首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gap junction channels composed of connexins connect cells, allowing intercellular communication. Their cellular assembly involves a unique quality-control pathway. Some connexins [including connexin43 (Cx43) and Cx46] oligomerize in the trans-Golgi network following export of stabilized monomers from the endoplasmic reticulum (ER). In contrast, other connexins (e.g., Cx32) oligomerize early in the secretory pathway. Amino acids near the cytoplasmic aspect of the third transmembrane domain have previously been shown to determine this difference in assembly sites. Here, we characterized the oligomerization of two connexins expressed prominently in the vasculature, Cx37 and Cx40, using constructs containing a C-terminal dilysine-based ER retention/retrieval signal (HKKSL) or treatment with brefeldin A to block ER vesicle trafficking. Both methods led to intracellular retention of connexins, since the cells lacked gap junction plaques. Retention of Cx40 in the ER prevented it from oligomerizing, comparable to Cx43. By contrast, ER-retained Cx37 was partially oligomerized. Replacement of two amino acids near the third transmembrane domain of Cx43 (L152 and R153) with the corresponding amino acids from Cx37 (M152 and G153) resulted in early oligomerization in the ER. Thus, residues that allow Cx37 to oligomerize early in the secretory pathway could restrict its interactions with coexpressed Cx40 or Cx43 by favoring homomeric oligomerization, providing a structural basis for cells to produce gap junction channels with different connexin composition.  相似文献   

2.
Connexins are gap junction proteins that form aqueous channels to interconnect adjacent cells. Rat osteoblasts express connexin43 (Cx43), which forms functional gap junctions at the cell surface. We have found that ROS 17/2.8 osteosarcoma cells, UMR 106-01 osteosarcoma cells, and primary rat calvarial osteoblastic cells also express another gap junction protein, Cx46. Cx46 is a major component of plasma membrane gap junctions in lens. In contrast, Cx46 expressed by osteoblastic cells was predominantly localized to an intracellular perinuclear compartment, which appeared to be an aspect of the TGN as determined by immunofluorescence colocalization. Hela cells transfected with rat Cx46 cDNA (Hela/Cx46) assembled Cx46 into functional gap junction channels at the cell surface. Both rat lens and Hela/Cx46 cells expressed 53-kD (nonphosphorylated) and 68-kD (phosphorylated) forms of Cx46; however, only the 53-kD form was produced by osteoblasts. To examine connexin assembly, monomers were resolved from oligomers by sucrose gradient velocity sedimentation analysis of 1% Triton X-100–solubilized extracts. While Cx43 was assembled into multimeric complexes, ROS cells contained only the monomer form of Cx46. In contrast, Cx46 expressed by rat lens and Hela/Cx46 cells was assembled into multimers. These studies suggest that assembly and cell surface expression of two closely related connexins were differentially regulated in the same cell. Furthermore, oligomerization may be required for connexin transport from the TGN to the cell surface.  相似文献   

3.
《FEBS letters》2014,588(8):1297-1303
The avascular lens of the eye is covered anteriorly by an epithelium containing nucleated, metabolically active cells. This epithelium contains the first lens cells to encounter noxious external stimuli and cells that can develop compensatory or protective responses. Lens epithelial cells express the gap junction proteins, connexin43 (Cx43) and connexin50 (Cx50). Cx43 and Cx50 form gap junction channels and hemichannels with different properties. Although they may form heteromeric hemichannels, Cx43 and Cx50 probably do not form heterotypic channels in the lens. Cx50 channels make their greatest contribution to intercellular communication during the early postnatal period; subsequently, Cx43 becomes the predominant connexin supporting intercellular communication. Although epithelial Cx43 appears dispensable for lens development, Cx50 is critical for epithelial cell proliferation and differentiation. Cx43 and Cx50 hemichannels and gap junction channels are regulated by multiple different agents. Lens epithelial cell connexins contribute to both normal lens physiology and pathology.  相似文献   

4.
For gap junction channels to function, their subunit proteins, referred to as connexins, have to be synthesized and inserted into the cell membrane in their native configuration. Like other transmembrane proteins, connexins are synthesized and inserted cotranslationally into the endoplasmic reticulum membrane. Membrane insertion is followed by their assembly and transport to the plasma membrane. Finally, the end-to-end pairing of two half-channels, referred to as connexons, each provided by one of two neighboring cells, and clustering of the channels into larger plaques complete the gap junction channel formation. Gap junction channel formation is further complicated by the potential assembly of homo- as well as heterooligomeric connexons, and the pairing of identical or different connexons into homo- and heterotypic gap junction channels. In this article, I describe the cell-free synthesis approach that we have used to study the biosynthesis of connexins and gap junction channels. Special emphasis is placed on the synthesis of full-length, membrane-integrated connexins, assembly into gap junction connexons, homo- as well as heterooligomerization, and characterization of connexin-specific assembly signals.  相似文献   

5.
Gap junction channels assemble as dodecameric complexes, in which a hexameric connexon (hemichannel) in one plasma membrane docks end-to-end with a connexon in the membrane of a closely apposed cell to provide direct cell-to-cell communication. Synthesis, assembly, and trafficking of the gap junction channel subunit proteins referred to as connexins, largely appear to follow the general secretory pathway for membrane proteins. The connexin subunits can assemble into homo-, as well as distinct hetero-oligomeric connexons. Assembly appears to be based on specific signals located within the connexin polypeptides. Plaque formation by the clustering of gap junction channels in the plane of the membrane, as well as channel degradation are poorly understood processes that are topics of current research. Recently, we tagged connexins with the autofluorescent reporter green fluorescent protein (GFP), and its cyan (CFP), and yellow (YFP) color variants and combined this reporter technology with single, and dual-color, high resolution deconvolution microscopy, computational volume rendering, and time-lapse microscopy to examine the detailed organization, structural composition, and dynamics of gap junctions in live cells. This technology provided for the first time a realistic, three-dimensional impression of gap junctions as they appear in the plasma membranes of adjoining cells, and revealed an excitingly detailed structural organization of gap junctions never seen before in live cells. Here, I summarize recent progress in areas encompassing the synthesis, assembly and structural composition of gap junctions with a special emphasis on the recent results we obtained using cell-free translation/ membrane-protein translocation, and autofluorescent reporters in combination with live-cell deconvolution microscopy.  相似文献   

6.
In the present study we examined the trafficking pathways of connexin49 (Cx49) fused to green fluorescent protein (GFP) in polar and non-polar cell lines. The Cx49 gene was isolated from ovine lens by RT-PCR. Cx49 cDNA was fused to GFP and the hybrid cDNA was transfected into several cell lines. After transfection of Cx49-GFP cDNA into HeLa cells, it was shown using the double whole-cell patch-clamp technique that the expressed fusion protein was still able to form conducting gap junction channels. Synthesis, assembly, and turnover of the Cx49-GFP hybrid protein were investigated using a pulse-chase protocol. A major 78-kDa protein band corresponding to Cx49-GFP could be detected with a turnover of 16-20 h and a half-life time of 10 h. The trafficking pathways of Cx49-GFP were monitored by confocal laser microscopy. Fusion proteins were localized in subcellular compartments, including the endoplasmic reticulum (ER), the ER-Golgi intermediate compartment, the Golgi apparatus, and the trans-Golgi network, as well as vesicles traveling towards the plasma membrane. Time-dependent sequential localization of Cx49-GFP in the ER and then the Golgi apparatus supports the notion of a slow turnover of Cx49-GFP compared to other connexins analyzed so far. Gap junction plaques resembling the usual punctuate distribution pattern could be demonstrated for COS-1 and MDCK cells. Basolateral distribution of Cx49-GFP was observed in polar MDCK cells, indicating specific sorting behavior of Cx49 in polarized cells. Together, this report describes the first characterization of biosynthesis and trafficking of lens Cx49.  相似文献   

7.
Gap junction proteins, connexins, are dynamic polytopic membrane proteins that exhibit unprecedented short half-lives of only a few hours. Consequently, it is well accepted that in addition to channel gating, gap junctional intercellular communication is regulated by connexin biosynthesis, transport and assembly as well as the formation and removal of gap junctions from the cell surface. At least nine members of the 20-member connexin family are known to be phosphorylated en route or during their assembly into gap junctions. For some connexins, notably Cx43, evidence exists that phosphorylation may trigger its internalization and degradation. In recent years it has become apparent that the mechanisms underlying the regulation of connexin turnover are quite complex with the identification of many connexin binding molecules, a multiplicity of protein kinases that phosphorylate connexins and the involvement of both lysosomal and proteasomal pathways in degrading connexins. This paper will review the evidence that connexin phosphorylation regulates, stimulates or triggers gap junction disassembly, internalization and degradation.  相似文献   

8.
Gap junction proteins, connexins, are dynamic polytopic membrane proteins that exhibit unprecedented short half-lives of only a few hours. Consequently, it is well accepted that in addition to channel gating, gap junctional intercellular communication is regulated by connexin biosynthesis, transport and assembly as well as the formation and removal of gap junctions from the cell surface. At least nine members of the 20-member connexin family are known to be phosphorylated en route or during their assembly into gap junctions. For some connexins, notably Cx43, evidence exists that phosphorylation may trigger its internalization and degradation. In recent years it has become apparent that the mechanisms underlying the regulation of connexin turnover are quite complex with the identification of many connexin binding molecules, a multiplicity of protein kinases that phosphorylate connexins and the involvement of both lysosomal and proteasomal pathways in degrading connexins. This paper will review the evidence that connexin phosphorylation regulates, stimulates or triggers gap junction disassembly, internalization and degradation.  相似文献   

9.
Studies on physiological modulation of intercellular communication mediated by protein kinases are often complicated by the fact that cells express multiple gap junction proteins (connexins; Cx). Changes in cell coupling can be masked by simultaneous opposite regulation of the gap junction channel types expressed. We have examined the effects of activators and inhibitors of protein kinase A (PKA), PKC, and PKG on permeability and single channel conductance of gap junction channels composed of Cx45, Cx43, or Cx26 subunits. To allow direct comparison between these Cx, SKHep1 cells, which endogenously express Cx45, were stably transfected with cDNAs coding for Cx43 or Cx26. Under control conditions, the distinct types of gap junction channels could be distinguished on the basis of their permeability and single channel properties. Under various phosphorylating conditions, these channels behaved differently. Whereas agonists/antagonist of PKA did not affect permeability and conductance of all gap junction channels, variable changes were observed under PKC stimulation. Cx45 channels exhibited an additional conductance state, the detection of the smaller conductance states of Cx43 channels was favored, and Cx26 channels were less often observed. In contrast to the other kinases, agonists/antagonist of PKG affected permeability and conductance of Cx43 gap junction channels only. Taken together, these results show that distinct types of gap junction channels are differentially regulated by similar phosphorylating conditions. This differential regulation may be of physiological importance during modulation of cell-to-cell communication of more complex cell systems.  相似文献   

10.
During the development of the mammary gland, duct-lining epithelial cells progress through a program of expansive proliferation, followed by a terminal differentiation that allows for the biosynthesis and secretion of milk during lactation. The role of gap junction proteins, connexins, in the development and function of this secretory epithelium was investigated. Connexins, Cx26 and Cx32, were differentially expressed throughout pregnancy and lactation in alveolar cells. Cx26 poly-(A)(+) RNA and protein levels increased from early pregnancy, whereas Cx32 was detectable only during lactation. At this time, immunolocalization of connexins by confocal microscopy and immunogold labeling of high-pressure frozen freeze-substituted tissue showed that both connexins colocalized to the same junctional plaque. Analysis of gap junction hemichannels (connexons) isolated from lactating mammary gland plasma membranes by a rate-density centrifugation procedure, followed by immunoprecipitation and by size-exclusion chromatography, showed that Cx26 and Cx32 were organized as homomeric and heteromeric connexons. Structural diversity in the assembly of gap junction hemichannels demonstrated between pregnant and lactating mammary gland may account for differences in ionic and molecular signaling that may physiologically influence the onset and/or maintenance of the secretory phenotype of alveolar epithelial cells.  相似文献   

11.
To study the structural composition and dynamics of gap junctions in living cells, we tagged their subunit proteins, termed connexins, with the autofluorescent tracer green fluorescent protein (GFP) and its cyan (CFP) and yellow (YFP) color variants. Tagged connexins assembled normally and channels were functional. High-resolution fluorescence images of gap junction plaques assembled from CFP and YFP tagged connexins revealed that the mode of channel distribution is strictly dependent on the connexin isoforms. Co-distribution as well as segregation into well-separated domains was observed. Based on accompanying studies we propose that channel distribution is regulated by intrinsic, connexin isoform specific signals. High-resolution time-lapse images revealed that gap junctions, contrary to previous expectations, are dynamic assemblies of channels. Channels within clusters and clusters themselves are mobile and constantly undergo structural rearrangements. Movements are complex and allow channels to move, comparable to other plasma membrane proteins not anchored to cytoskeletal elements. Comprehensive analysis, however, demonstrated that gap junction channel movements are not driven by diffusion described to propel plasma membrane protein movement. Instead, recent studies suggest that movements of gap junction channels are indirect and predominantly propelled by plasma membrane lipid flow that results from metabolic endo- and exocytosis.  相似文献   

12.
To examine the trafficking, assembly, and turnover of connexin43 (Cx43) in living cells, we used an enhanced red-shifted mutant of green fluorescent protein (GFP) to construct a Cx43-GFP chimera. When cDNA encoding Cx43-GFP was transfected into communication-competent normal rat kidney cells, Cx43-negative Madin-Darby canine kidney (MDCK) cells, or communication-deficient Neuro2A or HeLa cells, the fusion protein of predicted length was expressed, transported, and assembled into gap junctions that exhibited the classical pentalaminar profile. Dye transfer studies showed that Cx43-GFP formed functional gap junction channels when transfected into otherwise communication-deficient HeLa or Neuro2A cells. Live imaging of Cx43-GFP in MDCK cells revealed that many gap junction plaques remained relatively immobile, whereas others coalesced laterally within the plasma membrane. Time-lapse imaging of live MDCK cells also revealed that Cx43-GFP was transported via highly mobile transport intermediates that could be divided into two size classes of <0.5 microm and 0.5-1.5 microm. In some cases, the larger intracellular Cx43-GFP transport intermediates were observed to form from the internalization of gap junctions, whereas the smaller transport intermediates may represent other routes of trafficking to or from the plasma membrane. The localization of Cx43-GFP in two transport compartments suggests that the dynamic formation and turnover of connexins may involve at least two distinct pathways.  相似文献   

13.
To study the structural composition and dynamics of gap junctions in living cells, we tagged their subunit proteins, termed connexins, with the autofluorescent tracer green fluorescent protein (GFP) and its cyan (CFP) and yellow (YFP) color variants. Tagged connexins assembled normally and channels were functional. High-resolution fluorescence images of gap junction plaques assembled from CFP and YFP tagged connexins revealed that the mode of channel distribution is strictly dependent on the connexin isoforms. Co-distribution as well as segregation into well-separated domains was observed. Based on accompanying studies we propose that channel distribution is regulated by intrinsic, connexin isoform specific signals. High-resolution time-lapse images revealed that gap junctions, contrary to previous expectations, are dynamic assemblies of channels. Channels within clusters and clusters themselves are mobile and constantly undergo structural rearrangements. Movements are complex and allow channels to move, comparable to other plasma membrane proteins not anchored to cytoskeletal elements. Comprehensive analysis, however, demonstrated that gap junction channel movements are not driven by diffusion described to propel plasma membrane protein movement. Instead, recent studies suggest that movements of gap junction channels are indirect and predominantly propelled by plasma membrane lipid flow that results from metabolic endo- and exocytosis.  相似文献   

14.
To study the structural composition and dynamics of gap junctions in living cells, we tagged their subunit proteins, termed connexins, with the autofluorescent tracer green fluorescent protein (GFP) and its cyan (CFP) and yellow (YFP) color variants. Tagged connexins assembled normally and channels were functional. High-resolution fluorescence images of gap junction plaques assembled from CFP and YFP tagged connexins revealed that the mode of channel distribution is strictly dependent on the connexin isoforms. Co-distribution as well as segregation into well-separated domains was observed. Based on accompanying studies we propose that channel distribution is regulated by intrinsic, connexin isoform specific signals. High-resolution time-lapse images revealed that gap junctions, contrary to previous expectations, are dynamic assemblies of channels. Channels within clusters and clusters themselves are mobile and constantly undergo structural rearrangements. Movements are complex and allow channels to move, comparable to other plasma membrane proteins not anchored to cytoskeletal elements. Comprehensive analysis, however, demonstrated that gap junction channel movements are not driven by diffusion described to propel plasma membrane protein movement. Instead, recent studies suggest that movements of gap junction channels are indirect and predominantly propelled by plasma membrane lipid flow that results from metabolic endo- and exocytosis.  相似文献   

15.
Gap junctions are plasma membrane domains containing channels that directly connect the cytosols of neighbouring cells. Gap junction channels are made of a family of transmembrane proteins called connexins, of which the best studied is Connexin43 (Cx43). MAP kinase-induced phosphorylation of Cx43 has previously been shown to cause inhibition of gap junction channel permeability and increased Cx43 endocytosis. As Cx43 assembles into gap junction plaques, Cx43 acquires detergent resistance. Here we report that the detergent resistance is lost after activation of MAP kinase. Treatment of IAR20 rat liver epithelial cells with 12-O-tetradecanoylphorbol 13-acetate (TPA) or epidermal growth factor (EGF) caused a rapid increase in the solubility of Cx43 in Triton X-100. This process was mediated by MAP kinase and was initiated at the plasma membrane. The data suggest that loss of the detergent resistance of Cx43 is an early step in TPA- and EGF-induced endocytosis of gap junctions.  相似文献   

16.
We examined the expression and function of gap junctions in two rat osteoblastic cell lines, ROS 17/2.8 and UMR 106-01. The pattern of expression of gap junction proteins in these two cell lines was distinct: ROS cells expressed only connexin43 on their cell surface, while UMR expressed predominantly connexin45. Immunoprecipitation and RNA blot analysis confirmed the relative quantitation of these connexins. Microinjected ROS cells passed Lucifer yellow to many neighboring cells, but UMR cells were poorly coupled by this criterion. Nevertheless, both UMR and ROS cells were electrically coupled, as characterized by the double whole cell patch-clamp technique. These studies suggested that Cx43 in ROS cells mediated cell-cell coupling for both small ions and larger molecules, but Cx45 in UMR cells allowed passage only of small ions. To demonstrate that the expression of different connexins alone accounted for the lack of dye coupling in UMR cells, we assessed dye coupling in UMR cells transfected with either Cx43 or Cx45. The UMR/Cx43 transfectants were highly dye coupled compared with the untransfected UMR cells, but the UMR/Cx45 transfectants demonstrated no increase in dye transfer. These data demonstrate that different gap junction proteins create channels with different molecular permeabilities; they suggest that different connexins permit different types of signalling between cells.  相似文献   

17.
An indirect immunogold labeling technique was applied to replicas of freeze-fractured membranes of rapidly frozen unfixed cells. The endogenous gap junction protein Cx43 of BICR/M1Rkrat mammary tumor cells was preferentially identified in quasi-crystalline gap junction plaques as were the transfected connexins Cx40, Cx43, and Cx45 in HeLa (human cervical carcinoma) cells. With this method we also detected contact areas with dispersed gap junction channels which are the only structural correlation for endogenous Cx45 in HeLa wild-type cells where no gap junction plaques exist. In double-transfected HeLa cells a colocalization of Cx40 and Cx43 was occasionally detected in quasi-crystalline gap junction plaques, whereas in contact areas with dispersed particles only one Cx type was present. Our results indicate that functional gap junction channels exist outside the quasi-crystalline plaques.  相似文献   

18.
Most cells can communicate directly via gap junction channels. Gap junction intercellular communication (GJIC) participates in the control of cell proliferation. Abnormal expression of connexins (Cx), the constitutive proteins of gap junctions, has been associated with a transformed phenotype. In the seminiferous tubules, connexin Cx43 is predominantly expressed by Sertoli cell and germinal cell membranes. We studied Cx43 expression in four testicular cancers (pure seminoma). Cx43 mRNA and protein characterized by RT PCR and Western blot were found to be similar to controls (normal testes) in each case. However, immunofluorscence study of Cx43 protein indicated a cytoplasmic localization with no membrane expression, excluding the participation of Cx43 in GJIC. The significance of this aberrant localization will be discussed in relation to carcinogenesis.  相似文献   

19.
Post-translational modifications of connexins play an important role in the regulation of gap junction and hemichannel permeability. The prerequisite for the formation of functional gap junction channels is the assembly of connexin proteins into hemichannels and their insertion into the membrane. Hemichannels can affect cellular processes by enabling the passage of signaling molecules between the intracellular and extracellular space. For the intercellular communication hemichannels from one cell have to dock to its counterparts on the opposing membrane of an adjacent cell to allow the transmission of signals via gap junctions from one cell to the other. The controlled opening of hemichannels and gating properties of complete gap junctions can be regulated via post-translational modifications of connexins. Not only channel gating, but also connexin trafficking and assembly into hemichannels can be affected by post-translational changes. Recent investigations have shown that connexins can be modified by phosphorylation/dephosphorylation, redox-related changes including effects of nitric oxide (NO), hydrogen sulfide (H2S) or carbon monoxide (CO), acetylation, methylation or ubiquitination. Most of the connexin isoforms are known to be phosphorylated, e.g. Cx43, one of the most studied connexin at all, has 21 reported phosphorylation sites. In this review, we provide an overview about the current knowledge and relevant research of responsible kinases, connexin phosphorylation sites and reported effects on gap junction and hemichannel regulation. Regarding the effects of oxidants we discuss the role of NO in different cell types and tissues and recent studies about modifications of connexins by CO and H2S.  相似文献   

20.
Gap junction-mediated electrical coupling contributes to synchronous oscillatory activities of neurons, and considerable progress has been made in defining the molecular composition of gap junction channels. In particular, cloning and functional expression of gap junction proteins (connexins (Cx)) from zebrafish retina have shown that this part of the brain possesses a high degree of connexin diversity that may account for differential functional properties of electrical synapses. Here, we report the cloning and functional characterization of a new connexin, designated zebrafish Cx52.6 (zfCx52.6). This connexin shows little similarity to known connexins from fish and higher vertebrates. By combining in situ hybridization with Laser Capture Microdissection and RT-PCR, we found that this novel fish connexin is expressed in horizontal cells in the inner nuclear layer of the retina. Functional expression of zfCx52.6 in neuroblastoma cells and Xenopus oocytes led to functional gap junctional channels and, in single oocytes, induced large non-junctional membrane currents indicative of the formation of hemichannels, which were inhibited in reversible fashion by raising extracellular Ca(2+) concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号