首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
There are currently no models of exercise that recruit and train muscles, such as the rat spinotrapezius, that are suitable for transmission intravital microscopic investigation of the microcirculation. Recent experimental evidence supports the concept that running downhill on a motorized treadmill recruits the spinotrapezius muscle of the rat. Based on these results, we tested the hypothesis that 6 wk of downhill running (-14 degrees grade) for 1 h/day, 5 days/wk, at a speed of up to 35 m/min, would 1) increase whole body peak oxygen uptake (Vo(2 peak)), 2) increase spinotrapezius citrate synthase activity, and 3) reduce the fatigability of the spinotrapezius during electrically induced 1-Hz submaximal tetanic contractions. Trained rats (n = 6) elicited a 24% higher Vo(2 peak) (in ml.min(-1).kg(-1): sedentary 58.5 +/- 2.0, trained 72.7 +/- 2.0; P < 0.001) and a 41% greater spinotrapezius citrate synthase activity (in mumol.min(-1).g(-1): sedentary 14.1 +/- 0.7, trained 19.9 +/- 0.9; P < 0.001) compared with sedentary controls (n = 6). In addition, at the end of 15 min of electrical stimulation, trained rats sustained a greater percentage of the initial tension than their sedentary counterparts (control 34.3 +/- 3.1%, trained 59.0 +/- 7.2%; P < 0.05). These results demonstrate that downhill running is successful in promoting training adaptations in the spinotrapezius muscle, including increased oxidative capacity and resistance to fatigue. Since the spinotrapezius muscle is commonly used in studies using intravital microscopy to examine microcirculatory function at rest and during contractions, our results suggest that downhill running is an effective training paradigm that can be used to investigate the mechanisms for improved microcirculatory function following exercise training in health and disease.  相似文献   

2.
Treadmill training increases functionalvasodilation in the rat spinotrapezius muscle, although there is noacute increase in blood flow and no increase in oxidative capacity. Toassess concurrent changes in vascular reactivity, we measured arterial diameters in the spinotrapezius muscle of sedentary (Sed) and treadmill-trained (Tr; 9-10 wk; terminal intensity 30 m/min,1.5° incline, for 90 min) rats during iontophoretic application of norepinephrine, epinephrine (Epi), andH+ (HCl) and during superfusionwith adenosine. Terminal-feed arteries and first-order arterioles in Trrats constricted more than those in Sed rats at the higher currentdoses of norepinephrine and Epi. In contrast, at low-current doses ofEpi, first- and second-order arterioles dilated in Tr but not in Sedrats. The vascular responses to HCl were highly variable, butsecond-order arterioles of Tr rats constricted more than those of Sedrats at intermediate-current doses. There were no significantdifferences between Sed and Tr rats in the vascular responses toadenosine. Both adrenergic vasodilation and vasoconstriction wereenhanced in the spinotrapezius muscle of Tr rats, and enhancedadrenergic vasodilation may contribute to increased functionalvasodilation. These observations further demonstrate vascularadaptations in "nontrained" skeletal muscle tissues.

  相似文献   

3.
The effects of endurance exercise training on adipose tissue have been investigated in female lean Zucker rats. Adult trained rats (TR) were followed throughout a swimming program of 5 wk and were compared with a littermate control sedentary group (SED). Data were collected on days 0, 14, 24, and 36 of the training program. Body weight gain and cumulative food intake were significantly lower in TR than in SED (P less than 0.05). Gastrocnemius citrate synthase activity was increased in TR by day 14 of training (P less than 0.05) and was followed by a second significant increase between days 24 and 36 (P less than 0.05). Although inguinal (ING), parametrial (PAR), and retroperitoneal (RP) cell sizes were decreased by the swimming program (P less than 0.05), adipose tissue lipoprotein lipase (LPL) activity was suppressed (P less than 0.05) by training during the first 24 days in PAR and RP depots only. Thereafter, PAR and RP LPL activities increased in TR animals (P less than 0.05) to reach values similar to SED at the end of the study. These results further establish the regionally specific response of adipose tissue metabolism to endurance training. They also suggest that, when fat cell triacylglycerol depletion reaches a smaller level, LPL activity could be involved in the process of stabilizing fat cell size.  相似文献   

4.
To determine whether microvessels in resting or contracting skeletal muscle constrict during baroreceptor activation, vascular diameters were measured in the spinotrapezius muscle of adult rats (n = 12) during occlusion of the common carotid arteries. Neural and myogenic components were distinguished using two types of occlusion: 1) "normal" (arterial pressure was allowed to increase with baroreceptor activation) and 2) "isobaric" (arterial pressure was maintained constant by decreasing blood volume). During normal occlusions, intermediate and small arteriolar diameters decreased in resting and contracting muscle (10-15% and 25-30%, respectively). Large arterioles and all-sized venules distended slightly (approximately 5%) in resting muscle, but diameters were maintained or decreased in contracting muscle. When arterial pressure was maintained constant (isobaric), the microvascular responses to baroreceptor activation in both resting and contracting muscle were essentially eliminated. We conclude that nearly all the arteriolar constriction observed in the spinotrapezius muscle during normal carotid artery occlusion is myogenic in origin, secondary to increased arterial pressure. This pressure-dependent constriction is augmented during skeletal muscle contraction and functional vasodilation.  相似文献   

5.
Neutrophil-endothelial adhesion in venules and progressive vasoconstriction in arterioles seem to be important microcirculatory events contributing to the low flow state associated with ischemia-reperfusion injury of skeletal muscle. Although the neutrophil CD-18 adherence function has been shown to be a prerequisite to the vasoconstrictive response, the vasoactive substances involved remain unknown. The purpose of this study was to evaluate the role of thromboxane A2 receptor in the arteriole vasoactive response to ischemia-reperfusion injury. An in vivo microscopy preparation of transilluminated gracilis muscle in male Wistar rats (175 +/- 9 g) (n = 12) was used for this experiment. Three experimental groups were evaluated in this study: (1) sham, flap raised, no ischemia (20 venules, 20 arterioles), (2) 4 hours of global ischemia only (19 venules, 22 arterioles), and (3) 4 hours of global ischemia + thromboxane A2 receptor antagonist (ONO-3708) (17 venules, 20 arterioles). ONO-3708 (5 mg/kg), a specific competitive antagonist of thromboxane A2 receptor, was infused at a rate of 0.04 ml/minute into the contralateral femoral vein 30 minutes before reperfusion. Mean arterial blood pressure was not changed at this dose of ONO-3708 (88 +/- 6 mmHg before infusion, 81 +/- 4 mmHg after infusion, n = 3). The number of leukocytes rolling and adherent to endothelium (15-sec observation) were counted in 100-microm venular segments, and arteriole diameters were measured at 5, 15, 30, 60, and 120 minutes of reperfusion. Leukocyte counts and arteriole diameters were analyzed with two-way factorial analysis of variance for repeated measures and Duncan's post hoc mean comparison. Statistical significance was indicated by a p < or = 0.05. The ischemia-reperfusion-induced vasoconstriction was significantly reduced by the thromboxane A2 receptor antagonist (ONO-3708). The mean arteriole diameters at 30, 60, and 120 minutes reperfusion were significantly greater in the treated animals than in the ischemia-reperfusion controls. Despite a significant increase in treated mean arteriole diameters, 30 percent of arterioles still demonstrated vasoconstriction. Neutrophil-endothelial adherence was not reduced by ONO-3708. Thromboxane A2 receptor blockade significantly reduces but does not eliminate ischemia-reperfusion-induced vasoconstriction in this model. This finding suggests that additional and perhaps more important vasoactive mediators contribute to vasoconstriction. Furthermore, thromboxane A2 receptor blockade has no effect on polymorphonuclear endothelial adherence.  相似文献   

6.
Recent research suggests that LKB1 is the major AMP-activated protein kinase kinase (AMPKK). Peroxisome-proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) is a master coordinator of mitochondrial biogenesis. Previously we reported that skeletal muscle LKB1 protein increases with endurance training. The purpose of this study was to determine whether training-induced increases in skeletal muscle LKB1 and PGC-1alpha protein exhibit a time course and intensity-dependent response similar to that of citrate synthase. Male Sprague-Dawley rats completed endurance- and interval-training protocols. For endurance training, rats trained for 4, 11, 25, or 53 days. Interval-training rats trained identically to endurance-trained rats, except that after 25 days interval training was combined with endurance training. Time course data were collected from endurance-trained red quadriceps (RQ) after each time point. Interval training data were collected from soleus, RQ, and white quadriceps (WQ) muscle after 53 days only. Mouse protein 25 (MO25) and PGC-1alpha protein increased significantly after 4 days. Increased citrate synthase activity, increased LKB1 protein, and decreased AMPKK activity were found after 11 days. Maximal increases occurred after 4 days for hexokinase II, 25 days for MO25, and 53 days for citrate synthase, LKB1, and PGC-1alpha. In WQ, but not RQ or soleus, interval training had an additive effect to endurance training and induced significant increases in all proteins measured. These results demonstrate that LKB1 and PGC-1alpha protein abundances increase with endurance and interval training similarly to citrate synthase. The increase in LKB1 and PGC-1alpha with endurance and interval training may function to maintain the training-induced increases in mitochondrial mass.  相似文献   

7.
Obese individuals exhibit impaired functional vasodilation and exercise performance. We have demonstrated in obese Zucker rats (OZ), a model of morbid obesity, that insulin resistance impairs functional vasodilation via an increased thromboxane receptor (TP)-mediated vasoconstriction. Chronic treadmill exercise training improves functional vasodilation in the spinotrapezius muscle of the OZ, but the mechanisms responsible for the improvement in functional vasodilation are not clear. Based on evidence that exercise training improves insulin resistance, we hypothesized that, in the OZ, exercise training increases functional vasodilation and exercise capability due to decreases TP-mediated vasoconstriction associated with improved insulin sensitivity. Six-week-old lean Zucker rats (LZ) and OZ were exercised on a treadmill (24 m/min, 30 min/day, 5 days/wk) for 6 wk. An oral glucose tolerance test was performed at the end of the training period. We measured functional vasodilation in both exercise trained (spinotrapezius) and nonexercise trained (cremaster) muscles to determine whether the improved functional vasodilation following exercise training in OZ is due to a systemic improved insulin resistance. Compared with LZ, the sedentary OZ exhibited impairments in glucose tolerance and functional vasodilation in both muscles. The TP antagonist SQ-29548 improved the vasodilator responses in the sedentary OZ with no effect in the LZ. Exercising training of the LZ increased the functional vasodilation in spinotrapezius muscle, with no effect in the cremaster muscle. Exercising training of the OZ improved glucose tolerance, along with increased functional vasodilation, in both the spinotrapezius and cremaster muscles. SQ-29548 treatment had no effect on the vasodilator responses in either cremaster or spinotrapezius muscles of the exercise-trained OZ. These results suggest that, in the OZ, there is a global effect of exercising training to improve insulin resistance and increase functional vasodilation via a decreased TP-mediated vasoconstriction.  相似文献   

8.
Coronary arterioles of exercise-trained (EX) pigs have enhanced nitric oxide (NO.)-dependent dilation. Evidence suggests that the biological half-life of NO. depends in part on the management of the superoxide anion. The purpose of this study was to test the hypothesis that expression of cytosolic copper/zinc-dependent superoxide dismutase (SOD)-1 is increased in coronary arterioles as a result of exercise training. Male Yucatan pigs either remained sedentary (SED, n = 4) or were EX (n = 4) on a motorized treadmill for 16-20 wk. Individual coronary arterioles ( approximately 100-microm unpressurized internal diameter) were dissected and frozen. Coronary arteriole SOD-1 protein (via immunoblots) increased as a result of exercise training (2.16 +/- 0.35 times SED levels) as did SOD-1 enzyme activity (measured via inhibition of pyrogallol autooxidation; approximately 75% increase vs. SED). In addition, SOD-1 mRNA levels (measured via RT-PCR) were higher in EX arterioles (1.68 +/- 0.16 times the SED levels). There were no effects of exercise training on the levels of SOD-2 (mitochondrial), catalase, or p67(phox) proteins. Thus chronic aerobic exercise training selectively increases the levels of SOD-1 mRNA, protein, and enzymatic activity in porcine coronary arterioles. Increased SOD-1 could contribute to the enhanced NO.-dependent dilation previously observed in EX porcine coronary arterioles by improving management of superoxide in the vascular cell environment, thus prolonging the biological half-life of NO.  相似文献   

9.
Moderate physical training is often associated with improved cardiorespiratory fitness in athletes and the general population. In animals, studies are designed to investigate basic physiology that could be invasive and uncomfortable for humans. The standardization of an exercise training protocol for rats based on maximal consumption of oxygen (VO(2)max) is needed. This study validated a program of moderate physical training for Wistar rats based on VO(2)max determined once a week. A 10-stage treadmill running test was developed to measure VO(2)max through an indirect, open circuit calorimeter. Thirty male Wistar rats (210-226 g) were randomly assigned to either a nontrained group or a trained group. The animals were evaluated weekly to follow their VO(2)max during 8 weeks of moderate training and to adjust the intensity of the protocol of training. The soleus muscle was removed for determination of citrate synthase activity. Trained animals maintained their values of VO(2)max during a moderate running training and showed a significant less body weight gain. An increase of 42% in citrate synthase activity of the soleus muscle from trained rats was found after the training program. Our study presents a protocol of moderate physical training for Wistar rats based on VO(2)max. Peripheral adaptations such as the values of citrate synthase activity also responded to the moderate training program imposed as observed for VO(2)max. Other studies can use our protocol of moderate training to study the physiologic adaptations underlying this specific intensity of training. It will provide support for study with humans.  相似文献   

10.
Increases in aerobic capacity in both young and senescent rats consequent to endurance exercise training are now known to occur not only in locomotor skeletal muscle but also in diaphragm. In the current study the effects of aging and exercise training on the myosin heavy chain (MHC) composition were determined in both the costal and crural diaphragm regions of female Fischer 344 rats. Exercise training [treadmill running at 75% maximal oxygen consumption (1 h/day, 5 day/wk, x 10 wk)] resulted in similar increases in plantaris muscle citrate synthase activity in both young (5 mo) and old (23 mo) trained animals (P < 0.05). Computerized densitometric image analysis of fast and slow MHC bands revealed the ratio of fast to slow MHC to be significantly higher (P < 0.005) in the crural compared with costal diaphragm region in both age groups. In addition, a significant age-related increase (P < 0.05) in percentage of slow MHC was observed in both diaphragm regions. However, exercise training failed to change the relative proportion of slow MHC in either the costal or crural region.  相似文献   

11.
Previous studies have shown that when exercise isstopped there is a rapid reversal of the training-induced adaptiveincrease in muscle glucose transport capacity. Endurance exercisetraining brings about an increase in GLUT-4 in skeletal muscle. Theprimary purpose of this study was to determine whether the rapidreversal of the increase in maximally insulin-stimulated glucosetransport after cessation of training can be explained by a similarlyrapid decrease in GLUT-4. A second purpose was to evaluate thepossibility, suggested by previous studies, that the magnitude of theadaptive increase in muscle GLUT-4 decreases when exercise training is extended beyond a few days. We found that both GLUT-4 and maximally insulin-stimulated glucose transport were increased approximately twofold in epitrochlearis muscles of rats trained by swimming for 6 h/day for 5 days or 5 wk. GLUT-4 was 90% higher, citrate synthaseactivity was 23% higher, and hexokinase activity was 28% higher intriceps muscle of the 5-day trained animals compared with the controls.The increases in GLUT-4 protein and in insulin-stimulated glucosetransport were completely reversed within 40 h after the last exercisebout, after both 5 days and 5 wk of training. In contrast, theincreases in citrate synthase and hexokinase activities were unchanged40 h after 5 days of exercise. These results support the conclusionthat the rapid reversal of the increase in the insulin responsivenessof muscle glucose transport after cessation of training is explained bythe short half-life of the GLUT-4 protein.

  相似文献   

12.
We investigated whether 1) 5 days of exercise training would reduce the acute exercise-induced increase in skeletal muscle growth factor gene expression; and 2) reductions in the increase in growth factor gene expression in response to short-term exercise training would be coincident with increases in skeletal muscle oxidative potential. Female Wistar rats were used. Six groups (rest; exercise for 1-5 consecutive days) were used to measure the growth factor response through the early phases of an exercise training program. Vascular endothelial growth factor (VEGF), transforming growth factor-beta1 (TGF-beta1), and basic fibroblast growth factor (bFGF) mRNA were analyzed from the left gastrocnemius by quantitative Northern blot. Citrate synthase activity was analyzed from the right gastrocnemius. VEGF and TGF-beta1 mRNA increased after each of 5 days of exercise training, whereas exercise on any day did not increase bFGF mRNA. On day 1, the VEGF mRNA response was significantly greater than on days 2-5. However, the reduced increase in VEGF mRNA observed on days 2-5 was not coincident with increases in citrate synthase activity. These findings suggest that, in skeletal muscle, 1) VEGF and TGF-beta1 mRNA are increased through 5 days of exercise training and 2) the reduced exercise-induced increase in VEGF mRNA responses on days 2-5 does not result from increases in oxidative potential.  相似文献   

13.
Young Wistar rats underwent dynamic (D) or static (S) exercise from the 5th to 35th day after birth. Histochemical and biochemical analysis were performed in the extensor digitorum longus (EDL) and the soleus muscle (SOL). Lactate dehydrogenase (LDH) (regulating anaerobic metabolism) and citrate synthase (CS) and hydroxyacyl-CoA dehydrogenase (HAD) (both regulating aerobic metabolism) activities were determined spectrophotometrically. An increase of the fast oxidative-glycolytic (FOG) muscle fibres was found in the slow SOL muscle in both trained groups, i.e. by 10% in group D and by 7% in group S in comparison with the C group. The EDL muscle fibre distribution did not differ from those of control animals in respect to the slow oxidative (SO) fibre type. A higher percentage of FOG fibres by 19% was found in group D contrary to a decreased number of the fast glycolytic (FG) muscle fibres in this trained group. The greatest increase of CS (EDL 185%, SOL 176%) and HAD (EDL 83%, SOL 178%) activities were found in group D as compared with control group (C). Only small differences were observed in LDH activity. The values of characteristic enzyme activity ratios show that dynamic training resulted in an elevation of oxidative capacity of skeletal muscle, while the static load led preferentially along the glycolytic pathway. It may be concluded that an adaptive response to the training load during early postnatal development is different due to the type of exercise (dynamic or static) and/or the type of skeletal muscle (fast or slow).  相似文献   

14.
Since little is known about the training response to exercise in neonatal animals, this study was undertaken to elucidate the potential of oxidative system adaptations in developing skeletal muscle of rats during 50 days of daily treadmill running. The training regimen involved male and female rats (10 days old) initially running 0.1 mph, 0% grade, for 15 min. The program progressed to 1 mph, 25% grade, for 60 min by 50 days of age. At 25 days of age, pyruvate and palmitate oxidative capacity, and citrate synthase activity in red vastus muscle homogenates were elevated in the trained group (T) compared with age- and sex-matched controls (C). These increases were also observed for each subsequent time point tested and occurred in spite of the fact that the peak oxidative capacity of neonatal red vastus muscle was 46% greater than adult values. Further, trained animals tested at 45 days of age responded with a 12% increase in maximal oxygen consumption (Vo2max) compared with controls (P less than 0.05). Assays of muscle phosphofructokinase and of creatine phosphokinase activity conducted at this time point revealed no difference between T and C groups. Collectively, these data suggest that neonatal rats can be successfully trained and that they respond to an endurance-type program qualitatively similarly to adult rats.  相似文献   

15.
The intent of this study was to determine whether endurance exercise training regulates increases in metabolic enzymes, which parallel modulations of myogenin and MyoD in skeletal muscle of rats. Adult Sprague-Dawley rats were endurance trained (TR) 5 days weekly for 8 wk on a motorized treadmill. They were killed 48 h after their last bout of exercise. Sedentary control (Con) rats were killed at the same time as TR animals. Myogenin, MyoD, citrate synthase (CS), cytochrome-c oxidase (COX) subunits II and VI, lactate dehydrogenase (LDH), and myosin light chain mRNA contents were determined in soleus muscles by using RT-PCR. Myogenin mRNA content was also estimated by using dot-blot hybridization. Protein expression levels of myogenin and MyoD were measured by Western blots. CS enzymatic activity was also measured. RT-PCR measurements showed that the mRNA contents of myogenin, CS, COX II, COX VI, and LDH were 25, 20, 17, 16, and 18% greater, respectively, in TR animals compared with Con animals (P < 0.05). The ratio of myogenin to MyoD mRNA content estimated by RT-PCR in TR animals was 28% higher than that in Con animals (P < 0.05). Myosin light chain expression was similar in Con and TR muscles. Results from dot-blot hybridization to a riboprobe further confirmed the increase in myogenin mRNA level in TR group. Western blot analysis indicated a 24% greater level of myogenin protein in TR animals compared with Con animals (P < 0.01). The soleus muscles from TR animals had a 25% greater CS enzymatic activity than the Con animals (P < 0.01). Moreover, myogenin mRNA and protein contents were positively correlated to CS activity and mRNA contents of CS, COX II, and COX VI (P < 0.05). These data are consistent with the hypothesis that myogenin is in the pathway for exercise-induced changes in mitochondrial enzymes.  相似文献   

16.
Exercise training induces multiple adaptations within skeletal muscle that may improve local O(2) delivery-utilization matching (i.e., Po(2)mv). We tested the hypothesis that increased nitric oxide (NO) function is intrinsic to improved muscle Po(2)mv kinetics from rest to contractions after exercise training. Healthy young Sprague-Dawley rats were assigned to sedentary (n = 18) or progressive treadmill exercise training (n = 10; 5 days/wk, 6-8 wk, final workload of 60 min/day at 35 m/min, -14% grade) groups. Po(2)mv was measured via phosphorescence quenching in the spinotrapezius muscle at rest and during 1-Hz twitch contractions under control (Krebs-Henseleit solution), sodium nitroprusside (SNP, NO donor; 300 μM), and N(G)-nitro-l-arginine methyl ester (l-NAME, nonspecific NO synthase blockade; 1.5 mM) superfusion conditions. Exercise-trained rats had greater peak oxygen uptake (Vo(2peak)) than their sedentary counterparts (81 ± 1 vs. 72 ± 2 ml·kg(-1)·min(-1), respectively; P < 0.05). Exercise-trained rats had significantly slower Po(2)mv fall throughout contractions (τ(1); time constant for the first component) during control (sedentary: 8.1 ± 0.6; trained: 15.2 ± 2.8 s). Compared with control, SNP slowed τ(1) to a greater extent in sedentary rats (sedentary: 38.7 ± 5.6; trained: 26.8 ± 4.1 s; P > 0.05) whereas l-NAME abolished the differences in τ(1) between sedentary and trained rats (sedentary: 12.0 ± 1.7; trained: 11.2 ± 1.4 s; P < 0.05). Our results indicate that endurance exercise training leads to greater muscle microvascular oxygenation across the metabolic transient following the onset of contractions (i.e., slower Po(2)mv kinetics) partly via increased NO-mediated function, which likely constitutes an important mechanism for training-induced metabolic adaptations.  相似文献   

17.
18.
Endurance exercise training (Ex) has been shown to increase maximal skeletal muscle blood flow. The purpose of this study was to test the hypothesis that increased endothelium-dependent vasodilation is associated with the Ex-induced increase in muscle blood flow. Furthermore, we hypothesized that enhanced endothelium-dependent dilation is confined to vessels in high-oxidative muscles that are recruited during Ex. To test these hypotheses, sedentary (Sed) and rats that underwent Ex (30 m/min x 10% grade, 60 min/day, 5 days/wk, 8-12 wk) were studied using three experimental approaches. Training effectiveness was evidenced by increased citrate synthase activity in soleus and vastus lateralis (red section) muscles (P < 0.05). Vasodilatory responses to the endothelium-dependent agent acetylcholine (ACh) in situ tended to be augmented by training in the red section of gastrocnemius muscle (RG; Sed: control, 0.69 +/- 0.12; ACh, 1.25 +/- 0.15; Ex: control, 0.86 +/- 0.17; ACh, 1.76 +/- 0.27 ml x min(-1) x 100 g(-1) x mmHg(-1); 0.05 < P < 0.10 for Ex vs. Sed during ACh). Responses to ACh in situ did not differ between Sed and Ex for either the soleus muscle or white section of gastrocnemius muscle (WG). Dilatory responses of second-order arterioles from the RG in vitro to flow (4-8 microl/min) and sodium nitroprusside (SNP; 10(-7) through 10(-4) M), but not ACh, were augmented in Ex (vs. Sed; P < 0.05). Dilatory responses to ACh, flow, and SNP of arterioles from soleus and WG muscles did not differ between Sed and Ex. Content of the endothelial isoform of nitric oxide synthase (eNOS) was increased in second-order, fourth-order, and fifth-order arterioles from the RG of Ex; eNOS content was similar between Sed and Ex in vessels from the soleus and WG muscles. These findings indicate that Ex induces endothelial adaptations in fast-twitch, oxidative, glycolytic skeletal muscle. These adaptations may contribute to enhanced skeletal muscle blood flow in endurance-trained individuals.  相似文献   

19.
Derangements in skeletal muscle fatty acid (FA) metabolism associated with insulin resistance in obesity appear to involve decreased FA oxidation and increased accumulation of lipids such as ceramides and diacylglycerol (DAG). We investigated potential lipid-related mechanisms of metformin (Met) and/or exercise for blunting the progression of hyperglycemia/hyperinsulinemia and skeletal muscle insulin resistance in female Zucker diabetic fatty rats (ZDF), a high-fat (HF) diet-induced model of diabetes. Lean and ZDF rats consumed control or HF diet (48 kcal %fat) alone or with Met (500 mg/kg), with treadmill exercise, or with both exercise and Met interventions for 8 wk. HF-fed ZDF rats developed hyperglycemia (mean: 24.4 +/- 2.1 mM), impairments in muscle insulin-stimulated glucose transport, increases in the FA transporter FAT/CD36, and increases in total ceramide and DAG content. The development of hyperglycemia was significantly attenuated with all interventions, as was skeletal muscle FAT/CD36 abundance and ceramide and DAG content. Interestingly, improvements in insulin-stimulated glucose transport and increased GLUT4 transporter expression in isolated muscle were seen only in conditions that included exercise training. Reduced FA oxidation and increased triacylglycerol synthesis in isolated muscle were observed with all ZDF rats compared with lean rats (P < 0.01) and were unaltered by therapeutic intervention. However, exercise did induce modest increases in peroxisome proliferator-activated receptor-gamma coactivator-1alpha, citrate synthase, and beta-hydroxyacyl-CoA dehydrogenase activity. Thus reduction of skeletal muscle FAT/CD36 and content of ceramide and DAG may be important mechanisms by which exercise training blunts the progression of diet-induced insulin resistance in skeletal muscle.  相似文献   

20.
With advancing age, there is a reduction in exercise tolerance, resulting, in part, from a perturbed ability to match O(2) delivery to uptake within skeletal muscle. In the spinotrapezius muscle (which is not recruited during incline treadmill running) of aged rats, we tested the hypotheses that exercise training will 1) improve the matching of O(2) delivery to O(2) uptake, evidenced through improved microvascular Po(2) (Pm(O(2))), at rest and throughout the contractions transient; and 2) enhance endothelium-dependent vasodilation in first-order arterioles. Young (Y, ~6 mo) and aged (O, >24 mo) Fischer 344 rats were assigned to control sedentary (YSED; n = 16, and OSED; n = 15) or exercise-trained (YET; n = 14, and OET; n = 13) groups. Spinotrapezius blood flow (via radiolabeled microspheres) was measured at rest and during exercise. Phosphorescence quenching was used to quantify Pm(O(2)) in vivo at rest and across the rest-to-twitch contraction (1 Hz, 5 min) transition in the spinotrapezius muscle. In a follow-up study, vasomotor responses to endothelium-dependent (acetylcholine) and -independent (sodium nitroprusside) stimuli were investigated in vitro. Blood flow to the spinotrapezius did not increase above resting values during exercise in either young or aged groups. Exercise training increased the precontraction baseline Pm(O(2)) (OET 37.5 ± 3.9 vs. OSED 24.7 ± 3.6 Torr, P < 0.05); the end-contracting Pm(O(2)) and the time-delay before Pm(O(2)) fell in the aged group but did not affect these values in the young. Exercise training improved maximal vasodilation in aged rats to acetylcholine (OET 62 ± 16 vs. OSED 27 ± 16%) and to sodium nitroprusside in both young and aged rats. Endurance training of aged rats enhances the Pm(O(2)) in a nonrecruited skeletal muscle and is associated with improved vascular smooth muscle function. These data support the notion that improvements in vascular function with exercise training are not isolated to the recruited muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号