首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myogenic satellite cells were isolated from the pectoralis major muscle of young growing tom turkeys. These cells were capable of proliferating and forming large multinucleated myotubes in vitro. Of 36 media-sera combinations evaluated, McCoy's 5A medium containing 15% chicken serum (CS) promoted the greatest level of proliferation and subsequent myotube formation when cells were induced to differentiate (P less than 0.05). Myotube formation was maximized following exposure of cultures to Dulbecco's Modified Eagle's Medium (DMEM) containing 1% horse serum (HS; DMEM-1% HS) for 4 days. Satellite cells grown under these conditions generally resulted in cultures containing greater than 90% fused nuclei. Cells plated in the presence of DMEM-10% HS resulted in greater attachment and larger cultures (and consequently a greater fused nuclei number) when transferred to growth media than similarly grown cultures plated in McCoy's 5A medium-10% CS, regardless of substrata tested (P less than 0.05). The greatest proliferation and myotube formation was seen in cultures grown in gelatin-coated wells. Proliferation was maximized in McCoy's 5A medium containing 18% CS, although this was not significantly different than the proliferation with media containing 15% CS (P greater than 0.05). Our results (1) document that the postnatal myogenic satellite cell can be isolated from the turkey in sufficient quantities for biological studies and (2) identify culture conditions which optimize proliferation and differentiation of these cells in vitro.  相似文献   

2.
Myostatin (GDF-8) inhibits the activation, proliferation, and differentiation of myogenic satellite cells. The relative importance of this growth factor is demonstrated in myostatin-null mice and cattle possessing defective myostatin genes. These defects result in greatly enhanced musculature. In the present study, we examined the effect of myostatin on turkey myogenic satellite cells and embryonic myoblasts. Compared with controls (P<0.05), proliferation of both turkey embryonic myoblasts and satellite cells was inhibited between 26 and 45% in serum-free medium containing 20 ng/mL myostatin. While individual turkey satellite cell clones differed in their responsiveness to myostatin, there were no significant differences in the responsiveness of fast and slow growing cells as groups (P>0.05). A slow growing clone that exhibited the greatest response to myostatin also exhibited the greatest depression of differentiation with this growth factor (P<0.05). All other turkey satellite cell clones exhibited similar responses to the differentiation depressing effects of myostatin (P>0.05). However, myostatin had no effect on differentiation of turkey embryonic myoblasts (P>0.05). When exposed to myostatin, 4 of 6 proliferating clones and all differentiating clones increased their expression of decorin, a growth inhibitor (P<0.05). The present study demonstrates that myostatin inhibits the proliferation and differentiation of satellite cells and suggests a role for decorin in myostatin action in muscle development.  相似文献   

3.
A nonisotopic, double fluorescence technique was developed to study myogenic satellite cell proliferation in posthatch turkey skeletal muscle. Labeled satellite cell nuclei were identified on enzymatically isolated myofiber segments using a mouse monoclonal antibody (anti-BrdU) followed by fluorescein-5-isothiocyanate (FITC) conjugated goat anti-mouse IgG secondary antibody. Myofiber nuclei (myonuclei + satellite cell nuclei) were counterstained with propidium iodide (PI). The myofiber segment length, myofiber segment diameter, and the number of PI and FITC labeled nuclei contained in each segment was determined using a Nikon fluorescence microscope, a SIT video camera and Image-1 software. Data collected by three different operators of the image analysis system revealed 5.0 ± 1.4 satellite cell nuclei per 1000 myofiber nuclei and 5284 ± 462 μm3 of cytoplasm surrounding each myofiber nucleus in the pectoralis thoracicus of 9-week-old tom turkeys. BrdU immunohistochemistry coupled with the new approach of PI staining of whole myofiber mounts is an effective combination to allow the use of an efficient semi-automated image analysis protocol.  相似文献   

4.
  • 1.1. Embryonic and posthatch turkey skeletal muscle development was compared in in vitro studies using clonal-derived embryonic myoblasts and satellite cells.
  • 2.2. Although population doubling times were similar between the two lines (25.4 hr for satellite cells and 26.4 hr for embryonic myoblasts), embryonic myoblasts consistently began log phase growth 24 hr earlier than satellite cells.
  • 3.3. Differentiation (fusion) of embryonic myoblasts was maximized by 36 hr in Dulbecco's Modified Eagle's Medium containing 1% horse serum compared with 72 hr for satellite cells.
  • 4.4. When administered a serum-free medium which supports proliferation of turkey satellite cells, embryonic myoblasts differentiated to form myotubes.
  相似文献   

5.
Conditions for isolation and culture of porcine myogenic satellite cells.   总被引:5,自引:0,他引:5  
Myogenic satellite cells were isolated from semimembranosus muscles of 4-8 week-old pigs. Muscles were ground and incubated in 0.8 mg/ml Pronase solution for 40 min at 37 degrees C. Following enzymatic digestion, cells were separated from muscle debris by differential centrifugation and sequential filtering through 500 and 53 microns nylon mesh. Primary cultures grown in 16 mm diameter cell culture wells were used to evaluate five sera, media, and substrata for their ability to promote satellite cell proliferation and differentiation. Porcine satellite cell proliferation and myotube formation were optimized in cultures grown on gelatin-coated substratum in the presence of Minimum Essential Medium-alpha supplemented with 10% fetal bovine serum (FBS) (P less than 0.01). Maximum fusion was induced by 48 hr exposure to 2% FBS, horse serum, or lamb serum. These data 1) document the first evidence that myogenic satellite cells can be isolated from porcine skeletal muscle, and 2) identify culture conditions which optimize proliferation and myotube formation of porcine satellite cells.  相似文献   

6.
Skeletal muscle satellite cells were cultured from mature rats and were treated in vitro with transforming growth factor-beta (TGF-beta). Muscle-specific protein synthesis and satellite cell fusion were used as indicators of muscle differentiation; a dose-dependent inhibition of differentiation was observed in response to TGF-beta. In addition, TGF-beta depressed cell proliferation in a dose-dependent manner. Half-maximal inhibition of differentiation was seen with a TGF-beta concentration of approximately 0.1 ng/ml. Although proliferation was not inhibited, it was depressed and half-maximal suppression of proliferation occurred in response to 0.1-0.5 ng TGF-beta/ml. Neonatal rat myoblasts were also subjected to TGF-beta treatment, and similar results were observed. Neonatal cells, however, were more sensitive to TGF-beta than satellite cells, as indicated by the reduced concentrations of TGF-beta required to inhibit differentiation and reduce the rate of proliferation. Under identical culture conditions proliferation of muscle-derived fibroblasts were also depressed. The differentiation inhibiting effect of TGF-beta on satellite cells was reversible. It has been suggested that TGF-beta could be an important regulator of tissue repair, and its in vitro effects on satellite cells suggest a possible role in regulation of muscle regeneration.  相似文献   

7.
We have evaluated the effect of transforming growth factor beta-1 (TGF beta-1) on proliferation and fusion of cultured ovine satellite cells isolated from 5-month-old wether lambs. The isolation and culture protocols were validated by clonal analysis of the original cell preparation and assessment of proliferation and fusion of control cultures. Approximately 85% of the original cells isolated were myogenic as assessed by clonal analysis. The ovine cells doubled approximately every 18 hours during their exponential growth period and achieved a maximum percent fusion of 39.5% after 144 hours in culture. TGF beta-1 inhibited fusion of these cells in a dose-dependent manner with half-maximal inhibition occurring at .08 ng/ml. Maximal inhibition (95% suppression) occurred between .1 and .5 ng/ml. TGF Beta-1 (.05-3.0 ng/ml) did not inhibit proliferation of cultured ovine satellite cells in serum-containing medium or in serum-free defined medium. In contrast, TGF beta-1 did significantly suppress serum-stimulated proliferation of either porcine or bovine satellite cells that were isolated by using a procedure identical to that used to isolate the ovine satellite cells. Thus, proliferation of ovine satellite cells appears to respond differently to TGF beta-1 than does proliferation of either porcine or bovine satellite cells.  相似文献   

8.
Cell cycle commitment of rat muscle satellite cells   总被引:6,自引:0,他引:6       下载免费PDF全文
Satellite cells of adult muscle are quiescent myogenic stem cells that can be induced to enter the cell cycle by an extract of crushed muscle (Bischoff, R. 1986. Dev. Biol. 115:140-147). Here, evidence is presented that the extract acts transiently to commit cells to enter the cell cycle. Satellite cells associated with both live and killed rat myofibers in culture were briefly exposed to muscle extract and the increase in cell number was determined at 48 h in vitro, before the onset of fusion. An 8-12-h exposure to extract with killed, but not live, myofibers was sufficient to produce maximum proliferation of satellite cells. Continuous exposure for over 40 h was needed to sustain proliferation of satellite cells on live myofibers. The role of serum factors was also studied. Neither serum nor muscle extract alone was able to induce proliferation of satellite cells. In the presence of muscle extract, however, satellite cell proliferation was directly proportional to the concentration of serum in the medium. These results suggest that mitogens released from crushed muscle produce long-lasting effects that commit quiescent satellite cells to divide, whereas serum factors are needed to maintain progression through the cell cycle. Contact with a viable myofiber modulates the response of satellite cells to growth factors.  相似文献   

9.
Following muscle damage, fast- and slow-contracting fibers regenerate, owing to the activation of their satellite cells. In rats, crush-induced regeneration of extensor digitorum longus (EDL, a fast muscle) and soleus (a slow muscle) present different characteristics, suggesting that intrinsic differences exist among their satellite cells. An in vitro comparative study of the proliferation and differentiation capacities of satellite cells isolated from these muscles is presented there. We observed several differences between soleus and EDL satellite cell cultures plated at high density on gelatin-coated dishes. Soleus satellite cells proliferated more actively and fused into myotubes less efficiently than EDL cells. The rate of muscular creatine kinase enzyme appeared slightly lower in soleus than in EDL cultures at day 11 after plating, when many myotubes were formed, although the levels of muscular creatine kinase mRNA were similar in both cultures. In addition, soleus cultures expressed higher levels of MyoD and myogenin mRNA and of MyoD protein than EDL satellite cell cultures at day 12. A clonal analysis was also carried out on both cell populations in order to determine if distinct lineage features could be detected among satellite cells derived from EDL and soleus muscles. When plated on gelatin at clonal density, cells from both muscles yielded clones within 2 weeks, which stemmed from 3–15 mitotic cycles and were classified into three classes according to their sizes. Myotubes resulting from spontaneous fusion of cells from the progeny of one single cell were seen regardless of the clone size in the standard culture medium we used. The proportion of clones showing myotubes in each class depended on the muscle origin of the cells and was greater in EDL- than in soleus-cell cultures. In addition, soleus cells were shown to improve their differentiation capacity upon changes in the culture condition. Indeed, the proportions of clones showing myotubes, or of cells fusing into myotubes in clones, were increased by treatments with a myotube-conditioned medium, with phorbol ester, and by growth on extra-cellular matrix components (Matrigel). These results, showing differences among satellite cells from fast and slow muscles, might be of importance to muscle repair after trauma and in pathological situations.  相似文献   

10.
The effects of growth- and gender-related differences on satellite cell proliferation and differentiation were investigated using satellite cells isolated from the pectoralis major muscle of a turkey line selected for increased 16-week body weight (F-line) and its unselected randombred control (RBC2-line). Proliferation rates within the F- and RBC2-lines did not differ between sexes. The F-line male and female satellite cells when compared to the RBC2-line male and female satellite cells proliferated at a faster rate. Differentiation rates were increased for the F-line male cells compared to both the F-line female and RBC2-line male satellite cells. No difference in differentiation rate was noted within the RBC2-line satellite cells. For satellite cells from females, the RBC2-line differentiated faster than the F-line. Morphological data on myotube length and the number of nuclei per myotube supported the differentiation data in that F-line male satellite cells had the longest myotubes with the most nuclei, there was no significant difference between myotubes within the RBC2-line, and female-derived myotubes from the RBC2-line were longer than those of the F-line by 96 h of fusion. These data are suggestive of both growth- and gender- related differences in satellite cell proliferation and differentiation.  相似文献   

11.
The objective of this study was to determine the effects of fatty acids on the proliferation, differentiation, and expression of syndecan-4 and glypican-1 in avian myogenic satellite cells (SC). SC derived from the pectoralis major (PM) and biceps femoris (BF) muscles of the turkey and chicken were individually administered 8 different fatty acids in defined medium during proliferation. A parallel set of turkey SC was induced to differentiate. Highest levels of proliferation of turkey PM and BF SC occurred in cultures containing oleate. Linoleate and oleate were equipotent in supporting proliferation of chicken SC. Microscopic examination revealed that inclusion of docosahexaenoate or eicosapentaenoate was toxic towards both PM and BF SC from both species. Linolenate and arachidonate diminished levels of differentiation. Expression of glypican-1 varied between treatments to a greater extent with turkey BF than with PM SC. Expression in chicken PM and BF SC demonstrated a similar pattern in response to treatments. Turkey PM syndecan-4 expression varied between treatments, whereas expression in turkey BF SC was similar between treatments. Expression in chicken SC varied little between treatments. The results demonstrate species and muscle-specific differences in the parameters examined. It is proposed that changes in lipid raft receptor interactions may contribute to these observed differences.  相似文献   

12.
The satellite cell population in postnatal skeletal muscle is heterogeneous because individual satellite cells isolated from a single muscle have differing abilities to proliferate under the same in vitro conditions. Telomeres are structures found at the ends of all eukaryotic chromosomes that are characterized by repetitive DNA sequences, and they are important in determining cellular proliferation potential. The relationship between satellite cell proliferative heterogeneity and telomeric DNA was examined by digesting genomic DNA from large-colony-forming and small-colony-forming turkey satellite cell clones with HinfI, separating the restriction fragments on an agarose gel, and hybridizing the gels with an oligonucleotide probe specific for telomeric DNA. Turkey satellite cells generated telomeric restriction fragments up to approximately 180 kB. The large-colony-forming satellite cell clones had a larger proportion (P<0.05) of total telomeric restriction fragments below 33 kB than the small-colony-forming satellite cell clones. However, telomerase expression was detected in cultures from large-colony-forming and small-colony-forming turkey satellite cells suggesting that the differences in telomeric restriction fragments may not be related to the differences in in vitro proliferative behavior and that telomerase may contribute to the high in vitro growth capacity of turkey satellite cells.  相似文献   

13.
Interaction between satellite cells and skeletal muscle fibers   总被引:11,自引:0,他引:11  
Single myofibers with attached satellite cells isolated from adult rats were used to study the influence of the mature myofiber on the proliferation of satellite cells. The satellite cells remain quiescent when cultured in serum containing medium but proliferate when exposed to mitogen from an extract of crushed adult muscle. The response of satellite cells to mitogen was measured under three situations with respect to cell contact: (1) in contact with a viable myofiber and its basal lamina, (2) detached from the myofiber by centrifugal force and deposited on the substratum and (3) beneath the basal lamina of a Marcaine killed myofiber. The results show that satellite cells in contact with the plasmalemma of a viable myofiber have reduced mitogenic response. Since inhibiting growth may induce differentiation, I tested whether satellite cells proliferating on the surface of a myofiber would fuse. Although the satellite cell progeny were fusion competent, they did not fuse with the myofiber. To determine whether fusion competence of the myofiber changes with time in culture, embryonic myoblasts were challenged to fuse with myofibers that had been stripped of satellite cells and cultured for several days. The myoblasts fused with pseudopodial sprouts growing from the ends of the myofiber, but did not fuse with the original myofiber surface. These results indicate that contact with the surface of a mature myofiber suppresses proliferation of myogenic cells but the cells do not fuse with the myofiber.  相似文献   

14.
The heparan sulfate proteoglycan, glypican-1, is a low affinity receptor for fibroblast growth factor 2 (FGF2). Fibroblast growth factor 2 is a potent stimulator of skeletal muscle cell proliferation and an inhibitor of differentiation. Heparan sulfate proteoglycans like glypican-1 are required for FGF2 to transduce an intracellular signal. Understanding the role of glypican-1 in the regulation of FGF2-mediated signaling is important in furthering the understanding of the biological processes involved in muscle development and growth. In the current study, a turkey glypican-1 expression vector construct was transfected into turkey myogenic satellite cells resulting in the overexpression of glypican-1. The proliferation, differentiation, and responsiveness to FGF2 were measured in control and transfected cell cultures. The overexpression of glypican-1 in turkey myogenic satellite cells increased both satellite cell proliferation and FGF2 responsiveness, but decreased the rate of differentiation. The current data support glypican-1 modulation of both proliferation and differentiation through an FGF2-mediated pathway.  相似文献   

15.
Myogenic satellite cells are heterogeneous multipotential stem cells that are required for muscle repair, maintenance, and growth. The membrane‐associated heparan sulfate proteoglycans syndecan‐4 and glypican‐1 differentially regulate satellite cell proliferation, differentiation, fibroblast growth factor 2 (FGF2) signal transduction, and expression of the myogenic regulatory factors MyoD and myogenin. The objective of the current study was to determine the effect of age on syndecan‐4 and glypican‐1 satellite cell populations, proliferation, differentiation, FGF2 responsiveness, and expression of syndecan‐4, glypican‐1, MyoD, and myogenin using satellite cells isolated from the pectoralis major muscle of 1‐day‐old, 7‐week‐old and 16‐week‐old turkeys. Proliferation was significantly reduced in the 16‐week‐old satellite cells, while differentiation was decreased in the 7‐week‐old and the 16‐week‐old cells beginning at 48 h of differentiation. Fibroblast growth factor 2 responsiveness was highest in the 1‐day‐old and 7‐week‐old cells during proliferation; during differentiation there was an age‐dependent response to FGF2. Syndecan‐4 and glypican‐1 satellite cell populations decreased with age, but syndecan‐4 and glypican‐1 were differentially expressed with age during proliferation and differentiation. MyoD and myogenin mRNA expression was significantly decreased in 16‐week‐old cells compared to the 1‐day‐old and 7‐week‐old cells. MyoD and myogenin protein expression was higher during proliferation in the 16‐week‐old cells and decreased with differentiation. These data demonstrate an age‐dependent effect on syndecan‐4 and glypican‐1 satellite cell subpopulations, which may be associated with age‐related changes in proliferation, differentiation, FGF2 responsiveness, and the expression of the myogenic regulatory factors MyoD and myogenin.  相似文献   

16.
Unlike mammals, there is little fundamental information about spermatogenesis in birds. This study was undertaken to clarify the morphology, histochemistry, and lectin affinity of the seminiferous epithelial cells and Leydig cells in pre-pubertal (8- to 15-week old) and adult (40- to 44-week old) domestic turkeys. In adult turkeys, three types of spermatogonia were defined based on their chromatin distribution and nuclear morphology: the dark type A (A(d)); the pale type A (A(p)); and the type B. The A(d) is the least numerous and least conspicuous and consequently difficult to locate. Based on its spatial distribution and overall morphology, type A(d) spermatogonia were postulated to be the spermatogonia stem cells in the turkey. Antibodies to c-kit were localized to spermatogonia in the pre-pubertal and to a lesser extent in adult males. Peanut agglutinin (PNA) was specific for spermatocytes in the pre-pubertal males and spermatogonia and early spermatocytes in adult males. Wheat-germ agglutinin (WGA) highlighted Sertoli cells in both age groups. Bandeiraea simplicifolia I, soybean agglutinin, and winged-pea agglutinin staining were limited to the wall of the seminiferous tubule and some extra-tubular cell types. Concanavalin A staining was diffuse and not cell-specific and, therefore, could not be used to selectively identify a particular cell type. It was concluded that WGA and PNA could aid in identifying specific cell types in the seminiferous epithelium of testis from pre-pubertal and mature turkeys. Only Leydig cells were alkaline phosphatase reactive in the mature turkey testes. The information from this study is being used to adapt techniques for the isolation and partial purification developed for mammalian spermatogonia to avian spermatogonia and other specific cell types in the testes.  相似文献   

17.
成体骨骼肌细胞的数量基本保持恒定,骨骼肌的再生主要依赖肌卫星细胞的增殖与分化。骨骼肌卫星细胞是能够被激活、进而分化为肌细胞的一类成肌细胞。现对肌卫星细胞的发生、体外培养以及增殖与分化的调控进行综述,并对能否通过激活肌卫星细胞的增殖来实现肌肉组织生长的调控进行探讨。  相似文献   

18.
Newly emergent turkey arthritis reoviruses (TARV) were isolated from tendons of lame 15-week-old tom turkeys that occasionally had ruptured leg tendons. Experimentally, these TARVs induced remarkable tenosynovitis in gastrocnemius tendons of turkey poults. The current study aimed to characterize the location and the extent of virus replication as well as the cytokine response induced by TARV during the first two weeks of infection. One-week-old male turkeys were inoculated orally with TARV (O’Neil strain). Copy numbers of viral genes were estimated in intestines, internal organs and tendons at ½, 1, 2, 3, 4, 7, 14 days Post inoculation (dpi). Cytokine profile was measured in intestines, spleen and leg tendons at 0, 4, 7 and 14 dpi. Viral copy number peaked in jejunum, cecum and bursa of Fabricius at 4 dpi. Copy numbers increased dramatically in leg tendons at 7 and 14 dpi while minimal copies were detected in internal organs and blood during the same period. Virus was detected in cloacal swabs at 1–2 dpi, and peaked at 14 dpi indicating enterotropism of the virus and its early shedding in feces. Elevation of IFN-α and IFN-β was observed in intestines at 7 dpi as well as a prominent T helper-1 response (IFN-γ) at 7 and 14 dpi. IFN-γ and IL-6 were elevated in gastrocnemius tendons at 14 dpi. Elevation of antiviral cytokines in intestines occurred at 7dpi when a significant decline of viral replication in intestines was observed. T helper-1 response in intestines and leg tendons was the dominant T-helper response. These results suggest the possible correlation between viral replication and cytokine response in early infection of TARV in turkeys. Our findings provide novel insights which help elucidate viral pathogenesis in turkey tendons infected with TARV.  相似文献   

19.
A morphologic study of bronchus-associated lymphoid tissue in turkeys   总被引:1,自引:0,他引:1  
Bronchus-associated lymphoid tissue (BALT) in normal turkeys of ages 1 day and 1, 2, 3, 4, 8, and 18 weeks was examined by light microscopy and by scanning and transmission electron microscopy. Turkey BALT resembled other mucosa-associated lymphoid tissues; it was made up of a population of lymphocytes covered by a specialized epithelium different from typical pseudostratified ciliated columnar bronchial epithelium. There were distinct age-related differences in BALT structure. Bronchus-associated lymphoid nodules were larger and more numerous in older turkeys. In 1-day- to 2-week-old turkeys, the primary cell type of BALT epithelium was nonciliated cuboidal; in 2-week old turkeys it was squamous; and in turkeys older than 4-weeks of age, the epithelium was primarily ciliated columnar. In 1- to 4-week old turkeys, large numbers of intraepithelial lymphocytes disrupted the normal organization of the epithelium. In older turkeys, epithelial and lymphoid cells were in discrete compartments separated by connective tissue. Lymphocytes in 1-day-old turkeys were found in loose aggregates around venules and within the epithelium. In 1-week old turkeys, lymphocytes were organized into compartments of morphologically similar cells. By 3-weeks of age, lymphocytes were present in distinct germinal centers. Epithelial cells of BALT did not have large numbers of apical vesicles and thus were not structurally specialized for antigen uptake by endocytosis. However, the epithelial barrier appeared to be disrupted over lymphoid nodules, suggesting that antigen would be readily available to lymphocytes and phagocytes in BALT. Age-related differences in turkey BALT structure may have functional consequences with respect to the respiratory immune response.  相似文献   

20.
To determine if differential response to growth factor stimuli between subpopulations of satellite cells was due to variation in the levels of activated intracellular signaling proteins, the levels of phospho-MAPK (phospho-ERK 1/2) were determined in clonal populations of turkey (Meleagris gallopavo) satellite cells. Relative levels of phospho-ERK 1/2 between clones were determined by Western blotting of extracts from satellite cells exposed to growth factor stimuli. Initial measurements using serum mitogenic stimuli showed differences in phospho-MAPK levels between the clonal subpopulations, but the responses did not correlate with proliferation rates of the individual clones (P>0.05). IGF-I alone did not increase phospho-MAPK levels compared to unstimulated controls (P>0.05), whereas FGF-2 did increase levels (P<0.05). A synergistic response was seen in satellite cells as well as embryonic myoblasts administered both IGF-I and FGF-2. When administered FGF-2 and IGF-I, 2 of the slow growing satellite cell clones exhibited lowest levels of phospho-MAPK (P<0.05). One of the slow growing clones had levels of phospho-MAPK similar to the three fast growing clones (P>0.05). The results suggest that variation in responsiveness to growth factor stimuli among satellite cell populations within muscles may be due to several different reasons. Some differences in cell responsiveness appear to be due to variation in phospho-MAPK generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号