首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The successful prediction of protein subcellular localization directly from protein primary sequence is useful to protein function prediction and drug discovery. In this paper, by using the concept of pseudo amino acid composition (PseAAC), the mycobacterial proteins are studied and predicted by support vector machine (SVM) and increment of diversity combined with modified Mahalanobis Discriminant (IDQD). The results of jackknife cross-validation for 450 non-redundant proteins show that the overall predicted successful rates of SVM and IDQD are 82.2% and 79.1%, respectively. Compared with other existing methods, SVM combined with PseAAC display higher accuracies.  相似文献   

2.
In the post-genome era, the prediction of protein function is one of the most demanding tasks in the study of bioinformatics. Machine learning methods, such as the support vector machines (SVMs), greatly help to improve the classification of protein function. In this work, we integrated SVMs, protein sequence amino acid composition, and associated physicochemical properties into the study of nucleic-acid-binding proteins prediction. We developed the binary classifications for rRNA-, RNA-, DNA-binding proteins that play an important role in the control of many cell processes. Each SVM predicts whether a protein belongs to rRNA-, RNA-, or DNA-binding protein class. Self-consistency and jackknife tests were performed on the protein data sets in which the sequences identity was < 25%. Test results show that the accuracies of rRNA-, RNA-, DNA-binding SVMs predictions are approximately 84%, approximately 78%, approximately 72%, respectively. The predictions were also performed on the ambiguous and negative data set. The results demonstrate that the predicted scores of proteins in the ambiguous data set by RNA- and DNA-binding SVM models were distributed around zero, while most proteins in the negative data set were predicted as negative scores by all three SVMs. The score distributions agree well with the prior knowledge of those proteins and show the effectiveness of sequence associated physicochemical properties in the protein function prediction. The software is available from the author upon request.  相似文献   

3.
Li Z  Zhou X  Dai Z  Zou X 《Amino acids》2012,43(2):793-804
The coupling between G protein-coupled receptors (GPCRs) and guanine nucleotide-binding proteins (G proteins) regulates various signal transductions from extracellular space into the cell. However, the coupling mechanism between GPCRs and G proteins is still unknown, and experimental determination of their coupling specificity and function is both expensive and time consuming. Therefore, it is significant to develop a theoretical method to predict the coupling specificity between GPCRs and G proteins as well as their function using their primary sequences. In this study, a novel four-layer predictor (GPCRsG_CWTIT) based on support vector machine (SVM), continuous wavelet transform (CWT) and information theory (IT) is developed to classify G proteins and predict the coupling specificity between GPCRs and G proteins. SVM is used for construction of models. CWT and IT are used to characterize the primary structure of protein. Performance of GPCRsG_CWTIT is evaluated with cross-validation test on various working dataset. The overall accuracy of the G proteins at the levels of class and family is 98.23 and 85.42%, respectively. The accuracy of the coupling specificity prediction varies from 74.60 to 94.30%. These results indicate that the proposed predictor is an effective and feasible tool to predict the coupling specificity between GPCRs and G proteins as well as their functions using only the protein full sequence. The establishment of such an accurate prediction method will facilitate drug discovery by improving the ability to identify and predict protein-protein interactions. GPCRsG_CWTIT and dataset can be acquired freely on request from the authors.  相似文献   

4.
Elucidation of the interaction of proteins with different molecules is of significance in the understanding of cellular processes. Computational methods have been developed for the prediction of protein-protein interactions. But insufficient attention has been paid to the prediction of protein-RNA interactions, which play central roles in regulating gene expression and certain RNA-mediated enzymatic processes. This work explored the use of a machine learning method, support vector machines (SVM), for the prediction of RNA-binding proteins directly from their primary sequence. Based on the knowledge of known RNA-binding and non-RNA-binding proteins, an SVM system was trained to recognize RNA-binding proteins. A total of 4011 RNA-binding and 9781 non-RNA-binding proteins was used to train and test the SVM classification system, and an independent set of 447 RNA-binding and 4881 non-RNA-binding proteins was used to evaluate the classification accuracy. Testing results using this independent evaluation set show a prediction accuracy of 94.1%, 79.3%, and 94.1% for rRNA-, mRNA-, and tRNA-binding proteins, and 98.7%, 96.5%, and 99.9% for non-rRNA-, non-mRNA-, and non-tRNA-binding proteins, respectively. The SVM classification system was further tested on a small class of snRNA-binding proteins with only 60 available sequences. The prediction accuracy is 40.0% and 99.9% for snRNA-binding and non-snRNA-binding proteins, indicating a need for a sufficient number of proteins to train SVM. The SVM classification systems trained in this work were added to our Web-based protein functional classification software SVMProt, at http://jing.cz3.nus.edu.sg/cgi-bin/svmprot.cgi. Our study suggests the potential of SVM as a useful tool for facilitating the prediction of protein-RNA interactions.  相似文献   

5.
Protein function classification via support vector machine approach   总被引:2,自引:0,他引:2  
Support vector machine (SVM) is introduced as a method for the classification of proteins into functionally distinguished classes. Studies are conducted on a number of protein classes including RNA-binding proteins; protein homodimers, proteins responsible for drug absorption, proteins involved in drug distribution and excretion, and drug metabolizing enzymes. Testing accuracy for the classification of these protein classes is found to be in the range of 84-96%. This suggests the usefulness of SVM in the classification of protein functional classes and its potential application in protein function prediction.  相似文献   

6.
Predict potential drug targets from the ion channel proteins based on SVM   总被引:1,自引:0,他引:1  
The identification of molecular targets is a critical step in the drug discovery and development process. Ion channel proteins represent highly attractive drug targets implicated in a diverse range of disorders, in particular in the cardiovascular and central nervous systems. Due to the limits of experimental technique and low-throughput nature of patch-clamp electrophysiology, they remain a target class waiting to be exploited. In our study, we combined three types of protein features, primary sequence, secondary structure and subcellular localization to predict potential drug targets from ion channel proteins applying classical support vector machine (SVM) method. In addition, our prediction comprised two stages. In stage 1, we predicted ion channel target proteins based on whole-genome target protein characteristics. Firstly, we performed feature selection by Mann-Whitney U test, then made predictions to identify potential ion channel targets by SVM and designed a new evaluating indicator Q to prioritize results. In stage 2, we made a prediction based on known ion channel target protein characteristics. Genetic algorithm was used to select features and SVM was used to predict ion channel targets. Then, we integrated results of two stages, and found that five ion channel proteins appeared in both prediction results including CGMP-gated cation channel beta subunit and Gamma-aminobutyric acid receptor subunit alpha-5, etc., and four of which were relative to some nerve diseases. It suggests that these five proteins are potential targets for drug discovery and our prediction strategies are effective.  相似文献   

7.
The complete genome of severe acute respiratory syndrome coronavirus (SARS-CoV) reveals the existence of putative proteins unique to SARS-CoV. Identification of their function facilitates a mechanistic understanding of SARS infection and drug development for its treatment. The sequence of the majority of these putative proteins has no significant similarity to those of known proteins, which complicates the task of using sequence analysis tools to probe their function. Support vector machines (SVM), useful for predicting the functional class of distantly related proteins, is employed to ascribe a possible functional class to SARS-CoV proteins. Testing results indicate that SVM is able to predict the functional class of 73% of the known SARS-CoV proteins with available sequences and 67% of 18 other novel viral proteins. A combination of the sequence comparison method BLAST and SVMProt can further improve the prediction accuracy of SMVProt such that the functional class of two additional SARS-CoV proteins is correctly predicted. Our study suggests that the SARS-CoV genome possibly contains a putative voltage-gated ion channel, structural proteins, a carbon-oxygen lyase, oxidoreductases acting on the CH-OH group of donors, and an ATP-binding cassette transporter. A web version of our software, SVMProt, is accessible at http://jing.cz3.nus.edu.sg/cgi-bin/svmprot.cgi .  相似文献   

8.
Sethi D  Garg A  Raghava GP 《Amino acids》2008,35(3):599-605
The association of structurally disordered proteins with a number of diseases has engendered enormous interest and therefore demands a prediction method that would facilitate their expeditious study at molecular level. The present study describes the development of a computational method for predicting disordered proteins using sequence and profile compositions as input features for the training of SVM models. First, we developed the amino acid and dipeptide compositions based SVM modules which yielded sensitivities of 75.6 and 73.2% along with Matthew’s Correlation Coefficient (MCC) values of 0.75 and 0.60, respectively. In addition, the use of predicted secondary structure content (coil, sheet and helices) in the form of composition values attained a sensitivity of 76.8% and MCC value of 0.77. Finally, the training of SVM models using evolutionary information hidden in the multiple sequence alignment profile improved the prediction performance by achieving a sensitivity value of 78% and MCC of 0.78. Furthermore, when evaluated on an independent dataset of partially disordered proteins, the same SVM module provided a correct prediction rate of 86.6%. Based on the above study, a web server (“DPROT”) was developed for the prediction of disordered proteins, which is available at .  相似文献   

9.
Classification of gene function remains one of the most important and demanding tasks in the post-genome era. Most of the current predictive computer methods rely on comparing features that are essentially linear to the protein sequence. However, features of a protein nonlinear to the sequence may also be predictive to its function. Machine learning methods, for instance the Support Vector Machines (SVMs), are particularly suitable for exploiting such features. In this work we introduce SVM and the pseudo-amino acid composition, a collection of nonlinear features extractable from protein sequence, to the field of protein function prediction. We have developed prototype SVMs for binary classification of rRNA-, RNA-, and DNA-binding proteins. Using a protein's amino acid composition and limited range correlation of hydrophobicity and solvent accessible surface area as input, each of the SVMs predicts whether the protein belongs to one of the three classes. In self-consistency and cross-validation tests, which measures the success of learning and prediction, respectively, the rRNA-binding SVM has consistently achieved >95% accuracy. The RNA- and DNA-binding SVMs demonstrate more diverse accuracy, ranging from approximately 76% to approximately 97%. Analysis of the test results suggests the directions of improving the SVMs.  相似文献   

10.
基于SVM 的药物靶点预测方法及其应用   总被引:1,自引:0,他引:1       下载免费PDF全文
目的:基于已知药物靶点和潜在药物靶点蛋白的一级结构相似性,结合SVM技术研究新的有效的药物靶点预测方法。方法:构造训练样本集,提取蛋白质序列的一级结构特征,进行数据预处理,选择最优核函数,优化参数并进行特征选择,训练最优预测模型,检验模型的预测效果。以G蛋白偶联受体家族的蛋白质为预测集,应用建立的最优分类模型对其进行潜在药物靶点挖掘。结果:基于SVM所建立的最优分类模型预测的平均准确率为81.03%。应用最优分类器对构造的G蛋白预测集进行预测,结果发现预测排位在前20的蛋白质中有多个与疾病相关。特别的,其中有两个G蛋白在治疗靶点数据库(TTD)中显示已作为临床试验的药物靶点。结论:基于SVM和蛋白质序列特征的药物靶点预测方法是有效的,应用该方法预测出的潜在药物靶点能够为发现新的药靶提供参考。  相似文献   

11.
In the process of cell division, a great deal of proteins is assembled into three distinct organelles, namely midbody, centrosome and kinetochore. Knowing the localization of microkit (midbody, centrosome and kinetochore) proteins will facilitate drug target discovery and provide novel insights into understanding their functions. In this study, a support vector machine (SVM) model, MicekiPred, was presented to predict the localization of microkit proteins based on gene ontology (GO) information. A total accuracy of 77.51% was achieved using the jackknife cross-validation. This result shows that the model will be an effective complementary tool for future experimental study. The prediction model and dataset used in this article can be freely downloaded from http://cobi.uestc.edu.cn/people/hlin/tools/MicekiPred/.  相似文献   

12.
Lipid binding proteins play important roles in signaling, regulation, membrane trafficking, immune response, lipid metabolism, and transport. Because of their functional and sequence diversity, it is desirable to explore additional methods for predicting lipid binding proteins irrespective of sequence similarity. This work explores the use of support vector machines (SVMs) as such a method. SVM prediction systems are developed using 14,776 lipid binding and 133,441 nonlipid binding proteins and are evaluated by an independent set of 6,768 lipid binding and 64,761 nonlipid binding proteins. The computed prediction accuracy is 78.9, 79.5, 82.2, 79.5, 84.4, 76.6, 90.6, 79.0, and 89.9% for lipid degradation, lipid metabolism, lipid synthesis, lipid transport, lipid binding, lipopolysaccharide biosynthesis, lipoprotein, lipoyl, and all lipid binding proteins, respectively. The accuracy for the nonmember proteins of each class is 99.9, 99.2, 99.6, 99.8, 99.9, 99.8, 98.5, 99.9, and 97.0%, respectively. Comparable accuracies are obtained when homologous proteins are considered as one, or by using a different SVM kernel function. Our method predicts 86.8% of the 76 lipid binding proteins nonhomologous to any protein in the Swiss-Prot database and 89.0% of the 73 known lipid binding domains as lipid binding. These findings suggest the usefulness of SVMs for facilitating the prediction of lipid binding proteins. Our software can be accessed at the SVMProt server (http://jing.cz3.nus.edu.sg/cgi-bin/svmprot.cgi).  相似文献   

13.
Cai CZ  Han LY  Ji ZL  Chen YZ 《Proteins》2004,55(1):66-76
One approach for facilitating protein function prediction is to classify proteins into functional families. Recent studies on the classification of G-protein coupled receptors and other proteins suggest that a statistical learning method, Support vector machines (SVM), may be potentially useful for protein classification into functional families. In this work, SVM is applied and tested on the classification of enzymes into functional families defined by the Enzyme Nomenclature Committee of IUBMB. SVM classification system for each family is trained from representative enzymes of that family and seed proteins of Pfam curated protein families. The classification accuracy for enzymes from 46 families and for non-enzymes is in the range of 50.0% to 95.7% and 79.0% to 100% respectively. The corresponding Matthews correlation coefficient is in the range of 54.1% to 96.1%. Moreover, 80.3% of the 8,291 correctly classified enzymes are uniquely classified into a specific enzyme family by using a scoring function, indicating that SVM may have certain level of unique prediction capability. Testing results also suggest that SVM in some cases is capable of classification of distantly related enzymes and homologous enzymes of different functions. Effort is being made to use a more comprehensive set of enzymes as training sets and to incorporate multi-class SVM classification systems to further enhance the unique prediction accuracy. Our results suggest the potential of SVM for enzyme family classification and for facilitating protein function prediction. Our software is accessible at http://jing.cz3.nus.edu.sg/cgi-bin/svmprot.cgi.  相似文献   

14.
The function of the protein is primarily dictated by its structure. Therefore it is far more logical to find the functional clues of the protein in its overall 3-dimensional fold or its global structure. In this paper, we have developed a novel Support Vector Machines (SVM) based prediction model for functional classification and prediction of proteins using features extracted from its global structure based on fragment libraries. Fragment libraries have been previously used for abintio modelling of proteins and protein structure comparisons. The query protein structure is broken down into a collection of short contiguous backbone fragments and this collection is discretized using a library of fragments. The input feature vector is frequency vector that counts the number of each library fragment in the collection of fragments by all-to-all fragment comparisons. SVM models were trained and optimised for obtaining the best 10-fold Cross validation accuracy for classification. As an example, this method was applied for prediction and classification of Cell Adhesion molecules (CAMs). Thirty-four different fragment libraries with sizes ranging from 4 to 400 and fragment lengths ranging from 4 to 12 were used for obtaining the best prediction model. The best 10-fold CV accuracy of 95.25% was obtained for library of 400 fragments of length 10. An accuracy of 87.5% was obtained on an unseen test dataset consisting of 20 CAMs and 20 NonCAMs. This shows that protein structure can be accurately and uniquely described using 400 representative fragments of length 10.  相似文献   

15.
Here we report a systematic approach for predicting subcellular localization (cytoplasm, mitochondrial, nuclear, and plasma membrane) of human proteins. First, support vector machine (SVM)-based modules for predicting subcellular localization using traditional amino acid and dipeptide (i + 1) composition achieved overall accuracy of 76.6 and 77.8%, respectively. PSI-BLAST, when carried out using a similarity-based search against a nonredundant data base of experimentally annotated proteins, yielded 73.3% accuracy. To gain further insight, a hybrid module (hybrid1) was developed based on amino acid composition, dipeptide composition, and similarity information and attained better accuracy of 84.9%. In addition, SVM modules based on a different higher order dipeptide i.e. i + 2, i + 3, and i + 4 were also constructed for the prediction of subcellular localization of human proteins, and overall accuracy of 79.7, 77.5, and 77.1% was accomplished, respectively. Furthermore, another SVM module hybrid2 was developed using traditional dipeptide (i + 1) and higher order dipeptide (i + 2, i + 3, and i + 4) compositions, which gave an overall accuracy of 81.3%. We also developed SVM module hybrid3 based on amino acid composition, traditional and higher order dipeptide compositions, and PSI-BLAST output and achieved an overall accuracy of 84.4%. A Web server HSLPred (www.imtech.res.in/raghava/hslpred/ or bioinformatics.uams.edu/raghava/hslpred/) has been designed to predict subcellular localization of human proteins using the above approaches.  相似文献   

16.
SUMMARY: We developed a web server PSLpred for predicting subcellular localization of gram-negative bacterial proteins with an overall accuracy of 91.2%. PSLpred is a hybrid approach-based method that integrates PSI-BLAST and three SVM modules based on compositions of residues, dipeptides and physico-chemical properties. The prediction accuracies of 90.7, 86.8, 90.3, 95.2 and 90.6% were attained for cytoplasmic, extracellular, inner-membrane, outer-membrane and periplasmic proteins, respectively. Furthermore, PSLpred was able to predict approximately 74% of sequences with an average prediction accuracy of 98% at RI = 5. AVAILABILITY: PSLpred is available at http://www.imtech.res.in/raghava/pslpred/  相似文献   

17.
Most of the prediction methods for secretory proteins require the presence of a correct N-terminal end of the preprotein for correct classification. As large scale genome sequencing projects sometimes assign the 5'-end of genes incorrectly, many proteins are encoded without the correct N-terminus leading to incorrect prediction. In this study, a systematic attempt has been made to predict secretory proteins irrespective of presence or absence of N-terminal signal peptides (also known as classical and non-classical secreted proteins respectively), using machine-learning techniques; artificial neural network (ANN) and support vector machine (SVM). We trained and tested our methods on a dataset of 3321 secretory and 3654 non-secretory mammalian proteins using five-fold cross-validation technique. First, ANN-based modules have been developed for predicting secretory proteins using 33 physico-chemical properties, amino acid composition and dipeptide composition and achieved accuracies of 73.1%, 76.1% and 77.1%, respectively. Similarly, SVM-based modules using 33 physico-chemical properties, amino acid, and dipeptide composition have been able to achieve accuracies of 77.4%, 79.4% and 79.9%, respectively. In addition, BLAST and PSI-BLAST modules designed for predicting secretory proteins based on similarity search achieved 23.4% and 26.9% accuracy, respectively. Finally, we developed a hybrid-approach by integrating amino acid and dipeptide composition based SVM modules and PSI-BLAST module that increased the accuracy to 83.2%, which is significantly better than individual modules. We also achieved high sensitivity of 60.4% with low value of 5% false positive predictions using hybrid module. A web server SRTpred has been developed based on above study for predicting classical and non-classical secreted proteins from whole sequence of mammalian proteins, which is available from http://www.imtech.res.in/raghava/srtpred/.  相似文献   

18.
Information on relative solvent accessibility (RSA) of amino acid residues in proteins provides valuable clues to the prediction of protein structure and function. A two-stage approach with support vector machines (SVMs) is proposed, where an SVM predictor is introduced to the output of the single-stage SVM approach to take into account the contextual relationships among solvent accessibilities for the prediction. By using the position-specific scoring matrices (PSSMs) generated by PSI-BLAST, the two-stage SVM approach achieves accuracies up to 90.4% and 90.2% on the Manesh data set of 215 protein structures and the RS126 data set of 126 nonhomologous globular proteins, respectively, which are better than the highest published scores on both data sets to date. A Web server for protein RSA prediction using a two-stage SVM method has been developed and is available (http://birc.ntu.edu.sg/~pas0186457/rsa.html).  相似文献   

19.
20.
In this article, we present COMSAT, a hybrid framework for residue contact prediction of transmembrane (TM) proteins, integrating a support vector machine (SVM) method and a mixed integer linear programming (MILP) method. COMSAT consists of two modules: COMSAT_SVM which is trained mainly on position–specific scoring matrix features, and COMSAT_MILP which is an ab initio method based on optimization models. Contacts predicted by the SVM model are ranked by SVM confidence scores, and a threshold is trained to improve the reliability of the predicted contacts. For TM proteins with no contacts above the threshold, COMSAT_MILP is used. The proposed hybrid contact prediction scheme was tested on two independent TM protein sets based on the contact definition of 14 Å between Cα‐Cα atoms. First, using a rigorous leave‐one‐protein‐out cross validation on the training set of 90 TM proteins, an accuracy of 66.8%, a coverage of 12.3%, a specificity of 99.3% and a Matthews' correlation coefficient (MCC) of 0.184 were obtained for residue pairs that are at least six amino acids apart. Second, when tested on a test set of 87 TM proteins, the proposed method showed a prediction accuracy of 64.5%, a coverage of 5.3%, a specificity of 99.4% and a MCC of 0.106. COMSAT shows satisfactory results when compared with 12 other state‐of‐the‐art predictors, and is more robust in terms of prediction accuracy as the length and complexity of TM protein increase. COMSAT is freely accessible at http://hpcc.siat.ac.cn/COMSAT/ . Proteins 2016; 84:332–348. © 2016 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号