首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The acid stress chaperones HdeA and HdeB of Escherichia coli prevent the aggregation of periplasmic proteins at acidic pH. We show in this report that they also form mixed aggregates with proteins that have failed to be solubilized at acidic pH and allow their subsequent solubilization at neutral pH. HdeA, HdeB, and HdeA and HdeB together display an increasing efficiency for the solubilization of protein aggregates at pH 3. They are less efficient for the solubilization of aggregates at pH 2, whereas HdeB is the most efficient. Increasing amounts of periplasmic proteins draw increasing amounts of chaperone into pellets, suggesting that chaperones co-aggregate with their substrate proteins. We observed a decrease in the size of protein aggregates in the presence of HdeA and HdeB, from very high molecular mass aggregates to 100-5000-kDa species. Moreover, a marked decrease in the exposed hydrophobicity of aggregated proteins in the presence of HdeA and HdeB was revealed by 1,1'-bis(4-anilino)naphtalene-5,5'-disulfonic acid binding experiments. In vivo, during the recovery at neutral pH of acid stressed bacterial cells, HdeA and HdeB allow the solubilization and renaturation of protein aggregates, including those formed by the maltose receptor MalE, the oligopeptide receptor OppA, and the histidine receptor HisJ. Thus, HdeA and HdeB not only help to maintain proteins in a soluble state during acid treatment, as previously reported, but also assist, both in vitro and in vivo, in the solubilization at neutral pH of mixed protein-chaperone aggregates formed at acidic pH, by decreasing the size of protein aggregates and the exposed hydrophobicity of aggregated proteins.  相似文献   

2.
Enteric bacteria such as Escherichia coli utilize various acid response systems to counteract the acidic environment of the mammalian stomach. To protect their periplasmic proteome against rapid acid-mediated damage, bacteria contain the acid-activated periplasmic chaperones HdeA and HdeB. Activation of HdeA at pH 2 was shown to correlate with its acid-induced dissociation into partially unfolded monomers. In contrast, HdeB, which has high structural similarities to HdeA, shows negligible chaperone activity at pH 2 and only modest chaperone activity at pH 3. These results raised intriguing questions concerning the physiological role of HdeB in bacteria, its activation mechanism, and the structural requirements for its function as a molecular chaperone. In this study, we conducted structural and biochemical studies that revealed that HdeB indeed works as an effective molecular chaperone. However, in contrast to HdeA, whose chaperone function is optimal at pH 2, the chaperone function of HdeB is optimal at pH 4, at which HdeB is still fully dimeric and largely folded. NMR, analytical ultracentrifugation, and fluorescence studies suggest that the highly dynamic nature of HdeB at pH 4 alleviates the need for monomerization and partial unfolding. Once activated, HdeB binds various unfolding client proteins, prevents their aggregation, and supports their refolding upon subsequent neutralization. Overexpression of HdeA promotes bacterial survival at pH 2 and 3, whereas overexpression of HdeB positively affects bacterial growth at pH 4. These studies demonstrate how two structurally homologous proteins with seemingly identical in vivo functions have evolved to provide bacteria with the means for surviving a range of acidic protein-unfolding conditions.  相似文献   

3.
分子伴侣能够与其他蛋白质的不稳定构象相结合并使其稳定.它的功能之一是能够帮助蛋白质进行正确的折叠与组装.最新研究发现,在肠道致病菌的周质空间中存在着酸性条件下能帮助周质蛋白复性的分子伴侣HdeA和HdeB.HdeA在极端酸性的胃部环境中由二聚体迅速解离成具有伴侣活性的单体,HdeA单体能够和变性的底物蛋白结合防止它们酸诱导聚集,从而保护肠道致病菌安全到达肠道.本文对肠道致病菌的耐酸机制进行了总结,最后对 HdeA和HdeB作用机制的研究近况进行综述,最后对HdeA和HdeB以后的研究方向进行了展望.  相似文献   

4.
The periplasmic chaperones HdeA and HdeB are known to be important for cell survival at low pH (pH < 3) in Escherichia coli and Shigella spp. Here we investigated the roles of HdeA and HdeB in the survival of various enterohemorrhagic E. coli (EHEC) following exposure to pH 2.0. Similar to K-12 strains, the acid protections conferred by HdeA and HdeB in EHEC O145 were significant: loss of HdeA and HdeB led to over 100- to 1,000-fold reductions in acid survival, depending on the growth condition of prechallenge cells. However, this protection was much less in E. coli O157:H7 strains. Deletion of hdeB did not affect the acid survival of cells, and deletion of hdeA led to less than a 5-fold decrease in survival. Sequence analysis of the hdeAB operon revealed a point mutation at the putative start codon of the hdeB gene in all 26 E. coli O157:H7 strains analyzed, which shifted the ATG start codon to ATA. This mutation correlated with the lack of HdeB in E. coli O157:H7; however, the plasmid-borne O157-hdeB was able to restore partially the acid resistance in an E. coli O145ΔhdeAB mutant, suggesting the potential function of O157-HdeB as an acid chaperone. We conclude that E. coli O157:H7 strains have evolved acid survival strategies independent of the HdeA/B chaperones and are more acid resistant than nonpathogenic K-12 for cells grown under nonfavorable culturing conditions such as in Luria-Bertani no-salt broth at 28°C. These results suggest a divergent evolution of acid resistance mechanisms within E. coli.  相似文献   

5.
Escherichia coli and Gram-negative bacteria that live in the human gut must be able to tolerate rapid and large changes in environmental pH. Low pH irreversibly denatures and precipitates many bacterial proteins. While cytoplasmic proteins are well buffered against such swings, periplasmic proteins are not. Instead, it appears that some bacteria utilize chaperone proteins that stabilize periplasmic proteins, preventing their precipitation. Two highly expressed and related proteins, HdeA and HdeB, have been identified as acid-activated chaperones. The structure of HdeA is known and a mechanism for activation has been proposed. In this model, dimeric HdeA dissociates at low pH, and the exposed dimeric interface binds exposed hydrophobic surfaces of acid-denatured proteins, preventing their irreversible aggregation. We now report the structure and biophysical characterization of the HdeB protein. The monomer of HdeB shares a similar structure with HdeA, but its dimeric interface is different in composition and spatial location. We have used fluorescence to study the behavior of HdeB as pH is lowered, and like HdeA, it dissociates to monomers. We have identified one of the key intersubunit interactions that controls pH-induced monomerization. Our analysis identifies a structural interaction within the HdeB monomer that is disrupted as pH is lowered, leading to enhanced structural flexibility.  相似文献   

6.
Zhang M  Lin S  Song X  Liu J  Fu Y  Ge X  Fu X  Chang Z  Chen PR 《Nature chemical biology》2011,7(10):671-677
Acid chaperones are essential factors in preserving the protein homeostasis for enteric pathogens to survive in the extremely acidic mammalian stomach (pH 1-3). The client proteins of these chaperones remain largely unknown, primarily because of the exceeding difficulty of determining protein-protein interactions under low-pH conditions. We developed a genetically encoded, highly efficient protein photocrosslinking probe, which enabled us to profile the in vivo substrates of a major acid-protection chaperone, HdeA, in Escherichia coli periplasm. Among the identified HdeA client proteins, the periplasmic chaperones DegP and SurA were initially found to be protected by HdeA at a low pH, but they subsequently facilitated the HdeA-mediated acid recovery of other client proteins. This unique, ATP-independent chaperone cooperation in the ATP-deprived E. coli periplasm may support the acid resistance of enteric bacteria. The crosslinker would be valuable in unveiling the physiological interaction partners of any given protein and thus their functions under normal and stress conditions.  相似文献   

7.
The extremely acidic environment of the mammalian stomach not only serves to facilitate food digestion but also acts as a natural barrier against infections of food-borne pathogens. Many pathogenic bacteria, such as enterohemorrhagic Escherichia coli, can breach this host defense and cause severe diseases. These pathogens have evolved multiple intricate strategies to overcome the bactericidal activity of acids. In particular, recent studies have uncovered the central roles of two periplasmic chaperones, HdeA and HdeB, in protecting enteric bacteria from extremely acidic conditions. Here, we review recent advances in the understanding of the acid resistance mechanisms of Gram-negative bacteria and focus on the mechanisms of HdeA and HdeB in preventing acid-induced protein aggregation and facilitating protein refolding following pH neutralization.  相似文献   

8.
The extremely acidic environment of the mammalian stomach, with a pH range usually between 1 and 3, represents a stressful challenge for enteric pathogenic bacteria such as Escherichia coli before they enter into the intestine. The hdeA gene of E. coli was found to be acid inducible and was revealed by genetic studies to be important for the acid survival of the strain. This study was performed in an attempt to characterize the mechanism of the activity of the HdeA protein. Our data provided in this report strongly suggest that HdeA employs a novel strategy to modulate its chaperone activity: it possesses an ordered conformation that is unable to bind denatured substrate proteins under normal physiological conditions (i.e. at neutral pH) and transforms into a globally disordered conformation that is able to bind substrate proteins under stress conditions (i.e. at a pH below 3). Furthermore, our data indicate that HdeA exposes hydrophobic surfaces that appear to be involved in the binding of denatured substrate proteins at extremely low pH values. In light of our observations, models are proposed to explain the action of HdeA in both a physiological and a molecular context.  相似文献   

9.
HdeA is a periplasmic chaperone that is rapidly activated upon shifting the pH to acidic conditions. This activation is thought to involve monomerization of HdeA. There is evidence that monomerization and partial unfolding allow the chaperone to bind to proteins denatured by low pH, thereby protecting them from aggregation. We analyzed the acid-induced unfolding of HdeA using NMR spectroscopy and fluorescence measurements, and obtained experimental evidence suggesting a complex mechanism in HdeA's acid-induced unfolding pathway, as previously postulated from molecular dynamics simulations. Counterintuitively, dissociation constant measurements show a stabilization of the HdeA dimer upon exposure to mildly acidic conditions. We provide experimental evidence that protonation of Glu37, a glutamate residue embedded in a hydrophobic pocket of HdeA, is important in controlling HdeA stabilization and thus the acid activation of this chaperone. Our data also reveal a sharp transition from folded dimer to unfolded monomer between pH 3 and pH 2, and suggest the existence of a low-populated, partially folded intermediate that could assist in chaperone activation or function. Overall, this study provides a detailed experimental investigation into the mechanism by which HdeA unfolds and activates.  相似文献   

10.
YajL is the closest Escherichia coli homolog of the Parkinsonism-associated protein DJ-1, a multifunctional oxidative stress response protein whose biochemical function remains unclear. We recently reported the aggregation of proteins in a yajL mutant in an oxidative stress-dependent manner and that YajL exhibits chaperone activity. Here, we show that YajL displays covalent chaperone and weak protein oxidoreductase activities that are dependent on its exposed cysteine 106. It catalyzes reduced RNase oxidation and scrambled RNase isomerization and insulin reduction and forms mixed disulfides with many cellular proteins upon oxidative stress. The formation of mixed disulfides was detected by immunoblotting bacterial extracts with anti-YajL antibodies under nonreducing conditions. Disulfides were purified from bacterial extracts on a YajL affinity column, separated by nonreducing-reducing SDS-PAGE, and identified by mass spectrometry. Covalent YajL substrates included ribosomal proteins, aminoacyl-tRNA synthetases, chaperones, catalases, peroxidases, and other proteins containing cysteines essential for catalysis or FeS cluster binding, such as glyceraldehyde-3-phosphate dehydrogenase, aldehyde dehydrogenase, aconitase, and FeS cluster-containing subunits of respiratory chains. In addition, we show that DJ-1 also forms mixed disulfides with cytoplasmic proteins upon oxidative stress. These results shed light on the oxidative stress-dependent chaperone function of YajL and identify YajL substrates involved in translation, stress protection, protein solubilization, and metabolism. They reveal a crucial role for cysteine 106 and suggest that DJ-1 also functions as a covalent chaperone. These findings are consistent with several defects observed in yajL or DJ-1 mutants, including translational defects, protein aggregation, oxidative stress sensitivity, and metabolic deficiencies.  相似文献   

11.
HdeA is an acid-stress chaperone that operates in the periplasm of various strains of pathogenic gram-negative bacteria. Its primary function is to prevent irreversible aggregation of other periplasmic proteins when the bacteria enter the acidic environment of the stomach after contaminated food is ingested; its role is therefore to help the bacteria survive long enough to enter and colonize the intestines. The mechanism of operation of HdeA is unusual in that this helical homodimer is inactive when folded at neutral pH but becomes activated at low pH after the dimer dissociates and partially unfolds. Studies with chemical reducing agents previously suggested that the intramolecular disulfide bond is important for maintaining residual structure in HdeA at low pH and may be responsible for positioning exposed hydrophobic residues together for the purpose of binding unfolded client proteins. In order to explore its role in HdeA structure and chaperone function we performed a conservative cysteine to serine mutation of the disulfide. We found that, although residual structure is greatly diminished at pH 2 without the disulfide, it is not completely lost; conversely, the mutant is almost completely random coil at pH 6. Aggregation assays showed that mutated HdeA, although less successful as a chaperone than wild type, still maintains a surprising level of function. These studies highlight that we still have much to learn about the factors that stabilize residual structure at low pH and the role of disulfide bonds.  相似文献   

12.
HdeA is a periplasmic chaperone found in several gram‐negative pathogenic bacteria that are linked to millions of cases of dysentery per year worldwide. After the protein becomes activated at low pH, it can bind to other periplasmic proteins, protecting them from aggregation when the bacteria travel through the stomach on their way to colonize the intestines. It has been argued that one of the major driving forces for HdeA activation is the protonation of aspartate and glutamate side chains. The goal for this study, therefore, was to investigate, at the atomic level, the structural impact of this charge neutralization on HdeA during the transition from near‐neutral conditions to pH 3.0, in preparation for unfolding and activation of its chaperone capabilities. NMR spectroscopy was used to measure pKa values of Asp and Glu residues and monitor chemical shift changes. Measurements of R2/R1 ratios from relaxation experiments confirm that the protein maintains its dimer structure between pH 6.0 and 3.0. However, calculated correlation times and changes in amide protection from hydrogen/deuterium exchange experiments provide evidence for a loosening of the tertiary and quaternary structures of HdeA; in particular, the data indicate that the dimer structure becomes progressively weakened as the pH decreases. Taken together, these results provide insight into the process by which HdeA is primed to unfold and carry out its chaperone duties below pH 3.0, and it also demonstrates that neutralization of aspartate and glutamate residues is not likely to be the sole trigger for HdeA dissociation and unfolding.  相似文献   

13.
14.
15.
Shigella dysenteriae serotype 1 (SD1) causes the most severe form of epidemic bacillary dysentery. We present the first comprehensive proteome analysis of this pathogen, profiling proteins from bacteria cultured in vitro and bacterial isolates from the large bowel of infected gnotobiotic piglets (in vivo). Overall, 1061 distinct gene products were identified. Differential display analysis revealed that SD1 cells switched to an anaerobic energy metabolism in vivo. High in vivo abundances of amino acid decarboxylases (GadB and AdiA) which enhance pH homeostasis in the cytoplasm and protein disaggregation chaperones (HdeA, HdeB and ClpB) were indicative of a coordinated bacterial survival response to acid stress. Several type III secretion system effectors were increased in abundance in vivo, including OspF, IpaC and IpaD. These proteins are implicated in invasion of colonocytes and subversion of the host immune response in S. flexneri. These observations likely reflect an adaptive response of SD1 to the hostile host environment. Seven proteins, among them the type III secretion system effectors OspC2 and IpaB, were detected as antigens in Western blots using piglet antisera. The outer membrane protein OmpA, the heat shock protein HtpG and OspC2 represent novel SD1 subunit vaccine candidates and drug targets.  相似文献   

16.
Organisms use molecular chaperones to combat the unfolding and aggregation of proteins. While protein chaperones have been widely studied, here we demonstrate that DNA and RNA exhibit potent chaperone activity in vitro. Nucleic acids suppress the aggregation of classic chaperone substrates up to 300-fold more effectively than the protein chaperone GroEL. Additionally, RNA cooperates with the DnaK chaperone system to refold purified luciferase. Our findings reveal a possible new role for nucleic acids within the cell: that nucleic acids directly participate in maintaining proteostasis by preventing protein aggregation.  相似文献   

17.
Sis1 is an essential yeast Type II Hsp40 protein that assists cytosolic Hsp70 Ssa1 in the facilitation of processes that include translation initiation, the prevention of protein aggregation, and proteasomal protein degradation. An essential function of Sis1 and other Hsp40 proteins is the binding and delivery of non-native polypeptides to Hsp70. How Hsp40s function as molecular chaperones is unknown. The crystal structure of a Sis1 fragment that retains peptide-binding activity suggests that Type II Hsp40s utilize hydrophobic residues located in a solvent-exposed patch on carboxyl-terminal domain I to bind non-native polypeptides. To test this model, amino acid residues Val-184, Leu-186, Lys-199, Phe-201, Ile-203, and Phe-251, which form a depression in carboxyl-terminal domain I, were mutated, and the ability of Sis1 mutants to support cell viability and function as molecular chaperones was examined. We report that Lys-199, Phe-201, and Phe-251 are essential for cell viability and required for Sis1 polypeptide binding activity. Sis1 I203T could support normal cell growth, but when purified it exhibited severe defects in chaperone function. These data identify essential residues in Sis1 that function in polypeptide binding and help define the nature of the polypeptide-binding site in Type II Hsp40 proteins.  相似文献   

18.
Exposure to low temperatures reduces protein folding rates and induces the cold denaturation of proteins. Considering the roles played by chaperones in facilitating protein folding and preventing protein aggregation, chaperones must exist that confer tolerance to cold stress. Here, yeast strains lacking individual chaperones were screened for reduced freezing tolerance. In total, 19 of 82 chaperone-deleted strains tested were more sensitive to freeze-thaw treatment than wild-type cells. The reintroduction of the respective chaperone genes into the deletion mutants recovered the freeze tolerance. The freeze sensitivity of the chaperone-knockout strains was also retained in the presence of 20% glycerol.  相似文献   

19.
Chaperones in control of protein disaggregation   总被引:1,自引:0,他引:1       下载免费PDF全文
The chaperone protein network controls both initial protein folding and subsequent maintenance of proteins in the cell. Although the native structure of a protein is principally encoded in its amino-acid sequence, the process of folding in vivo very often requires the assistance of molecular chaperones. Chaperones also play a role in a post-translational quality control system and thus are required to maintain the proper conformation of proteins under changing environmental conditions. Many factors leading to unfolding and misfolding of proteins eventually result in protein aggregation. Stress imposed by high temperature was one of the first aggregation-inducing factors studied and remains one of the main models in this field. With massive protein aggregation occurring in response to heat exposure, the cell needs chaperones to control and counteract the aggregation process. Elimination of aggregates can be achieved by solubilization of aggregates and either refolding of the liberated polypeptides or their proteolysis. Here, we focus on the molecular mechanisms by which heat-shock protein 70 (Hsp70), Hsp100 and small Hsp chaperones liberate and refold polypeptides trapped in protein aggregates.  相似文献   

20.
Since, like other osmolytes, proline can act as a protein stabilizer, we investigated the thermoprotectant properties of proline in vitro and in vivo. In vivo, elevated proline pools in Escherichia coli (obtained by altering the feedback inhibition by proline of gamma-glutamylkinase, the first enzyme of the proline biosynthesis pathway) restore the viability of a dnaK-deficient mutant at 42 degrees C, suggesting that proline can act as a thermoprotectant for E. coli cells. Furthermore, analysis of aggregated proteins in the dnaK-deficient strain at 42 degrees C by two-dimensional gel electrophoresis shows that high proline pools reduce the protein aggregation defect of the dnaK-deficient strain. In vitro, like other "chemical chaperones," and like the DnaK chaperone, proline protects citrate synthase against thermodenaturation and stimulates citrate synthase renaturation after urea denaturation. These results show that a protein aggregation defect can be compensated for by a single mutation in an amino acid biosynthetic pathway and that an ubiquitously producible chemical chaperone can compensate for a defect in one of the major chaperones involved in protein folding and aggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号