首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aging alters cellular responses to both heat and oxidative stress. Thiol-mediated metabolism of reactive oxygen species (ROS) is believed to be important in aging. To begin to determine the role of thiols in aging and heat stress, we depleted liver glutathione (GSH) by administering l-buthionine sulfoximine (BSO) in young (6 mo) and old (24 mo) Fisher 344 rats before heat stress. Animals were given BSO (4 mmol/kg ip) or saline (1 ml ip) 2 h before heat stress and subsequently heated to a core temperature of 41 degrees C over a 90-min period. Liver tissue was collected before and 0, 30, and 60 min after heat stress. BSO inhibited glutamate cysteine ligase (GCL, the rate-limiting enzyme in GSH synthesis) catalytic activity and resulted in a decline in liver GSH and GSSG that was more pronounced in young compared with old animals. Catalase activity did not change between groups until 60 min after heat stress in young BSO-treated rats. Young animals experienced a substantial and persistent reduction in Cu,Zn-SOD activity with BSO treatment. Mn-SOD activity increased with BSO but declined after heat stress. The differences in thiol depletion observed between young and old animals with BSO treatment may be indicative of age-related differences in GSH compartmentalization that could have an impact on maintenance of redox homeostasis and antioxidant balance immediately after a physiologically relevant stress. The significant changes in antioxidant enzyme activity after GSH depletion suggest that thiol status can influence the regulation of other antioxidant enzymes.  相似文献   

2.
This investigation evaluates in an in vivo system the possible correlation between the intracellular content of GSH and cysteine and thermal sensitivity and thermotolerance. The studies were performed on C3H mammary carcinomas, located on the hind paw of CBA mice. Intracellular thiols were measured by the HPLC technique and the degree of thermotolerance induction was determined from tumour growth rate studies. It was found that the intracellular GSH levels did not change significantly during thermotolerance induction, and that subtoxic hyperthermia induced a pronounced transient decrease in GSH down to 30 per cent of the control level. When the intracellular GSH level was decreased to the same extent, by pretreatment with D,L-buthionine-S-R-sulphoximine (BSO), thermotolerance was still inducible. Thus, the induction of heat-induced thermal resistance did not seem to be dependent on the intracellular GSH level. When hyperthermia and BSO were combined, the GSH levels were further reduced. Treatment with BSO slightly increased the toxicity of both thermotolerance-inducing and subtoxic hyperthermia. The cysteine concentrations increased several fold after BSO and heat treatments and contributed, under these conditions, to more than 25 per cent of the intracellular free reduced thiols. In general, there was no direct correlation between GSH and cysteine levels. It is concluded that thermotolerance induction does not depend on or cause changes in intracellular GSH levels and that subtoxic heat treatments induce a pronounced transient decrease in GSH concentration.  相似文献   

3.
L-buthionine-S,R-sulfoximine (BSO) selectively inhibits glutathione (GSH) synthesis. Malignant melanoma may be uniquely dependent on GSH and its linked enzymes, glutathione S-transferase (GST) and GSH-peroxidase, for metabolism of reactive orthoquinones and peroxides produced during melanin synthesis. We compared the in vitro effects of BSO on melanoma cell lines and fresh melanoma specimens (n = 118) with breast and ovarian cell lines and solid tumors (n = 244). IC50 values (μM) for BSO on melanoma, breast and ovarian tumor specimens were 1.9, 8.6, and 29, respectively. The IC90 for melanoma was 25.5 μM, a level 20-fold lower than steady state levels achieved clinically. The sensitivity of individual specimens of melanoma correlated with their melanin content (r = 0.63). BSO synergistically enhanced BCNU activity against melanoma cell lines and human tumors. We followed GSH levels, GST enzyme activity, GST isoenzyme profiles and mRNA levels after BSO. BSO (50 μM) treatment for 48 hr resulted in a 95% decrease in ZAZ and M14 melanoma cell line GSH levels, and a 60% decrease in GST enzyme activity. GST-μ. protein and mRNA levels were significantly reduced in both cell lines. GST expression was unaffected. These data suggest that BSO action on melanoma may be related to GSH depletion, diminishing the capacity to scavenge toxic metabolites produced during melanin synthesis. We report here for the first time that BSO enhancement of alkylator action may be related in part to down regulation of GST. BSO may be a clinically useful adjunct in the treatment of malignant melanoma.  相似文献   

4.
The inhibition of glutathione (GSH) synthesis by -buthionine-SR-sulfoximine (BSO) causes aggravation of hepatotoxicity of paraquat (PQ), an oxidative-stress inducing substance, in mice. On the other hand, synthesis of metallothionein (MT), a cysteine-rich protein having radical scavenging activity, is induced by PQ, and the induction by PQ is significantly enhanced by pretreatment of mice with BSO. The purpose of present study is to examine whether generation of reactive oxygens is involved in the induction of MT synthesis by PQ under inhibition of GSH synthesis. Administration of PQ to BSO-pretreated mice increased hepatic lipid peroxidation and frequency of DNA single strand breakage followed by manifestation of the liver injury and induction of MT synthesis. Both vitamin E and deferoxamine prevented MT induction as well as lipid peroxidation in the liver of mice caused by administration of BSO and PQ. In cultured colon 26 cells, both cytotoxicity and the increase in MT mRNA level caused by PQ were significantly enhanced by pretreatment with BSO. Facilitation of PQ-induced reactive oxygen generation was also observed by BSO treatment. These results suggest that reactive oxygens generated by PQ under inhibition of GSH synthesis may stimulate MT synthesis. GSH depletion markedly increased reactive oxygen generation induced by PQ, probably due to the reduced cellular capability to remove the radical species produced.  相似文献   

5.
Side-stream cigarette smoke (SSCS), a major component of secondhand smoke, induces reactive oxygen species, which promote oxidative damage in tissues and organs. Inflammatory cytokines play an important role in the pathogenesis of atherosclerosis and heart failure. The present 4-month study examined the effect of various chronic SSCS exposure levels on splenic inflammatory cytokine secretion, heart contractile function, and pathology at 60- and 120-min per day, 5 days per week, for a total of 16 weeks. Tissue vitamin E level and lipid peroxide production also were tested to estimate the oxidative stress. The study found that the pro-inflammatory cytokines, interleukin (IL)-6, tumor necrosis factor (TNF)-alpha, and IL-1beta, significantly increased in 120-min SSCS-exposed mice. Decreased stroke volume and increased peripheral arterial resistance were observed in mice exposed to 120-min SSCS per day. Heart pathology was only found in 120-min SSCS-exposed mice. Cardiac and hepatic antioxidant vitamin E levels were decreased as a result of oxidative stress. Hepatic lipid peroxides were increased upon 60-min SSCS exposure. The data also demonstrated that the cardiac alpha-tocopherol level has a strong correlation with stroke volume; splenic IL-1beta has a strong negative correlation with stroke volume; splenic TNF-alpha has a very strong negative correlation with stroke volume. In conclusion, SSCS exposure induced systemic inflammatory responses. SSCS exposure also accentuated systemic lipid peroxidation with depletion of cardiac and hepatic antioxidant vitamin E level. Finally, SSCS exposure at 120 min per day decreased stroke volume and increased vascular resistance. Systemic IL-1beta and TNF-alpha production are responsible for heart contractile dysfunction. Free radicals may be responsible for the progression to heart contractile dysfunction induced, in part, by SSCS. Oxidized lipoprotein could contribute to the vascular functional changes. Exploring the mechanism of vascular dysfunction in mice is warranted. A more precise quantification of the smoking exposure dose in mice needs to be determined as well.  相似文献   

6.
  • 1.1. The effect of depletion of glutathione (GSH) by dl-buthionine-S,R-sulfoximine (BSO) on lipid peroxidation in rats acutely treated with ethanol was investigated.
  • 2.2. BSO pretreatment has not been found to potentiate an increase in liver, brain and erythrocyte lipid peroxide levels.
  相似文献   

7.
Glutathione (GSH) depletion to approximately equal to 5% of control for 48 h or longer by 0.05 mM L-buthionine sulfoximine (BSO) led to appreciable toxicity for the 66 murine mammary carcinoma cells growing in vitro [L.A. Dethlefsen et al., Int. J. Radiat. Oncol. Biol. Phys. 12, 1157-1160 (1986)]. Such toxicity in normal, proliferating cells in vivo would be undesirable. Thus the toxic effects after acute GSH depletion to approximately equal to 5% of control by BSO plus dimethylfumarate (DMF) were evaluated in these same 66 cells to determine if this anti-proliferative effect could be minimized. Two hours of 0.025 mM DMF reduced GSH to 45% of control, while 6 h of 0.05 mM BSO reduced it to 16%. However, BSO (6 h) plus DMF (2 h) and BSO (24 h) plus DMF (2 h) reduced GSH to 4 and 2%, respectively. The incorporation (15-min pulses) of radioactive precursors into protein and RNA were unaffected by these treatment protocols. In contrast, cell growth was only modestly affected, but the incorporation of [3H]thymidine into DNA was reduced to 64% of control by the BSO (24 h) plus DMF (2 h) protocol even though it was unaffected by the BSO (6 h) plus DMF (2 h) treatment. The cellular plating efficiencies from both protocols were reduced to approximately equal to 75% of control cells. However, the aerobic radiation response, as measured by cell survival, was not modified at doses of either 4.0 or 8.0 Gy. The growth rates of treated cultures, after drug removal, quickly returned to control rates and the resynthesis of GSH in cells from both protocols was also rapid. The GSH levels after either protocol were slightly above control by 12 h after drug removal, dramatically over control (approximately equal to 200%) by 24 h, and back to normal by 48 h. Thus even a relatively short treatment with BSO and DMF resulting in a GSH depletion to 2-5% of control had a marked effect on DNA synthesis and plating efficiency and a modest effect on cellular growth. One cannot rule out a direct effect of the drugs, but presumably the antiproliferative effects are due to a depletion of nuclear GSH with the subsequent inhibition of the GSH/glutaredoxin-mediated conversion of ribonucleotides to deoxyribonucleotides. However, even after extended treatment, upon drug removal, GSH was rapidly resynthesized and cellular DNA synthesis and growth quickly resumed.  相似文献   

8.
Mitochondrial glutathione depletion by glutamine in growing tumor cells   总被引:3,自引:0,他引:3  
The effect of L-glutamine (Gln) on mitochondrial glutathione (mtGSH) levels in tumor cells was studied in vivo in Ehrlich ascites tumor (EAT)-bearing mice. Tumor growth was similar in mice fed a Gln-enriched diet (GED; where 30% of the total dietary nitrogen was from Gln) or a nutritionally complete elemental diet (SD). As compared with non-tumor-bearing mice, tumor growth caused a decrease of blood Gln levels in mice fed an SD but not in those fed a GED. Tumor cells in mice fed a GED showed higher glutaminase and lower Gln synthetase activities than did cells isolated from mice fed an SD. Cytosolic glutamate concentration was 2-fold higher in tumor cells from mice fed a GED ( approximately 4 mM) than in those fed an SD. This increase in glutamate content inhibited GSH uptake by tumor mitochondria and led to a selective depletion of mitochondrial GSH (mtGSH) content (not found in mitochondria of normal cells such as lymphocytes or hepatocytes) to approximately 57% of the level found in tumor mitochondria of mice fed an SD. In tumor cells of mice fed a GED, 6-diazo-5-norleucine- or L-glutamate-gamma-hydrazine-induced inhibition of glutaminase activity decreased cytosolic glutamate content and restored GSH uptake by mitochondria to the rate found in EAT cells of mice fed an SD. The partial loss of mtGSH elicited by Gln did not affect generation of reactive oxygen intermediates (ROIs) or mitochondrial functions (e.g., intracellular peroxide levels, O(2)(-)(*) generation, mitochondrial membrane potential, mitochondrial size, adenosine triphosphate and adenosine diphosphate contents, and oxygen consumption were found similar in tumor cells isolated from mice fed an SD or a GED); however, mitochondrial production ROIs upon TNF-alpha stimulation was increased. Our results demonstrate that glutamate derived from glutamine promotes an inhibition of GSH transport into mitochondria, which may render tumor cells more susceptible to oxidative stress-induced mediators.  相似文献   

9.
To produce phytoalexin, 6-methoxymellein (6-MM) was induced in suspension cultures of carrot (Daucus carota) by buthionine sulfoximine (BSO) and CuCl2. Addition of BSO (a specific inhibitor of glutathione [GSH] synthesis) to the cultures lowered the cellular GSH levels. This depletion of GSH was BSO-concentration dependent, and the extent of 6-MM accumulation was dependent on the GSH depletion. The accumulation of 6-MM induced by BSO was suppressed by exogenous GSH. Exogenous H2O2 stimulated the production of 6-MM when added 1 d after BSO treatment, whereas H2O2 added at time zero or on the 4th d of BSO treatment did not. Moreover, a synergistic effect of simultaneous addition of BSO and CuCl2 was observed. These results suggest that active oxygen species may be involved in the triggering of 6-MM synthesis.  相似文献   

10.
May MJ  Leaver CJ 《Plant physiology》1993,103(2):621-627
A system based on Arabidopsis thaliana suspension cultures was established for the analysis of glutathione (GSH) synthesis in the presence of hydrogen peroxide. Mild oxidative stress was induced by use of the catalase inhibitor, aminotriazole, and its development was monitored by measurement of the oxidative inactivation of aconitase. Addition of 2 mM aminotriazole resulted in a 25% decrease in activity of aconitase over 4 h. During the subsequent 10 h, no further decrease in aconitase activity was measured despite a sustained inhibition of catalase. In combination with our failure to detect significant increases in the level of lipid peroxidation, another marker indicative of oxidative injury, these data suggest that although hydrogen peroxide initially leaked into the cytosol, its accumulation was limited by a cytosolic catalase-independent mechanism. A 4-fold increase in the level of GSH, which was almost exclusively in the reduced form, was observed under the same treatment. To determine to what extent this increase in reduced GSH played a role in limiting the accumulation of hydrogen peroxide in the cytosol, we inhibited GSH synthesis with buthionine sulfoximine (BSO), a specific inhibitor of [gamma]-glutamylcysteine synthetase. No significant oxidative injury was detected as a result of treatment with 50 [mu]M BSO alone, and furthermore, this treatment had no effect on cell viability, However, addition of 2 mM aminotriazole to cells preincubated with 50 [mu]M BSO for 15 h led to a rapid loss of aconitase activity (75% in 4 h), and significant accumulation of products of lipid peroxidation. Within 72 h, cell viability was lost completely. After removal of BSO from the growth medium, GSH levels recovered to normal over a period of 20 h. Addition of 2 mM aminotriazole to cells at different time points during this recovery period demonstrated a strong correlation between the level of reduced GSH and the degree of protection against oxidative injury. These data strongly suggest that the induction of GSH synthesis by an oxidative stimulus plays a crucial role in determining the susceptibility of cells to oxidative stress.  相似文献   

11.
To enhance the efficacy of fenretinide (4HPR)-induced reactive oxygen species (ROS) in neuroblastoma, 4HPR was combined with buthionine sulfoximine (BSO), an inhibitor of glutathione (GSH) synthesis, in neuroblastoma cell lines and spheroids, the latter being a three-dimensional tumor model. 4HPR exposure (2.5-10 μM, 24 h) resulted in ROS induction (114-633%) and increased GSH levels (68-120%). A GSH depletion of 80% of basal levels was observed in the presence of BSO (25-100 μM, 24 h). The 4HPR-BSO combination resulted in slightly increased ROS levels (1.1- to 1.3-fold) accompanied by an increase in cytotoxicity (110-150%) compared to 4HPR treatment alone. A correlation was observed between the ROS-inducing capacity of each cell line and the increase in cytotoxicity induced by 4HPR-BSO compared to 4HPR. No significant correlation between baseline antioxidant levels and sensitivity to 4HPR or BSO was observed. In spheroids, 4HPR-BSO induced a strong synergistic growth retardation and induction of apoptosis. Our data show that BSO increased the cytotoxic effects of 4HPR in neuroblastoma monolayers and spheroids in ROS-producing cell lines. This indicates that the 4HPR-BSO combination might be a promising new strategy in the treatment of neuroblastoma.  相似文献   

12.
This study describes the effect of DL-buthionine-[S,R]-sulfoximine (BSO) on the glutathione equivalents (GSH-eq = GSH + 2 GSSG) of goldfish. BSO causes depletion of cellular GSH by inhibiting gamma-glutamylcysteine synthetase, a key enzyme of the GSH biosynthesis pathway. BSO at 1,000 and 1,500 mg/kg was effective in promoting 50 and 80% depletion of GSH-eq from brain and liver, respectively, within 3 days. Lower doses of BSO failed to effectively promote hepatic GSH-eq depletion. Moreover, no evident toxic side-effects were observed (including hepatic lipid peroxidation and free radical-mediated oxidation of proteins) in goldfish in response to BSO intraperitoneal injections. We conclude that BSO can be used to deplete GSH-eq in goldfish liver and brain, but attention should be paid to species-specific variations in BSO effects.  相似文献   

13.
We investigated the effects of buthionine sulfoximine (BSO)-mediated glutathione (GSH) depletion on the antitumor activity in Balb/c mice produced by four disulfide derivatives of 6-TG and 6-MP. Initial studies indicated that 14 h after BSO (5 mmol/kg) injections, tumor GSH levels were maximally depleted, while normal tissue GSH levels had returned to near control levels. Tumor growth delays and growth rates were compared for groups of animals receiving disulfides I-IV with and without BSO administration 14 h previous. Treatments with BSO alone produced no delay or growth rate differences from the control. Compounds II or III administered in the presence and absence of BSO also produced no delay or growth rate differences from control. Compound I (10 mg/kg) alone showed a delay of 5.2 days and a growth rate significantly slower than that of control (p = 0.05). In combination with BSO the effects were not enhanced. Compound IV (50 mg/kg) also produced delays in 2 separate trials (3.1 and 4.8 days) and significantly slower growth rates on each occasion compared to the control (p = 0.05). The growth rates were not significantly lowered in the presence of BSO. Administration of two doses of IV, 4 days apart, produced a delay (4.9 days) similar to that seen with a single dose. It produced 2 cures and was also more toxic, causing 3 deaths. Two doses of IV in combination with BSO pretreatment had a greater delay (16.0 days) and a significantly longer growth rate (p = 0.05) than two doses of IV alone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Hong H  Lu Y  Ji ZN  Liu GQ 《Journal of neurochemistry》2006,98(5):1465-1473
Glutathione (GSH) depletion has been implicated in the pathogenesis of neurological diseases. During GSH depletion, cells of the blood-brain barrier (BBB) are subjected to chronic oxidative stress. In this study, we investigated the effect of such stress, produced with the GSH synthesis inhibitor l-buthionine-(S,R)-sulfoximine (BSO), on expression of P-glycoprotein (Pgp) in primary cultured rat brain microvessel endothelial cells that comprise the blood-brain barrier (BBB). Application of BSO to cell monolayers at concentrations up to 800 microm caused increases in expression of Pgp. Concentrations >or= 400 microm BSO decreased cell viability. Application of 200 microm BSO caused a significant increase in Pgp function activity, as assessed by rhodamine 123 (Rh123) accumulation experiments. At this concentration, BSO produced time-dependent decreases in levels of intracellular GSH and increases in levels of intracellular reactive oxygen species (iROS). The increases were also observed within 48 h following BSO treatment in mdr1a and mdr1b mRNA. Exposure of cells to BSO for 24 h produced maximal effects in the accumulation of iROS, and in expression and function of Pgp. The ROS scavenger N-acetylcysteine prevented ROS generation and attenuated the changes of both expression and activity of Pgp induced by BSO. Therefore, the transport of Pgp substrates may be affected by changing Pgp expression under conditions of chronic oxidative stress induced by GSH depletion.  相似文献   

15.
Various drugs and chemicals can cause a glutathione (GSH) depletion in the liver. Moreover, nitric oxide (NO) can be generated in response to physiological and pathological situations such as inflammation. The aim of this study was to estimate oxidative stress when primary rat hepatocytes were exposed to GSH depletion after NO production. For this purpose, cells were preincubated with lipopolysaccharide (LPS) and gamma-interferon (IFN) for 18 h in order to induce NO production by NO synthase and then L-buthionine sulfoximine (BSO), an inhibitor of GSH synthesis, was added for 5 h. In hepatocyte cultures preincubated with LPS and IFN before BSO addition, an increase in lipid peroxidation was noted. In those cells, an elevation of iron-bound NO and a decrease in free NO led us to suggest the involvement of low-molecular-weight iron (LMW iron) in the enhancement of oxidative stress. Indeed, addition of deferiprone, a chelator of LMW iron, reduced iron-bound NO levels and the extent of oxidative stress. Moreover, an important elevation of LMW iron levels was also observed. As both, N-acetylcysteine, a GSH precursor, and N(G)-monomethyl-L-arginine, a NO synthase inhibitor, totally inhibited the elevation of LMW iron and oxidative stress, a cooperative role could be attributed to NO production and GSH depletion.  相似文献   

16.
Zechmann B  Müller M  Zellnig G 《Protoplasma》2006,227(2-4):197-209
The intracellular effects of GSH (reduced glutathione) and BSO (buthionine sulfoximine) treatment on glutathione content were investigated with immunogold labeling in individual cellular compartments of Cucurbita pepo L. seedlings. Generally, GSH treatment led to increased levels of glutathione in roots and leaves (up to 3.5-fold in nuclei), whereas BSO treatment significantly decreased glutathione content in all organs. Transmission electron microscopy revealed that glutathione levels in mitochondria, which showed the highest glutathione labeling density of all compartments, remained generally unaffected by both treatments. Since glutathione within mitochondria is involved in the regulation of cell death, these results indicate that high and stable levels of glutathione in mitochondria play an important role in cell survival strategies. BSO treatment significantly decreased glutathione levels (1) in roots by about 78% in plastids and 60.8% in the cytosol and (2) in cotyledons by about 55% in the cytosol and 38.6% in plastids. After a short recovery period, glutathione levels were significantly increased in plastids and the cytosol of root tip cells (up to 3.7-fold) and back to control values in cotyledons. These results indicate that plastids, either alone or together with the cytosol, are the main center of glutathione synthesis in leaves as well as in roots. After GSH treatment for 24 h, severe ultrastructural damage related to increased levels of glutathione was found in roots, in all organelles except mitochondria. Possible negative effects of GSH treatment leading to the observed ultrastructural damage are discussed.  相似文献   

17.
In the present study the influence of pretreatment with various GSH depletors such as buthionine sulfoximine (BSO) and diethylmaleate (DEM) was investigated in rats following cerebral postischemic reperfusion. Moreover, the effect of diethyldithiocarbamic acid (DDC), inhibitor of endogenous Cu,Zn-SOD, was evaluated. A significant depletion (40% of control value) of GSH levels was observed 24 h after DEM administration; after 48 h the value reached control levels. BSO showed maximal GSH depletion (59%) 24 h after administration and it was constant for almost 48 h. DDC administration caused a marked decrease (60%) of Cu,Zn-SOD activity 4 h after the injection and induced a marked decrease in percentage of survival with respect to control (untreated, ischemic) rats, when administered 4 h before ischemia. BSO and DEM prolonged the survival time of animals when administered 24 h before ischemia. This last paradoxical effect is unclear at present, but it might be due to an influence on glutamate cascade.  相似文献   

18.
Treatment with the anticancer drug cyclophosphamide (CPA) destroys ovarian follicles. The active metabolites of CPA are detoxified by conjugation with glutathione (GSH). We tested the hypotheses that CPA causes apoptosis in ovarian follicles and that suppression of ovarian GSH synthesis before CPA administration enhances CPA-induced apoptosis. Proestrous rats were given two injections, 2 h apart, with (1) saline, then saline; (2) saline, then 50 mg/kg CPA; (3) saline, then 300 mg/kg CPA; or (4) 5 mmol/kg buthionine sulfoximine (BSO) to inhibit glutamate cysteine ligase (GCL), the rate-limiting enzyme in GSH synthesis, and then 50 mg/kg CPA. Statistically significantly increased DNA fragmentation by agarose gel electrophoresis and granulosa cell apoptosis by TUNEL were observed in the CPA-treated ovaries 24 h after the second injection, but BSO did not enhance the effect of 50 mg/kg CPA. We next tested the hypothesis that CPA depresses ovarian GSH concentration and expression of the rate-limiting enzyme in GSH synthesis, GCL. Proestrous rats were injected with 300 or 50 mg/kg CPA or vehicle and were sacrificed 8 or 24 h later. After CPA treatment, ovarian and hepatic GSH levels decreased significantly, and ovarian GCL subunit mRNA levels increased significantly. There were no significant changes in GCL subunit protein levels. Finally, we tested the hypothesis that GSH depletion causes apoptosis in ovarian follicles. Proestrous or estrous rats were injected with 5 mmol/kg BSO or saline at 0700 and 1900 h. There was a significant increase in the percentage of histologically atretic follicles and a nonsignificant increase in the percentage of apoptotic, TUNEL-positive follicles 24 h after onset of BSO treatment. Our results demonstrate that CPA destroys ovarian follicles by inducing granulosa cell apoptosis and that CPA treatment causes a decline in ovarian GSH levels. More pronounced GSH suppression achieved after BSO treatment did not cause a statistically significant increase in follicular apoptosis. Thus, GSH depletion does not seem to be the mechanism by which CPA causes follicular apoptosis.  相似文献   

19.
We have determined the effect of extended glutathione (GSH) depletion on cis-diamminedichloroplatinum(II) (DDP) cytotoxicity in parent and DDP-resistant human ovarian carcinoma cells. Cells were exposed to 50 microM buthionine sulfoximine (BSO) for 48 h and exposed to DDP for the last 24 h of this time. This treatment protocol sensitized 2008 cells to DDP. The dose modification factor (DMF) defined as IC50 control cells/IC50 GSH depleted cells was 1.6 +/- 0.5 (N = 9). DDP-resistant cells selected by acute, high dose DDP exposure were also sensitized by this treatment; the DMF in the 3-6-fold resistant 2008/DDP cells was 2.4 +/- 1.2 (N = 9). The sensitization was not significantly greater in the resistant cells than in the parent cells (P greater than 0.05). When the rebound of GSH following BSO exposure was reexamined, the GSH levels were found to rise rapidly following trypsinizing and plating. BSO treatment following DDP exposure had no effect on DDP cytotoxicity in 2008 and 2008/DDP cells. These results indicate that simply depleting GSH prior to DDP exposure is not sufficient for sensitizing these cells to DDP. In contrast to the potentiation of nitrogen mustard cytotoxicity, exposure to GSH depletion must be maintained during DDP treatment for enhancement of DDP cytotoxicity to occur.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号