首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the effects of acute and chronic psychogenic stress on the activation pattern of enkephalin-containing perikarya in the rat ventrolateral medulla. Rats allocated to the chronic stress groups were subjected to 90 min of immobilization for 10 days. On the 11th day, the chronically stressed rats were exposed to homotypic (90-min immobilization) or to heterotypic but still psychogenic (90-min immobilization coupled to air jet stress) stress. The acute stress group was subjected once to an acute 90-min immobilization. For each group, the rats were anesthetized either before stress (time 0) or 90, 180, and 270 min after the onset of stress. Brain sections were then processed using immunocytochemistry (Fos protein) followed by radioactive in situ hybridization histochemistry (enkephalin mRNA). Following immobilization, the acute group displayed a marked increase in the number of activated enkephalin-containing perikarya within the paragigantocellularis and lateral reticular nuclei. This level of activation was sustained up to 180 min following the onset of the immobilization stress and had returned to baseline levels by 270 min from the initiation of the stress. However, this stress-induced activation of enkephalin-containing perikarya of the ventrolateral medulla was not seen following either homotypic or heterotypic stress in the chronically stressed group. These results provide evidence that enkephalin-containing perikarya of the ventrolateral medulla may constitute a potential circuit through which they regulate some aspect of the stress responses. Conversely, this enkephalinergic influence from the ventrolateral medulla was shown to be absent following chronic stress exposure. This would suggest a decrease in enkephalin inhibitory input originating from the ventrolateral medulla, thereby allowing a neuroendocrine and/or autonomic response to chronic stress.  相似文献   

2.
3.
《Hormones and behavior》2009,55(5):654-661
We have previously reported that a single exposure to immobilization (IMO) in rats causes a long-term desensitization of the hypothalamic-pituitary-adrenal (HPA) response to the same (homotypic) stressor. Since there are reports showing that a single exposure to other stressors causes sensitization of the HPA response to heterotypic stressors and increases anxiety-like behavior, we studied in the present work the long-term effects of IMO on behavioral and HPA response to mild superimposed stressors. In Experiments 1 and 2, adult male Sprague–Dawley rats were subjected to 2 h of IMO and then exposed for 5 min to the elevated plus-maze (EPM) at 1, 3 or 7 days after IMO. Blood samples were taken at 15 min after initial exposure to the EPM. Increases in anxiety-like behavior and HPA responsiveness to the EPM were found at all times post-IMO. Changes in the resting levels of HPA hormones did not explain the enhanced HPA responsiveness to the EPM (Experiment 3). In Experiments 4 and 5, we studied the effects of a single exposure to a shorter session of IMO (1 h) on behavioral and HPA responses to a brief and mild session of foot-shocks done 10 days after IMO. Neither previous IMO nor exposure to shocks in control rats modified behavior in the EPM. However, a brief session of shocks in previously IMO-exposed rats dramatically increased anxiety in the EPM. HPA and freezing responses to shocks were similar in control and previous IMO groups. Therefore, a single exposure to IMO appears to induce long-lasting HPA and behavioral sensitization to mild superimposed stressors, although the two responses are likely to be at least partially independent. Long-term effects of IMO on the susceptibility to stress-induced endocrine and emotional disturbances may be relevant to the characterization of animal models of post-traumatic stress.  相似文献   

4.
We have previously reported that a single exposure to immobilization (IMO) in rats causes a long-term desensitization of the hypothalamic-pituitary-adrenal (HPA) response to the same (homotypic) stressor. Since there are reports showing that a single exposure to other stressors causes sensitization of the HPA response to heterotypic stressors and increases anxiety-like behavior, we studied in the present work the long-term effects of IMO on behavioral and HPA response to mild superimposed stressors. In Experiments 1 and 2, adult male Sprague–Dawley rats were subjected to 2 h of IMO and then exposed for 5 min to the elevated plus-maze (EPM) at 1, 3 or 7 days after IMO. Blood samples were taken at 15 min after initial exposure to the EPM. Increases in anxiety-like behavior and HPA responsiveness to the EPM were found at all times post-IMO. Changes in the resting levels of HPA hormones did not explain the enhanced HPA responsiveness to the EPM (Experiment 3). In Experiments 4 and 5, we studied the effects of a single exposure to a shorter session of IMO (1 h) on behavioral and HPA responses to a brief and mild session of foot-shocks done 10 days after IMO. Neither previous IMO nor exposure to shocks in control rats modified behavior in the EPM. However, a brief session of shocks in previously IMO-exposed rats dramatically increased anxiety in the EPM. HPA and freezing responses to shocks were similar in control and previous IMO groups. Therefore, a single exposure to IMO appears to induce long-lasting HPA and behavioral sensitization to mild superimposed stressors, although the two responses are likely to be at least partially independent. Long-term effects of IMO on the susceptibility to stress-induced endocrine and emotional disturbances may be relevant to the characterization of animal models of post-traumatic stress.  相似文献   

5.
Centrally released oxytocin (OT) is believed to attenuate the response of the hypothalamic-pituitary-adrenal (HPA) axis to psychogenic stress. To test this hypothesis, we measured plasma corticosterone concentrations and Fos-immunoreactive protein in the paraventricular nucleus of the hypothalamus (PVN) and limbic brain areas of female wild-type and OT knockout mice that were exposed to a shaker platform, a predominantly psychogenic stress. Plasma corticosterone concentrations after shaker stress were higher in female OT knockout mice than wild-type mice. Genotypic differences in the corticosterone response after shaker stress persisted across all stages of the estrous cycle and when mice were conditioned to repeated shaker stress. Shaker stress activated Fos in OT-positive neurons of wild-type mice and corticotropin-releasing hormone-positive, but not vasopressin-positive, neurons within the PVN of wild-type and OT knockout mice. Fos expression was also increased after shaker stress in the bed nucleus of the stria terminalis, medial and central nuclei of the amygdala, medial preoptic area, and the paraventricular nucleus of the thalamus of wild-type and OT knockout mice. However, Fos expression in the medial amygdala was significantly lower in female OT knockout mice than wild-type mice. Our findings indicate heightened stress-induced corticosterone release in female OT knockout mice. Therefore, the results suggest that OT pathways play a role in attenuating the HPA axis response to psychogenic stress in female mice.  相似文献   

6.
A single exposure to a severe emotional stressor such as immobilization in wooden boards (IMO) causes long‐term (days to weeks) peripheral and central desensitization of the hypothalamic‐pituitary‐adrenal (HPA) response to the same (homotypic) stressor. However, the brain areas putatively involved in long‐term desensitization are unknown. In the present experiment, adult male rats were subjected to 2 h of IMO and, 1 or 4 weeks later, exposed again to 1 h IMO together with stress‐naive rats. C‐fos mRNA activation just after IMO and 1 h after the termination of IMO (post‐IMO) were evaluated by in situ hybridization. Whereas in most brain areas c‐fos mRNA induction caused by the last IMO session was similar in stress‐naive (controls) and previously immobilized rats, a few brain areas showed a reduced c‐fos mRNA response: ventral lateral septum (LSv), medial amygdala (MeA), parvocellular region of the paraventricular hypothalamic nucleus (pPVN), and locus coeruleus (LC). In contrast, an enhanced expression was observed in the medial division of the bed nucleus stria terminalis (BSTMv). The present work demonstrates that a previous experience with a stressor can induce changes in c‐fos mRNA expression in different brain areas in response to the homotypic stressor and suggests that LSv, MeA, and BSTMv may be important for providing signals to lower diencephalic (pPVN) and brainstem (LC) nuclei, which results in a lower physiological response to the homotypic stressor. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

7.
8.
Stress and obesity are highly prevalent conditions, and the mechanisms through which stress affects food intake are complex. In the present study, stress-induced activation in neuropeptide systems controlling ingestive behavior was determined. Adult male rats were exposed to acute (30 min/d × 1 d) or repeated (30 min/d × 14 d) restraint stress, followed by transcardial perfusion 2 h after the termination of the stress exposure. Brain tissues were harvested, and 30 μm sections through the hypothalamus were immunohistochemically stained for Fos protein, which was then co-localized within neurons staining positively for the type 4 melanocortin receptor (MC4R), the glucagon-like peptide-1 receptor (GLP1R), or agouti-related peptide (AgRP). Cell counts were performed in the paraventricular (PVH), arcuate (ARC) and ventromedial (VMH) hypothalamic nuclei and in the lateral hypothalamic area (LHA). Fos was significantly increased in all regions except the VMH in acutely stressed rats, and habituated with repeated stress exposure, consistent with previous studies. In the ARC, repeated stress reduced MC4R cell activation while acute restraint decreased activation in GLP1R neurons. Both patterns of stress exposure reduced the number of AgRP-expressing cells that also expressed Fos in the ARC. Acute stress decreased Fos-GLP1R expression in the LHA, while repeated restraint increased the number of Fos-AgRP neurons in this region. The overall profile of orexigenic signaling in the brain is thus enhanced by acute and repeated restraint stress, with repeated stress leading to further increases in signaling, in a region-specific manner. Stress-induced modifications to feeding behavior appear to depend on both the duration of stress exposure and regional activation in the brain. These results suggest that food intake may be increased as a consequence of stress, and may play a role in obesity and other stress-associated metabolic disorders.  相似文献   

9.
A single exposure to a severe emotional stressor such as immobilization in wooden boards (IMO) causes long-term (days to weeks) peripheral and central desensitization of the hypothalamic-pituitary-adrenal (HPA) response to the same (homotypic) stressor. However, the brain areas putatively involved in long-term desensitization are unknown. In the present experiment, adult male rats were subjected to 2 h of IMO and, 1 or 4 weeks later, exposed again to 1 h IMO together with stress-naive rats. C-fos mRNA activation just after IMO and 1 h after the termination of IMO (post-IMO) were evaluated by in situ hybridization. Whereas in most brain areas c-fos mRNA induction caused by the last IMO session was similar in stress-naive (controls) and previously immobilized rats, a few brain areas showed a reduced c-fos mRNA response: ventral lateral septum (LSv), medial amygdala (MeA), parvocellular region of the paraventricular hypothalamic nucleus (pPVN), and locus coeruleus (LC). In contrast, an enhanced expression was observed in the medial division of the bed nucleus stria terminalis (BSTMv). The present work demonstrates that a previous experience with a stressor can induce changes in c-fos mRNA expression in different brain areas in response to the homotypic stressor and suggests that LSv, MeA, and BSTMv may be important for providing signals to lower diencephalic (pPVN) and brainstem (LC) nuclei, which results in a lower physiological response to the homotypic stressor.  相似文献   

10.
Homomeric gap junction channels are composed solely of oneconnexin type, whereas heterotypic forms contain two homomeric hemichannels but the six identical connexins of each are different fromeach other. A heteromeric gap junction channel is one that containsdifferent connexins within either or both hemichannels. The existenceof heteromeric forms has been suggested, and many cell types are knownto coexpress connexins. To determine if coexpressed connexins wouldform heteromers, we cotransfected rat connexin43 (rCx43) and humanconnexin37 (hCx37) into a cell line normally devoid of any connexinexpression and used dual whole cell patch clamp to compare the observedgap junction channel activity with that seen in cells transfected onlywith rCx43 or hCx37. We also cocultured cells transfected with hCx37 orrCx43, in which one population was tagged with a fluorescent marker tomonitor heterotypic channel activity. The cotransfected cells possessedchannel types unlike the homotypic forms of rCx43 or hCx37 or theheterotypic forms. In addition, the noninstantaneous transjunctionalconductance-transjunctional voltage(Gj/Vj)relationship for cotransfected cell pairs showed a large range ofvariability that was unlike that of the homotypic or heterotypic form.The heterotypic cell pairs displayed asymmetric voltage dependence. Theresults from the heteromeric cell pairs are inconsistent with summedbehavior of two independent homotypic populations or mixed populationsof homotypic and heterotypic channels types. TheGj/Vjdata imply that the connexin-to-connexin interactions are significantlyaltered in cotransfected cell pairs relative to the homotypic andheterotypic forms. Heteromeric channels are a population of channelswhose characteristics could well impact differently from theirhomotypic counterparts with regard to multicellular coordinatedresponses.

  相似文献   

11.
12.
The role of hypothalamic structures in the regulation of chronic stress responses was studied by lesioning the mediobasal hypothalamus or the paraventricular nucleus of hypothalamus (PVH). Rats were acutely (60 min) and/or repeatedly (for 7 days) restrained. In controls, a single restraint elevated the plasma adrenocorticotropin (ACTH), corticosterone, and prolactin levels. Repeated restraint produced all signs of chronic stress, including decreased body and thymus weights, increased adrenal weight, basal corticosterone levels, and proopiomelanocortin (POMC) mRNA expression in the anterior pituitary. Some adaptation to repeated restraint of the ACTH response, but not of other hormonal responses, was seen. Lesioning of the mediobasal hypothalamus abolished the hormonal response and POMC mRNA activation to acute and/or repeated restraint, suggesting that the hypothalamo-pituitary-adrenal axis activation during repeated restraint is centrally driven. PVH lesion inhibited the ACTH and corticosterone rise to the first restraint by approximately 50%. In repeatedly restrained rats with PVH lesion, the ACTH response to the last restraint was reduced almost to basal control levels, and the elevation of POMC mRNA level was prevented. PVH seems to be important for the repeated restraint-induced ACTH and POMC mRNA stimulation, but it appears to partially mediate other restraint-induced hormonal changes.  相似文献   

13.
Kim GN  Kang CY 《Journal of virology》2005,79(15):9588-9596
Defective interfering (DI) particles of Indiana serotype of vesicular stomatitis virus (VSV(Ind)) are capable of interfering with the replication of both homotypic VSV(Ind) and heterotypic New Jersey serotype (VSV(NJ)) standard virus. In contrast, DI particles from VSV(NJ) do not interfere with the replication of VSV(Ind) standard virus but do interfere with VSV(NJ) replication. The differences in the interfering activities of VSV(Ind) DI particles and VSV(NJ) DI particles against heterotypic standard virus were investigated. We examined the utilization of homotypic and heterotypic VSV proteins by DI particle genomic RNAs for replication and maturation into infectious DI particles. Here we show that the RNA-nucleocapsid protein (N) complex of one serotype does not utilize the polymerase complex (P and L) of the other serotype for RNA synthesis, while DI particle genomic RNAs of both serotypes can utilize the N, P, and L proteins of either serotype without serotypic restriction but with differing efficiencies as long as all three proteins are derived from the same serotype. The genomic RNAs of VSV(Ind) DI particles assembled and matured into DI particles by using either homotypic or heterotypic viral proteins. In contrast, VSV(NJ) DI particles could assemble only with homotypic VSV(NJ) viral proteins, although the genomic RNAs of VSV(NJ) DI particles could be replicated by using heterotypic VSV(Ind) N, P, and L proteins. Thus, we concluded that both efficient RNA replication and assembly of DI particles are required for the heterotypic interference by VSV DI particles.  相似文献   

14.
The recognition that rotaviruses are the major cause of life-threatening diarrheal disease and significant morbidity in young children has focused efforts on disease prevention and control of these viruses. Although the correlates of protection in children remain unclear, some studies indicate that serotype-specific antibody is important. Based on this premise, current live attenuated reassortant rotavirus vaccines include the four predominant serotypes of virus. We are evaluating subunit rotavirus vaccines, 2/6/7-VLPs and 2/4/6/7-VLPs, that contain only a single VP7 of serotype G1 or G3. In mice immunized parenterally twice, G3 virus-like particles (VLPs) induced a homotypic, whereas G1 VLPs induced a homotypic and heterotypic (G3) serum neutralizing immune response. Administration of three doses of G1 or G3 VLPs induced serum antibodies that neutralized five of seven different serotype test viruses. The inclusion of VP4 in the VLPs was not essential for the induction of heterotypic neutralizing antibody in mice. To confirm these results in another species, rabbits were immunized parenterally with two doses of 2/4/6/7-VLPs containing a G3 or G1 VP7, sequentially with G3 VLPs followed by G1 (G3/G1) VLPs, or with live or psoralen-inactivated SA11. High-titer homotypic serum neutralizing antibody was induced in all rabbits, and low-level heterotypic neutralizing antibody was induced in a subset of rabbits. The rabbits immunized with the G1 or G3/G1 VLPs in QS-21 were challenged orally with live G3 ALA rotavirus. Protection levels were similar in rabbits immunized with homotypic G3 2/4/6/7-VLPs, heterotypic G1 2/4/6/7-VLPs, or G3/G1 2/4/6/7-VLPs. Therefore, G1 2/4/6/7-VLPs can induce protective immunity against a live heterotypic rotavirus challenge in an adjuvant with potential use in humans. Following challenge, broad serum heterotypic neutralizing antibody responses were detected in rabbits parenterally immunized with G1, G3/G1, or G3 VLPs but not with SA11. Immunization with VLPs may provide sufficient priming of the immune system to induce protective anamnestic heterotypic neutralizing antibody responses upon subsequent rotavirus infection. Therefore, a limited number of serotypes of VLPs may be sufficient to provide a broadly protective subunit vaccine.  相似文献   

15.
Hydra, a member of the diploblastic phylum Cnidaria, exhibits the most basic type of organized metazoan tissues. Two unicellular sheets of polarized epithelial cells - ectoderm and endoderm - form a double layer throughout the body column. The double layer can be reestablished from single-cell suspensions by tissue-specific cell-sorting processes. However, the underlying pattern of interactions between ectodermal and endodermal epithelial cells responsible for double-layer formation is unclear. By analyzing cell interactions in a quantitative adhesion assay using mechanically dissociated Hydra epithelial cells, we show that aggregation proceeds in two steps. First, homotypic interactions within ectodermal epithelial cells (ecto-ecto) and within endodermal epithelial cells (endo-endo) form homotypic cell clusters. Second, at an aggregate size of about ten epithelial cells/cluster, ectodermal and endodermal clusters start to form heterotypic aggregates. Homotypic ecto-ecto interactions are inhibited by a polyclonal anti-Hydra membrane antiserum, and under these conditions homotypic endo-endo interactions do not proceed beyond a size of about ten epithelial cells/cluster. These data suggest that homotypic cell clusters reduce their initial homotypic affinity and acquire a new heterotypic affinity. A link between cell adhesion and cell signaling in early Hydra aggregates is discussed.  相似文献   

16.
The Tetrahymena nonreversal (TNR) mutants of Tetrahymena thermophila are behavioral mutants with nonexcitable membranes. When cells of the tnrB mutant were mated with wild type, a phenotypic change occurred about 1 h after pair formation. The pairs began to lose their heterotypic character in stimulation solution containing high potassium and, within 1 1/2 h, they were not distinguishable from the wild-type homotypic pairs. On the contrary, although pairs of the tnrA and wild type also lost their heterotypic character about 1 1/2 h after pair formation, they never showed a full response as wild-type homotypic pairs. When tnrA was mated with tnrB, more than 50% of pairs expressed a heterotypic pair character 2 h after pair formation, consistent with the tnrB defect having been rescued but not the tnrA defect. Thus, conjugation rescue of the mutant phenotype is locus dependent and probably reflects the nature of the gene products controlling voltage-dependent Ca2+ channels.  相似文献   

17.
Many cardiovascular cells coexpress multiple connexins (Cx), leading to the potential formation of mixed (heteromeric) gap junction hemichannels whose biophysical properties may differ from homomeric channels containing only one connexin type. We examined the potential interaction of connexin Cx43 and Cx40 in HeLa cells sequentially stably transfected with these two connexins. Immunoblots verified the production of comparable amounts of both connexins, cross-linking showed that both connexins formed oligomers, and immunofluorescence showed extensive colocalization. Moreover, Cx40 copurified with (His)(6)-tagged Cx43 by affinity chromatography of detergent-solubilized connexons, demonstrating the presence of both connexins in some hemichannels. The dual whole cell patch-clamp method was used to compare the gating properties of gap junctions in HeLa Cx43/Cx40 cells with homotypic (Cx40-Cx40 and Cx43-Cx43) and heterotypic (Cx40-Cx43) gap junctions. Many of the observed single channel conductances resembled those of homotypic or heterotypic channels. The steady-state junctional conductance (g(j,ss)) in coexpressing cell pairs showed a reduced sensitivity to the voltage between cells (V(j)) compared with homotypic gap junctions and/or an asymmetrical V(j) dependence reminiscent of heterotypic gap junctions. These gating properties could be fit using a combination of homotypic and heterotypic channel properties. Thus, whereas our biochemical evidence suggests that Cx40 and Cx43 form heteromeric connexons, we conclude that they are functionally insignificant with regard to voltage-dependent gating.  相似文献   

18.
Prior microinjection of the GABA(A)-receptor agonist muscimol into the dorsomedial hypothalamus (DMH) in conscious rats attenuates the increases in heart rate, blood pressure, and circulating adrenocorticotrophic hormone seen in air stress. Here, we examined the effect of similar treatment on air stress- or hemorrhage-induced Fos expression in the paraventricular nucleus (PVN). Muscimol (80 pmol/100 nl per side) or saline (100 nl per side) was microinjected bilaterally into the DMH in conscious rats before either air stress, an emotional or neurogenic stressor, or graded hemorrhage, a physiological stressor. Each stressor evoked a characteristic pattern of Fos expression in the parvocellular and magnocellular PVN after saline. Injection of muscimol into the DMH suppressed Fos expression in the PVN associated with air stress but not with hemorrhage. Injection of muscimol at sites anterior to the DMH and closer to the PVN had no effect on Fos expression in the PVN after air stress. Thus activation of neurons in the DMH is necessary for excitation of neurons in the PVN during air stress but not during hemorrhage.  相似文献   

19.
BACKGROUND AND OBJECTIVES: Two serotypes of autonomously replicating parvoviruses infect laboratory mice. Genome regions coding for the nonstructural proteins of minute virus of mice [MVM] and mouse parvovirus [MPV] are almost identical, whereas capsid-coding sequences are divergent. We addressed these questions: Does humoral immunity confer protection from acute infection after challenge with homotypic or heterotypic parvovirus, and if it confers protection against acute MPV infection, does it also protect against persistent MPV infection? METHODS: Infant mice without maternal antibody or antibody to MVM or MPV and young adult mice given normal mouse serum or antibody to MVM or MPV were challenged with homotypic or heterotypic virus. In situ hybridization with target tissues was the indicator of infection. RESULTS: Humoral immunity failed to confer protection against acute heterotypic parvovirus infection. In passive transfer studies, MPV DNA was observed occasionally in lymph nodes, intestine, or the spleen of MPV-challenged mice given homotypic antibody and kept for 6 or 28 days. Variable proportions of mice given MPV antibody and homotypic challenge had viral DNA in lymphoid tissues 56 days after virus inoculation. CONCLUSION: A mouse or colony that has sustained infection with MVM or MPV is probably fully susceptible to infection with the heterotypic virus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号