Streptomyces tendae. After subcloning, sequence analysis revealed an open reading frame of 312 base pairs preceded by a putative ribosome-binding site. The reading frame is 30 codons longer than necessary for the mature protein. This sequence coded for an amino-terminal extension of tendamistat and shows typical features of a signal peptide. After being cloned into Streptomyces vector plasmids and transformed to the heterologous host, Streptomyces lividans TK24, the gene was expressed, and the alpha-amylase inhibitor was correctly processed and secreted into the culture medium. The amount of secreted protein was dependent on the gene dosage and on the promoter arrangement.  相似文献   

20.
P G Zaworski  K R Marotti  V MacKay  C Yip  G S Gill 《Gene》1989,85(2):545-551
The properties of porcine urokinase plasminogen activator (u-PA), produced and secreted by Saccharomyces cerevisiae, were studied to evaluate processing of the enzyme by yeast. Porcine u-PA cDNA was positioned behind the triosephosphate isomerase promoter and the yeast alpha-mating factor secretion signal sequences in a yeast expression vector, pZV125. Greater than 99% of the secreted PA activity was found to be single chain (pro-urokinase). The secreted gene product could be converted to two-chain (tc) with plasmin and then purified to homogeneity on benzamidine sepharose. Plasmin cleavage resulted in the formation of high Mr (HMW) and low Mr moieties representing HMW tc and free catalytic domain, respectively, as detected by N-terminal amino acid sequence analysis. Approximately 60-70% of the secreted activity was found to be associated with hyperglycosylated fractions from G-75 sizing columns. Approximately 30% of the total activity was secreted into the culture medium, where levels of activity approached 200 I.U./ml.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号