共查询到20条相似文献,搜索用时 15 毫秒
1.
Binding activity of a putative central neurotransmitter, L-glutamic acid, was examined in the supernatant preparations solubilized from rat retinal membranes by Nonidet P-40. [3H]Glutamate binding activity increased linearly with increasing concentrations of the solubilized proteins up to 15 micrograms. The binding activity reached an equilibrium within 10 min at 2 degrees C, while increasing with incubation time up to 60 min at 30 degrees C. Addition of an excess of nonradioactive glutamate rapidly decreased the activity at 30 degrees C. Scatchard analysis revealed that the solubilized retinal binding activity consisted of a single component with a KD of 0.25 microM and a Bmax of 57.4 pmol/mg protein. The solubilized binding activity exhibited a stereospecificity and a structure selectivity to L-glutamate, and was abolished by quisqualate, L-glutamate diethyl ester, and DL-2-amino-3-phosphonopropionate. None of the other agonists and antagonists for the central excitatory amino acid receptors affected the binding activity. Reduction of incubation temperature from 30 degrees C to 2 degrees C resulted in a drastic attenuation of the binding activity due to decrement of the number of the apparent binding sites. Cation-exchange column chromatography revealed that unidentified radioactive material was in fact formed during the incubation of [3H]glutamate with the retinal preparations at 30 degrees C. These results suggest that retinal [3H]glutamate binding activity may be derived at least in part from the quisqualate-sensitive membranous enzyme with a stereospecific and structure-selective high affinity for the central neurotransmitter. 相似文献
2.
Perinatal Hypoxia-Ischemia Disrupts Striatal High-Affinity [3 H]Glutamate Uptake into Synaptosomes 总被引:4,自引:0,他引:4
Faye S. Silverstein Karen Buchanan Michael V. Johnston 《Journal of neurochemistry》1986,47(5):1614-1619
We examined the impact of hypoxia-ischemia on high-affinity [3H]glutamate uptake into a synaptosomal fraction prepared from immature rat corpus striatum. In 7-day-old pups the right carotid artery was ligated, and pups were exposed to 8% oxygen for 0, 0.5, 1, or 2.5 h, and allowed to recover for up to 24 h before they were killed. High-affinity glutamate uptakes in striatal synaptosomes derived from tissue ipsilateral and contralateral to ligation were compared. After 1 h of hypoxia plus ischemia, high-affinity glutamate uptake in the striatum was reduced by 54 +/- 13% compared with values from the opposite (nonischemic) side of the brain (p less than 0.01, t test versus ligates not exposed to hypoxia). There were similar declines after 2.5 h of hypoxia-ischemia. Activity remained low after a 1 h recovery period in room air, but after 24 h of recovery, high-affinity glutamate uptake was equal bilaterally. Kinetic analysis revealed that loss of activity could be attributed primarily to a 40% reduction in the number of uptake sites. Hypoxia alone had no effect on high-affinity glutamate uptake although it reduced synaptosomal uptake of [3H]3,4-dihydroxyphenylethylamine. Addition of 1 mg/ml of bovine serum albumin to the incubation medium preferentially stimulated high-affinity glutamate uptake in hypoxic-ischemic brain compared with its effects in normal tissue. These studies demonstrate that hypoxia-ischemia reversibly inhibits high-affinity glutamate uptake and this occurs earlier than the time required to produce neuronal damage in the model. 相似文献
3.
Abstract: γ-Aminobutyric acid (GABA) is thought to be a neurotransmitter in the vetebrate retina. We studied the voltage and Ca2+ dependency of the process of release of [3H]GABA from the retina of the teleost Eugenes plumieri, using a microsuperfusion technique. Two depolarizing agents, veratridine and high potassium, produced a concentration-dependent release of [3H]GABA. The veratridine effect was inhibited in Na+-free solution, but was not affected by 1 μM tetrodotoxin. A substantial inhibition (about 75%) of the veratridine-and potassium-stimulated release of [3H] GABA occurred in Ca2+-free medium. Inhibitors of the Ca2+ channel, such as Mg2+(20 mM), La3+ (0.1 mM), and methoxy-verapamil (4 μM-0.4 mM), inhibited the veratridine-and K+-stimulated release. However, Co2+ and Cd2+ caused a potentiation and no change of the K+-and veratridine-stimulated release, respectively. This release process is apparently specific, since both depolarizing agents were unable to release [3H]methionine, a nontransmitter amino acid, under the same experimental conditions. Autoradio-graphic studies with [3H]GABA, using the same incubation conditions as for the release experiments, showed a high density of silver grains over the horizontal cells with almost no accumulation by amacrine cells and Muller cells. β-Alanine and nipecotic acid were used as two relative specific inhibitors of the glial and neuronal GABA uptake mechanisms, respectively. Only a small heteroexchange with [3H]GABA was found with β-alanine, and no inhibition of the subsequent veratridine-stimulated release. On the other hand, nipecotic acid produced a strong heteroexchange with [3H]GABA and lacked the capacity to induce the veratridine-stimulated release of [3H]GABA. These results suggest a voltage-and Ca2+-dependent neuronal release of [3H]GABA from retina. 相似文献
4.
Abstract: Serotonin (5-hydroxytryptamine, 5-HT; 0.5 μM and above) stimulated the release of [3 H]dopamine ([3 H]DA) from particulate fractions of the carp ( Cyprinus carpio ) retina. The 5-HT effect was dose- and Ca2+ -dependent, and was structurally specific. A similar response was not elicited by the other indoles (5,6-dihydroxytryptamine, 5,7-dihydroxytryptamine, 5-hydroxytrypto-phan, or 5-hydroxyindoleacetic acid) examined. An increase in [3 H]DA release was elicited by addition of 5-HT agonists (5-methoxytryptamine, 5-methoxy- N,N- dimethyltryptamine, and tryptamine), but not antagonized by three 5-HT antagonists (metergolin, methysergide, and spiperone). Either DA alone or noradrenaline (0.5 m M ) produced a large increase in [3 H]DA release from the particulate fractions, but this action was Ca2+ -independent. Further, no significant release of [3 H]γ-aminobutyric acid could be evoked by 5-HT (0.5 mM) under similar experimental conditions. Taken together, the present data suggest that 5-HT stimulates [3 H]DA release from the fish retina through a specific receptor-mediated mechanism on dopaminergic terminals, but not through an exchange or nonspecific phenomenon. 相似文献
5.
Abstract: We tested the hypothesis that blockade of NMDA glutamate receptors in brain enhances dopamine turnover. We blocked this class of glutamate receptors in the rat brain in vivo with dizocilpine (MK-801) and measured the accumulation of radiolabeled DOPA and its metabolites as functions of time after intravenous bolus injection. Using the time courses of the accumulated metabolites, we calculated the turnover constants of enzymes mediating dopamine synthesis and catabolism. Dizocilpine treatment for 8 days enhanced the rates of DOPA decarboxylation and dopamine oxidation (monoamine oxidation) 4- and 16-fold, respectively, in neostriatum and 10- and 3-fold, respectively, in frontal cortex. The findings are not inconsistent with the hypothesis that the psychotomimetic properties of dizocilpine may be the manifestation of denervation hypersensitivity linked to activation of key enzymes of dopamine turnover in striatum. 相似文献
6.
Abstract: [3 H]Glutamate uptake and binding studies were performed in the visual cortices, lateral geniculate nuclei (LGN), and superior colliculi of 3-month-old rats with one eyelid surgically closed from postnatal day 10 (monocular deprivation). Uptake and binding were highest in the lateral geniculate nucleus followed by the visual cortex (69% and 15%, respectively compared to LGN values) and the superior colliculus (32% and 59% of LGN values). Monocular deprivation did not affect [3 H]glutamate uptake in any of the visual regions examined. However, a 46% decrease in [3 H]glutamate binding in the lateral geniculate nucleus ipsilateral to the sutured eye was detected. Binding levels in other regions were not affected. 相似文献
7.
The binding of L-[3H]glutamate to an isolated membrane preparation from crayfish tail muscle has been studied. The muscle homogenate was osmotically shocked, frozen and thawed, and thoroughly washed before incubation with L-[3H]glutamate. The preparation showed high specific binding of L-glutamate with a KD of 0.12 microM and Bmax of 4.7 pmol/mg protein measured in Tris/HCl pH 7.3 and at 4 degrees C. Nonspecific binding was 5-10% of total binding. The glutamate binding was highly stereospecific [K0.5 (D-glutamate), 270 microM] and showed a high degree of discrimination between L-glutamate and L-aspartate [K0.5 (L-aspartate), 54 microM]. In mammalian CNS preparations potent agonists of L-glutamate such as kainate and N-methyl-D-aspartate had no effect at 1 mM, and quisqualate was a weak inhibitor of L-glutamate binding [K0.5 (quisqualate), 162 microM]. Ibotenate was the most potent inhibitor [K0.5 (ibotenate), 0.27 microM], and various esters of L-glutamate were of intermediate potency as displacers of L-[3H]glutamate binding (K0.5 values from 6 to 60 microM). The glutamate binding site from crayfish muscle is clearly different from any of the subclasses of glutamate receptors in mammalian CNS. A possible physiological function of the binding site is a postsynaptic receptor for glutamate, either an extra-junctional or a junctional receptor. 相似文献
8.
Jang-Ho J. Cha J. Timothy Greenamyre Elsebet Ø. Nielsen John B. Penney Anne B. Young 《Journal of neurochemistry》1988,51(2):469-478
Quisqualate, a glutamate analogue, displaced L-[3H]glutamate binding in a biphasic manner, corresponding to "high-affinity" and "low-affinity" binding sites. High-affinity quisqualate sites were termed "quisqualate-sensitive L-[3H]glutamate" binding sites. Quisqualate-sensitive L-[3H]glutamate binding was regionally distributed, with the highest levels present in the cerebellar molecular layer. This binding was stimulated by millimolar concentrations of chloride and calcium. The stimulatory effects of calcium required the presence of chloride ions, whereas chloride's stimulatory effects did not require calcium. All of the L-[3H]glutamate binding stimulated by chloride/calcium was quisqualate sensitive and only weakly displaced by N-methyl-D-aspartate, L-aspartate, or kainate. At high concentrations (1 mM), the anion blockers 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid both reduced, by 41 and 43%, respectively, the stimulatory effects of chloride. At concentrations of 100 microM, kynurenate, L-aspartate, (RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and L-2-amino-4-phosphonobutyric acid (L-APB) failed to displace quisqualate-sensitive L-[3H]glutamate binding in the cerebellar molecular layer. In the presence of KSCN, however, 100 microM AMPA displaced 44% of binding. Quisqualate-sensitive L-[3H]glutamate binding was not sensitive to freezing, and, in contrast to other chloride- and calcium-dependent L-[3H]glutamate binding sites that have been reported, quisqualate-sensitive binding observed by autoradiography was enhanced at 4 degrees C compared with 37 degrees C. Quisqualate-sensitive L-[3H]glutamate binding likely represents binding to the subclass of postsynaptic neuronal glutamate receptors known as quisqualate receptors, rather than binding to previously described APB receptors, chloride-driven sequestration into vesicles, or binding to astrocytic membrane binding sites. 相似文献
9.
10.
In dissociated cell cultures of fetal rat ventral mesencephalon preloaded with [3H]dopamine, glutamate (10(-5)-10(-3) M) stimulated the release of [3H]dopamine. Glutamate stimulation of [3H]dopamine release was Ca2+ dependent and was blocked by the glutamate antagonist, cis-2,3-piperidine dicarboxylic acid. Glutamate stimulation of [3H]dopamine release was not due to glutamate neurotoxicity because (1) glutamate did not cause release of a cytosolic marker, lactate dehydrogenase, and (2) preincubation of cultures with glutamate did not impair subsequent ability of the cells to take up or release [3H]dopamine. Thus, these dissociated cell cultures appear to provide a good model system to characterize glutamate stimulation of dopamine release. Release of [3H]dopamine from these cultures was stimulated by veratridine, an activator of voltage-sensitive Na+ channels, and this stimulation was blocked by tetrodotoxin. However, glutamate-stimulated [3H]dopamine release was not blocked by tetrodotoxin or Zn2+. Substitution of NaCl in the extracellular medium by sucrose, LiCl, or Na2SO4 had no effect on glutamate stimulation of [3H]dopamine release; however, release was inhibited when NaCl was replaced by choline chloride or N-methyl-D-glucamine HCl. Glutamate-stimulated [3H]-dopamine release was well maintained (60-82% of control) in the presence of Co2+, which blocks Ca2+ action potentials, and was unaffected by the local anesthetic, lidocaine. These results are discussed in terms of the receptor and ionic mechanisms involved in the stimulation of dopamine release by excitatory amino acids. 相似文献
11.
N-Acetylaspartylglutamate (NAAG) is a nervous system-specific dipeptide that is released from retinal neurons on depolarization. In the present study, extracellular metabolism, uptake, and release of [3H]NAAG were examined in the chick retina. After in vitro incubation with NAAG radiolabeled in the glutamate moiety, [3H]glutamate and [3H]NAAG increased in retinal cells through time- and temperature-dependent processes, which were reduced in the absence of extracellular sodium. Coincubation of cells with [3H]NAAG and aspartylglutamate or phosphate resulted in the decreased extracellular appearance of [3H]glutamate, produced by hydrolysis of radiolabeled NAAG, and a consequent increased availability of [3H]NAAG for transport into the retinal cells. When this tissue was incubated with radiolabeled NAAG, glutamate, glutamine, or aspartate under similar conditions, only [3H]NAAG served as a significant source for the appearance of intracellular [3H]NAAG. These data support the conclusion that [3H]NAAG can be transported into retinal cells, whereas [3H]glutamate transport is the predominant process after release of this amino acid from NAAG by extracellular peptidase activities. After uptake, [3H]NAAG entered a cellular pool, from which the peptide was secreted under depolarizing conditions and in a calcium-dependent manner. 相似文献
12.
Abstract The binding of [3H]aspartate and [3H]glutamate to membranes prepared from frozen human cerebellar cortex was studied. The binding sites differed in their relative proportions, their inhibition by amino acids and analogues, and by the effects of cations. A proportion (about 30%) of [3H]glutamate binding was to sites similar to those labelled by [3H]aspartate. An additional component of [3H]gluta-mate binding (about 50%) was displaced by quisqualate and aL-amino-3-hydroxy-5-methylisoxazole-4-propionic acid, and may represent a “quisqualate-preferring” receptor. Neither N-methyl-d-aspartic acid-sensitive nor dl-2-amino-4-phosphonobutyric acid-sensitive [3H]glutamate binding was detected. 相似文献
13.
The specific binding of L-[3H]glutamate was investigated in the presence and the absence of sodium ions in freshly prepared membranes from rat hippocampus. Sodium ions were found to have a biphasic effect; low concentrations induced a marked inhibition of the binding (in the range 0.5-5.0 mM), whereas higher concentrations resulted in a dose-dependent stimulation of binding (in the range 10-150 mM). These results permit the discrimination of two binding sites in hippocampal membranes. Both Na+-independent and Na+-dependent binding sites were saturable, exhibiting dissociation constants at 30 degrees C of 750 nM and 2.4 microM, respectively, with Hill coefficients not significantly different from unity, and maximal number of sites of 6.5 and 75 pmol/mg protein, respectively. [3H]Glutamate binding to both sites reached equilibrium between 5 and 10 min and was reversible. The relative potencies of a wide range of compounds, with known pharmacological activities, to inhibit [3H]glutamate binding were very different for the Na+-independent and Na+-dependent binding and suggested that the former sites were related to post-synaptic glutamate receptors, whereas the latter were related to high-affinity uptake sites. This conclusion was also supported by the considerable variation in the regional distribution of the Na+-dependent binding site, which paralleled that of the high-affinity glutamate uptake; the Na+-independent binding exhibited less regional variation. 相似文献
14.
†‡§Amy B. Garlin †‡§Amy D. Sinor †‡§Jeroo D. Sinor †‡§Sandy H. Jee †§Judith B. Grinspan †‡§ Michael B. Robinson 《Journal of neurochemistry》1995,64(6):2572-2580
Abstract: Pharmacological and molecular biological studies provide evidence for subtypes of sodium-dependent high-affinity glutamate (Glu) transport in the mammalian CNS. At least some of these transporters appear to be selectively expressed in different brain regions or by different cell types. In the present study, the properties of l -[3H]Glu transport were characterized using astrocyte-enriched cultures prepared from cerebellum and cortex. In both brain regions, the kinetic data for sodium-dependent transport were consistent with a single site with Km values of 91 ± 17 µM in cortical glial cells and 66 ± 23 µM in cerebellar glial cells. The capacities were 6.1 ± 1.6 nmol/mg of protein/min in cortical glial cells and 8.4 ± 0.9 nmol/mg of protein/min in cerebellar glial cells. The potencies of ~40 excitatory amino acid analogues for inhibition of sodium-dependent transport into glial cells prepared from cortex and cerebellum were examined, including compounds that are selective inhibitors of transport in synaptosomes prepared from either cerebellum or cortex. Of the analogues tested, 14 inhibited transport activity by >50% at 1 mM concentrations. Unlike l -[3H]Glu transport in synaptosomes prepared from cerebellum or cortex, there were no large differences between the potencies of compounds for inhibition of transport measured in glial cells prepared from these two brain regions. With the exception of (2S,1′R,2′R)-2-(carboxycyclopropyl)glycine and l -α-aminoadipate, all of the compounds examined were ~10–200-fold less potent as inhibitors of l -[3H]Glu transport measured in glial cells than as inhibitors of transport measured in synaptosomes prepared from their respective brain regions. The pharmacology of transport measured in these glial cells differs from the reported pharmacology of the cloned Glu transporters, suggesting the existence of additional uncloned Glu transporters or Glu transporter subunits. 相似文献
15.
Richard J. Bridges Manuel Nieto-Sampedro Munaf Kadri Carl W. Cotman 《Journal of neurochemistry》1987,48(6):1709-1715
Membrane fractions prepared from astrocytes grown in culture exhibit a specific binding site for L-[3H]glutamate that is Cl--dependent and Na+-independent. The binding site is a single saturable site with a KD of about 0.5 microM, is inhibited by L-aspartate, L-cysteate, and quisqualate, and is insensitive to kainate, N-methyl-D-aspartate, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate, and 2-amino-4-phosphonobutyrate. The pharmacological characteristics of the binding site indicate that it is distinct from any site previously described in synaptic membrane preparations. Comparisons of ionic requirements, ligand specificity, and inhibitor sensitivities, however, suggest the described binding is the first step in a Cl--dependent high-affinity glutamate uptake system. Such binding studies provide a useful model system in which to investigate the close association between excitatory amino acids, astrocytes, the termination of glutamate's excitatory action by high-affinity uptake, and the excitotoxic action of acidic amino acids in membranes of a single cell type. 相似文献
16.
The effects of Cl- and Ca2+ were studied on the specific binding of L-[3H]glutamate to multiple sites on rat hippocampal synaptic membranes. Quisqualate (5 microM) or DL-2-amino-4-phosphonobutyrate (2-APB) (300 microM) was used to discriminate two previously identified classes of binding sites. Saturation isotherms and displacement curves constructed under different ionic conditions suggested that the effects of Cl- and Ca2+ could best be explained by postulating the existence of three major binding site populations in this preparation rather than two. The binding of L-glutamate to Glu A sites exhibits an absolute dependence on Cl-, and Ca2+ markedly increases the maximum density of these sites. Glu A sites bind quisqualate and 2-APB with relatively high affinity. Cl- (47 mM) more than doubles the maximum density of Glu B sites, but Ca2+ appears to have no effect. Glu B sites can be discriminated from the other classes by their relatively low affinity for quisqualate and 2-APB. There is reason to think that the Glu B population is heterogeneous. The novel Glu C population can be virtually selectively labeled by exposing 2-APB-sensitive binding sites to radioligand in Tris-HOAc buffer with Ca2+. Binding of L-[3H]glutamate to these sites is enhanced by both Cl- and Ca2+, but requires neither ion. Ca2+ appears to increase both the affinity of Glu C sites for L-glutamate and their maximum binding site density. In the presence of Ca2+ and Cl-, Glu C sites bind the radioligand with micromolar affinity (KD approximately 2 microM) and high capacity (Bmax approximately 160 pmol/mg protein).(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
17.
J. Timothy Greenamyre John B. Penney Constance J. D'Amato Anne B. Young 《Journal of neurochemistry》1987,48(2):543-551
Abstract: Glutamate or a related excitatory amino acid is thought to be the major excitatory neurotransmitter of hippocampal afferents, intrinsic neurons, and efferents. We have used an autoradiographic technique to investigate the status of excitatory amino acid receptors in the hippocampal formation of patients dying with dementia of the Alzheimer type (DAT). We examined l-[3 H]glutamate binding to sections from the hippocampal formation of six patients dying of DAT and six patients without DAT and found marked reductions in total [3 H]glutamate binding in all regions of hippocampus and adjacent parahippocampal cortex in DAT brains as compared to controls. When subtypes of excitatory amino acid receptors were assayed, it was found that binding to the N -methyl-d-aspartate (NMDA)-sensitive receptor was reduced by 75–87%, with the greatest loss found in stratum moleculare and stratum pyramidale of CA1. Binding to quisqualate (QA)-sensitive receptors was reduced by 45–69%. There were smaller reductions (21–46%) in GABAA receptors in DAT cases. Muscarinic cholinergic receptors assayed in adjacent sections of hippocampal formation were unchanged in DAT. Benzodiazepine receptors were reduced significantly only in parahippocampal cortex by 44%. These results suggest that glutamatergic neurotransmission within the hippocampal formation is likely to be severely impaired in Alzheimer's disease. Such impairment may account for some of the cognitive decline and memory deficits that characterize DAT. 相似文献
18.
The binding of L-[3H]glutamate to membranes from human temporal cortex was studied in the absence of Na+, Ca2+, and Cl- ions. Pharmacological characterisation revealed that approximately 35% of specific binding at 50 nM L-[3H]glutamate was sensitive to a combination of kainate and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid. The remaining approximately 65% of specific binding was to a single population of sites with a KD of 844 nM and a Bmax of 0.92 pmol/mg protein. The pharmacological characteristics were consistent with an interaction at the N-methyl-D-aspartate subclass of excitatory amino acid receptor. The inclusion of Cl- ions revealed additional glutamate binding; this was sensitive to quisqualate and DL-2-amino-4-phosphonobutyrate, but not to kainate, DL-2-amino-7-phosphonoheptanoate, or alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid. 相似文献
19.
Christine Peterson Jean-Francois Giguere Carl W. Cotman Roger F. Butterworth 《Journal of neurochemistry》1990,55(2):386-390
Excitatory amino acids have been implicated in the pathogenesis of hepatic encephalopathy. In the present study, kainate, quisqualate and N-methyl-D-aspartate (NMDA) subclasses of L-glutamate receptors were measured in adult rat brain by quantitative receptor autoradiography following surgical construction of an end-to-side portacaval anastomosis (PCA). PCA resulted in sustained hyperammonemia and decreased binding of L-glutamate to the NMDA receptor when compared to sham-operated controls. Decreases in binding ranged from 17 to 39% in several regions of cerebral cortex, hippocampus, striatum, and thalamus. Binding to quisqualate and kainate receptor subtypes was not altered. PCA leads to astrocytic changes in brain but does not result in any measurable loss of neuronal integrity. It is therefore proposed that decreased glutamate binding to the NMDA receptor following PCA results from increased extracellular glutamate caused by decreased reuptake into perineuronal astrocytes and a compensatory down-regulation of these receptors. Such changes could be of pathophysiological significance in hepatic encephalopathy. 相似文献
20.
Specific melatonin binding sites were localized in the mammalian retina using the selective radioligand 2-[125I]iodomelatonin. Frozen sections obtained from both pigmented and albino rabbit eyes and albino mouse eyes were incubated with 2-[125I]iodomelatonin in the absence and presence of competing agents. In eyecups from albino rabbits, the highest density of specific 2-[125I]iodomelatonin binding sites was localized over the inner plexiform layer. Approximately 40-60% of the binding was specific, as determined with both the agonist 6-chloromelatonin and the antagonist luzindole. A high density of binding sites was observed over the choroid and retinal pigmented epithelium, but no statistical difference between total and nonspecific binding was detected. Results were similar with eyecups from pigmented rabbits. Albino mice showed a significant extent of 2-[125I]iodomelatonin binding in both the inner plexiform and the outer and inner segment layers. The specific binding of 2-[125I]iodomelatonin in retinas from albino rabbits maintained in the light for 24 h before decapitation was increased in the inner retina compared with the control. The distribution of 2-[125I]iodomelatonin binding sites in the various layers of the mammalian retina is consistent with the described functions for this hormone in retinal physiology. 相似文献