首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of the muscarinic cholinergic agonist methacholine on affinity of beta-adrenergic receptors for isoproterenol and on isoproterenol-induced stimulation of adenylate cyclase activity were assessed in canine myocardium. GTP and guanyl-5'-yl imidoiphosphate both decreased the affinity of beta-adrenergic receptors for isoproterenol without altering the affinity of these receptors for propranolol. Methacholine (10 nM to 10 micronM) antagonized the guanine nucleotide-induced reduction in beta-adrenergic receptor affinity for isoproterenol. This effect of methacholine was reversed by atropine. The choline ester had no effect on the affinity of beta-adrenergic receptors for isoproterenol in the absence of guanine nucleotides. Likewise, methacholine had no effect on the affinity of beta-adrenergic receptors for propranolol, either in the presence or absence of guanine nucleotides. Methacholine also attenuated GTP-induced activation of adenylate cyclase or isoproterenol-induced activation of the enzyme in the presence of GTP. The effects of methacholine on myocardial adenylate cyclase activity were apparent only in the presence of GTP. These effects were also reversed by atropine. The choline ester had no effect on adenylate cyclase activity in the presence of guanyl-5'-yl imidodiphosphate or NaF. The results of the present study suggest that muscarinic cholinergic agonists can regulate both beta-adrenergic receptors and adenylate cyclase by modulating the effects of GTP.  相似文献   

2.
A new method was developed to follow the rate of activation of adenylate cyclase in rat brain membranes by rapid freezing and N-ethylmaleimide treatment at 0 degrees C. This method was used to investigate the relationship between the rate of activation of adenylate cyclase by p(NH)ppG and GTP gamma S and their apparent affinities. These studies established the following. 1) The kinetics of activation by p(NH)ppG and GTP gamma S were indistinguishable although the apparent affinity of p(NH)ppG was 20-fold lower than the affinity of GTP gamma S. Activation was first order, kobs varying approximately 1.5-fold (average t 1/2 = 3.5 min, 30 degrees C) between 20-90% occupancy by either guanine nucleotide. 2) Final levels of activity were strictly dependent on the concentration of the nucleotides in a saturable manner. 3) Mg2+ increased the apparent affinity of either guanine nucleotide by 10-20-fold between 0.1 microM and 3 mM free Mg2+ in the presence of 2 mM EDTA but did not enhance the rate or maximal extent of activation. 4) The effects of Mg2+ were expressed through two independent classes of sites with affinities in the nanomolar and micromolar range. 5) A Mg2+ X guanine nucleotide complex was not the substrate for activation. The affinity of Mg2+ for nucleotides was determined as 6.25 mM GTP gamma S, 0.930 mM GTP, 0.156 mM p(NH)ppG. 6) Full activation by p(NH)ppG was completely reversible but activation by GTP gamma S was only partially reversible. These results suggest that: activation of adenylate cyclase in native membranes does not require Mg2+ or irreversible binding of the guanine nucleotide and there are two independent pathways for formation of active adenylate cyclase. A minimal mechanism for activation is discussed in light of current models.  相似文献   

3.
Iodohydroxybenzylpindolol (I-HYP) is a chemically defined, high affinity, high specific activity beta-adrenergic antagonist that interacts with a single site on the turkey erythrocyte membrane. Study of the interaction of agonists, antagonists, and congeners with this site and concomitant alterations in adenylate cyclase activity have been carried out in the presence of high or low concentrations of guanine nucleotide. The results help clarify the relationship between binding and activation or inhibition of adenylate cyclase and the role of guanine nucleotides in modulating this interaction. There is a close correlation between binding constants (KD) for inhibitors determined by analysis of competitive displacement of 125I-HYP from receptor, and apparent affinities (Ki) for inhibition of adenylate cyclase. For activators, however, there is up to a 10-fold difference between KD and apparent affinity (KDapp) for adenylate cyclase activation at low guanine nucleotide concentration (10(-6) M guanylylimidodiphosphate). This difference is virtually abolished by employing higher nucleotide concentrations (10(-5) M guanylylimidodiphosphate) without significantly altering receptor affinity. This suggests that guanine nucleotides act by modulating receptor-enzyme interactions rather than hormone-receptor interactions. Moreover, several beta-adrenergic analogs previously shown to have no effect on adenylate cyclase in the absence of nucleotide, are partial agonists in the presence of 10(-5) M guanylylimidodiphosphate. Parallel analyses for a series of agonists and antagonists for adenylate cyclase activation and receptor interaction show affinities for levorotatory isomers generally 100-fold greater than for dextrorotatory isomers. Thus stereoconfiguration at the beta carbon clearly influences affinity of agonists or antagonists. Affinity is also importantly influenced by the nature of the aromatic ring as well as the N-alkyl group. The complexity of structure-function relationships for these compounds requires a redefinition of structural requirements for beta-adrenergic activity.  相似文献   

4.
Guanine nucleotides were observed to modify the binding of 125I-angiotensin II to rat hepatic plasma membrane receptors. GTP and its nonhydrolyzable analogues greatly increased the dissociation rate of bound 125I-angiotensin II and altered hormone binding to the receptor under equilibrium conditions. In the absence of GTP, 125I-angiotensin II labeled both high affinity sites (Kd1 = 0.46 nM, N1 = 650 fmol/mg) and low affinity sites (Kd2 = 4.1 nM, N2 = 1740 fmol/mg). In the presence of guanine nucleotides, the affinities of the two sites were unchanged, but the number of high affinity sites decreased markedly to 52 fmol/mg. In analogous experiments using the angiotensin II antagonist, 125I-sarcosine1,Ala8-angiotensin II (125I-saralasin), guanine nucleotides minimally affected the interaction of 125I-saralasin with its receptor, increasing the dissociation rate 1.9-fold and the Kd 1.4-fold. The guanine nucleotide inhibition of agonist binding required a cation such as Na+ or Mg2+, with a maximal effect occurring at about 1 mM Mg2+. In liver plasma membranes prepared in EDTA, angiotensin II inhibited basal and glucagon-stimulated adenylate cyclase activities by 30% and 10%, respectively. Angiotensin II also caused a 40% inhibition of glucagon-stimulated cyclic AMP accumulation in intact hepatocytes, with a half-maximal effect occurring at 1 nM. The inhibition by angiotensin II of adenylate cyclase in membranes and of cAMP levels in intact cells could be reversed by the antagonist sarcosine1,Ile8-angiotensin II. Vasopressin caused a smaller 26% inhibition of glucagon-stimulated cyclic AMP accumulation. The ability of angiotensin II to inhibit cyclic AMP synthesis may provide an explanation for the observed effects of guanine nucleotides on 125I-angiotensin II binding to plasma membranes.  相似文献   

5.
We studied the effects of chymotrypsin on turkey erythrocyte membrane adenylate cyclase activity. Proteolysis with chymotrypsin led to a concentration- and time-dependent increase in activation of adenylate cyclase by isoproterenol + guanine nucleotides, and fluoride, and to a decrease in activation by forskolin. Maximal effects (up to 10-fold increases in fluoride- and isoproterenol + guanine nucleotide-stimulated activity, and up to 100% inhibition of forskolin-stimulated activity) occurred under similar conditions (10-20 micrograms/ml chymotrypsin for 10-15 min at 30 degrees C). Augmentation of isoproterenol + guanosine-3'-O-thiotriphosphate (GTP-gamma-S)-stimulated activity by chymotrypsin occurred only if proteolysis preceded stimulation with isoproterenol + GTP-gamma-S. Addition of isoproterenol + GTP-gamma-S to membranes before proteolysis, however, did not prevent chymotrypsin from augmenting subsequent stimulation by these agents. In contrast, addition of forskolin during proteolysis with chymotrypsin prevented the time- and concentration-dependent decline in forskolin stimulation observed with chymotrypsin. Proteolysis decreased the magnitude of stimulation at any concentration of forskolin, but did not alter the concentration dependence of forskolin stimulation (apparent half-maximum = 3 microM). The data are consistent with the existence of a chymotrypsin-sensitive site essential for forskolin stimulation of adenylate cyclase. In view of the simultaneous effect of chymotrypsin to augment fluoride- and isoproterenol + guanine nucleotide-stimulated activities, it is highly unlikely that the site is on the stimulatory guanine nucleotide binding protein. Since forskolin is thought to act directly on the catalytic unit of adenylate cyclase, and since forskolin can protect against the effect of proteolysis with chymotrypsin, the site involved may be on the catalytic unit itself.  相似文献   

6.
The adenylate cyclase activation by bovine synthetic parathyroid hormone (bPTH) (1-34) was studied in vitro in kidney plasma membranes from D-deficient (D-Mb) or normal (D+Mb) rats. In D-Mb, the apparent affinity of parathyroid hormone (PTH) for membranes (170 +/- 30 nM) was significantly higher than that measured in D+Mb (55 +/- 5 nM). The maximum velocity of the PTH-stimulated adenylate cyclase was significantly higher in D+Mb than in D-Mb (163.0 +/- 13.7 and 93.4 +/- 6.7 pmol of cAMP/mg of protein/min, respectively). The action of vitamin D metabolites on the adenylate cyclase stimulation by PTH was then studied in vitro in D-Mb and D+Mb. In D-Mb, 25-hydroxyvitamin D3, 24,25-, and 1, 25-dihydroxyvitamin D3 significantly inhibited cAMP production in the presence of 0.87 microM of bPTH. Vitamin D3 had no effect. Maximal inhibition (86%) was observed for 1,25-dihydroxyvitamin D3. 1,25-Dihydroxyvitamin D3 decreased the maximum velocity of PTH-stimulated adenylate cyclase but did not modify the bPTH apparent affinity for D-Mb. The vitamin D3 metabolites tested did not modify the cyclase stimulation by isoproterenol, sodium fluoride, or 5'-guanylylimidodiphosphate. The presence of 1,25-dihydroxyvitamin D3 or 25-hydroxyvitamin D3 did not increase the (Na-K)-ATPase or the phosphodiesterase activities. In the presence of 1,25-dihydroxyvitamin D3 and bPTH, the apparent affinity of ATP for the catalytic moiety was not modified. The maximum velocity was decreased. These results suggest an in vitro interaction between hydroxylated vitamin D metabolites and kidney membranes PTH receptor.  相似文献   

7.
The effect of 1,25-dihydroxyvitamin D3 on adenylate cyclase responsiveness was studied in the clonal osteogenic sarcoma cell line, UMR 106-06, which responds to several bone active hormones. 1,25-dihydroxyvitamin D3 treatment had no consistent effect on basal formation of cyclic AMP in intact cells, but the responses to parathyroid hormone, isoproterenol, prostaglandin E2, salmon calcitonin and the plant diterpene, forskolin, were all attenuated, by up to 90%. The effect of 1,25-dihydroxyvitamin D3 was dose-dependent, with half-maximal effectiveness at 0.1 nM, and required 48 h treatment of cells before it became apparent. The relative potencies of other vitamin D3 compounds correlated closely with their relative affinities for the 1,25-dihydroxyvitamin D3 receptor and their biological activities in other systems. 1,25-dihydroxyvitamin D3 treatment had no effect on the kinetics of labelled calcitonin binding to UMR 106-06 cells. Furthermore, the fact that such a range of hormones was affected made a receptor mediated mechanism unlikely. Nucleotide stimulatory (Ns) unit activity was assayed after 1,25-dihydroxyvitamin D3 treatment and found to be unchanged. Islet activating protein, an inhibitor of nucleotide inhibitory unit (Ni) activity, failed to modify the 1,25-dihydroxyvitamin D3 effect. Thus the effect of 1,25-dihydroxyvitamin D3 appeared to be exerted beyond hormone receptor and nucleotide regulatory components of the adenylate cyclase complex. It is concluded that 1,25-dihydroxyvitamin D3 attenuates adenylate cyclase response to hormones by a direct or indirect action on the catalytic component of adenylate cyclase.  相似文献   

8.
Stimulation of human platelet adenylate cyclase by the diterpene forskolin is associated with a decrease in the apparent substrate (MgATP) affinity of the enzyme. Addition of the stimulatory hormone prostaglandin E1 not only further increased the Vmax. of the forskolin-stimulated platelet adenylate cyclase but also caused a further increase in the Km value for MgATP, by up to 20-fold compared with basal conditions. On the other hand, the inhibitory hormone adrenaline decreased not only the Vmax. but also the Km value of the platelet adenylate cyclase stimulated by forskolin, with or without prostaglandin E1 present. The data indicate that forskolin sensitizes human platelet adenylate cyclase to modulation of substrate (MgATP) affinity by hormones, but there is no such effect in the absence of the diterpene.  相似文献   

9.
Spontaneous transformation of RL-PR-C hepatocytes leads to alterations in the adenylate cyclase complex which include a lower than normal basal level of activity, a loss of sensitivity to exogenous GTP, and a decreased sensitivity to isoproterenol. Both normal and transformed membranes possess substantial GTPase activity. Treatment of transformed hepatocyte membranes with either isoproterenol plus GMP or with cholera toxin, under conditions that displace tightly bound GDP, restored the GTP effect on adenylate cyclase, and eliminated the lag in the activation by guanyl-5'-yl-imidodiphosphate. Such pretreatment also enhanced guanine nucleotide effects on the adenylate cyclase of normal hepatocytes. These results are explainable on the basis that transformation increases adenylate cyclase-associated GTPase activity, and increases occupancy of nucleotide regulatory sites by inactive or inhibitory guanine nucleotides, e.g., GDP. Seemingly, both catecholamines and cholera toxin promote an exchange reaction at the regulatory sites, resulting in clearance of these sites of inhibitory nucleotides.  相似文献   

10.
A novel adenylate cyclase activity was found in crude homogenates of Neurospora crassa. The adenylate cyclase had substantial activity with ATP-Mg2+ as substrate differing significantly from the strictly ATP-Mn2+-dependent enzyme characterized previously. Additionally, the ATP-Mg2+-dependent activity was stimulated two- to fourfold by GTP or guanyl-5'-yl-imido-diphosphate (Gpp(NH)p). We propose that the ATP-Mg2+-dependent, guanine nucleotide-stimulated activity is due to a labile regulatory component (G component) of the adenylate cyclase which was present in carefully prepared extracts. The adenylate cyclase had a pH optimum of 5.8 and both the catalytic and G component were particulate. The Km for ATP-Mg2+ was 2.2 mM in the presence of 4.5 mM excess Mg2+. Low Mn2+ concentrations had no effect on adenylate cyclase activity whereas high concentrations of Mn2+ or Mg2+ stimulated the enzyme. Maximal Gpp(NH)p stimulation required preincubation of the enzyme in the presence of the guanine nucleotide and the K1/2 for Gpp(NH)p stimulation was 110 nM. Neither fluoride nor any of a variety of glycolytic intermediates or hormones, including glucagon, epinephrine, and dopamine, had an effect on ATP-Mg2+-dependent adenylate cyclase activity. However, the enzymatic activity was stimulated not only by GTP but also by 5'-AMP and was inhibited by NADH.  相似文献   

11.
Spontaneous transformation of RL-PR-C hepatocytes leads to alterations in the adenylate cyclase complex which include a lower than normal basal level of activity, a loss of sensitivity to exogenous GTP, and a decreased sensitivity to isoproterenol. Both normal and transformed membranes posses substantial TGPase activity. Treatment of transformed hepatocyte membranes with either isoproterenol plus GMP or with cholera toxin, under conditions that displace tightly bound GDP, restored the GTP effect on adenylate cyclase, and eliminated the lag in the activation by guanyl-5′-yl-imidodiphosphate. Such pretreatment also enhanced guanine nucleotide effects on the adenylate cyclase of normal hepatocytes. These results are explainable on the basis that transformation increases adenylate cyclase-associated GTPase activity, and increase occupancy of nuceotide regulatory sites by inactive or inhibitory guanine nucleotides, e.g., GDP. Seemingly, both catecholamines and cholera toxin promote an exchange reaction at the regulatory sites, resulting in clearance of these sites of inhibitory nucleotides.  相似文献   

12.
Teratocarcinoma cells in culture offer an in vitro system for studying certain aspects of embryonic differentiation. To gain some insight into regulatory systems that might be operative during early development, we have characterized the alterations that occur in the hormonal responsiveness of the F9 embryonal carcinoma cell membrane adenylate cyclase with differentiation. Adenylate cyclase of F9 cells is stimulated in the presence of 10 μM GTP by calcitonin, prostaglandin E1, (?) isoproterenol, and epinephrine, while parathyroid hormone is only slightly effective. Of these active hormones, calcitonin is the most potent stimulator of cyclic AMP production. Exposure of F9 cells to retinoic acid induces differentiation to parietal endodermal cells. Basal, GTP-, and fluoride-stimulated adenylate cyclase activities show a progressive increase with the retinoic acid-induced change to the endodermal phenotype. Differentiation to the endodermal cell type markedly alters the adenylate cyclase response to calcitonin and parathyroid hormone; the cyclase of endodermal cells exhibits a low response to calcitonin while parathyroid hormone dramatically enhances cyclic AMP formation. Treatment of the retinoic acid-generated endodermal cells with dibutyryl cyclic AMP converts these cells to a type exhibiting neural-like morphology. The adenylate cyclase system of these cells is only stimulated by parathyroid hormone, prostaglandin E1, isoproterenol, and epinephrine. Calcitonin responsiveness has been lost in these cells. These variations in calcitonin and parathyroid hormone responsiveness suggest a possible regulatory role for these hormones during embryonic development. Further more, the results indicate that changes in adenylate cyclase hormonal responsiveness might serve as useful markers during early stages of differentiation.  相似文献   

13.
Pertussis toxin selectively modifies the function of Ni, the inhibitory guanine nucleotide binding protein of the adenylate cyclase complex. In chick heart membranes, guanine nucleotide activation of Ni resulted in a decrease in the apparent affinity of the muscarinic receptor for the agonist oxotremorine, inhibition of basal adenylate cyclase activity, and the attenuation of adenylate cyclase by oxotremorine. Treatment of chicks with pertussis toxin caused the covalent modification of 80-85% of cardiac Ni. After this treatment Gpp(NH)p had no effect on muscarinic receptor affinity and GTP stimulated basal adenylate cyclase activity. In contrast, the GTP-dependent attenuation of adenylate cyclase caused by muscarinic receptors was unaffected.  相似文献   

14.
Highly purified dog heart sarcolemmal membranes, with a content of approximately 5 pmol of muscarinic acetylcholine receptor (mAChR)/mg of protein, were analyzed for mAChR-mediated inhibition of adenylyl cyclase and ligand binding in the absence and the presence of guanine nucleotides. Adenylyl cyclase was found to be coupled to the mAChR, being attenuated approximately 30% in a GTP-dependent manner. Direct binding studies, using 3H-labeled oxotremorine M, showed high affinity binding (apparent KD = 10 nM) that was reduced on nucleotide addition. Dose-response curves for GDP, GTP, and guanyl-5'-yl imidodiphosphate showed them to be equipotent. On the basis of pirenzepine binding, only one type of mAChR, commonly referred to as M2, was detected. Direct binding of [3H]quinuclidinyl benzilate [( 3H]QNB) uncovered 50% more binding sites than 150 nM 3H-labeled oxotremorine M; addition of guanine nucleotides uncovered the existence of positive cooperativity in the binding of [3H]QNB. Agonist displacement curves of [3H]QNB binding, without and with guanine nucleotides, extended over several orders of magnitude, which is inconsistent with single site competitive kinetics. The results and their analysis by computer-assisted curve fitting indicated that the data are well fitted by a model in which a receptor is at least bivalent and exists in two states: one with and the other without cooperativity between its sites, with guanine nucleotides decreasing both the degree of cooperativity between the sites and the proportion of the receptor that is in the cooperative form. Since the guanine nucleotide effect is mediated by the Ni coupling protein, it is suggested that direct binding detects R'Ni complexes (cooperative), R"NiG complexes (cooperative but distinct from R'Ni), and R0 complexes (non-cooperative and unaffected by Ni or NiG), where R = mAChR, Ni = the inhibitory regulatory component of adenylyl cyclase unaffected by guanine nucleotide, and NiG = Ni affected by guanine nucleotide (G).  相似文献   

15.
Receptor binding studies (?)-[3H]dihydroalprenolol as the ligand revealed, in adrenalectomized rat fat cells, a 50% decrease in the number of β-adrenergic receptors. er cell with no change in the receptor affinity for this ligand. Adrenalectomy caused no change in the binding affinity for isoproterenol of both high affinity and low affinity populations of the β-adrenergic receptors. Guanine nucleotide sensitivity of the agonist binding to β-receptors was also unaltered by adrenalectomy. Adrenalectomy caused a 30–40% decrease in the maximal response of adenylate cyclase to (?)-isoproterenol only when guanine nucleotides were present in the assay, without altering the (?)-isoproterenol concentration giving half-maximal adenylate cyclase stimulation (Kact values). The maximal response of adenylate cyclase to Gpp(NH)p also was lower in adrenalectomized membranes, indicating a defect at the guanine nucleotide regulatory site. Removal of adenosine by addition of adenosine deaminase failed to reverse the decreased adenylate cyclase response to isoproterenol in adrenalectomized rats. However, in intact fat cells, in which cyclic AMP accumulation in response to isoproterenol was decreased by adrenalectomy, removal of adenosine almost completely corrected this defect. These results indicate that the observed changes in the number of β-adrenergic receptors and in the ability of guanine nucleotides to stimulate adenylate cyclase, though explaining the decreased adenylate cyclase responsiveness to catecholamines, do probably not contribute significantly to the mechanism by which adrenalectomy decreases the lipolytic responsiveness of adipocyte to catecholamines. In addition, this study also suggests that the increased sensitivity to adenosine of lipolysis reported in adipocytes from adrenalectomized rats may result from an action of adenosine at a post-adenylate cyclase step, possibly on the cyclic AMP phosphodiesterase.  相似文献   

16.
The influence of 1,25-dihydroxyvitamin D-3 on the cAMP response to parathyroid hormone was studied in the osteoblast-like rat osteosarcoma cells ROS 17/2.8. The stimulation by parathyroid hormone of cAMP production in intact cells and of adenylate cyclase activity in isolated plasma membranes was attenuated by 1,25-dihydroxyvitamin D-3 treatment. This was associated with a reduction of the stimulatory guanine nucleotide regulatory protein, as demonstrated by a lower response to NaF and guanosine 5'-[beta, gamma-imido]triphosphate, and by a lower activity of solubilized plasma membrane extracts in the reconstitution assay. 1,25-dihydroxyvitamin D-3 blunted also the cAMP response to parathyroid hormone in cells incubated with the glucocorticoid dexamethasone, where a higher activity of the adenylate cyclase catalytic unit was observed. Thus, the two steroids appear to affect distinct levels of the adenylate cyclase system. Furthermore, the two hormones also showed an antagonistic effect upon the production of osteocalcin, an osteoblast-specific extracellular matrix protein. The release of this non-collagenous matrix protein by ROS 17/2.8 cells was increased by 1,25-dihydroxyvitamin D-3 and decreased by dexamethasone.  相似文献   

17.
The guanine nucleotide regulatory protein(s) regulates both adenylate cyclase activity and the affinity of adenylate cyclase-coupled receptors for hormones or agonist drugs. Cholera toxin catalyzes the covalent modification of the nucleotide regulatory protein of adenylate cyclase systems. Incubation of frog erythrocyte membranes with cholera toxin and NAD+ did not substantially alter the dose dependency for guanine nucleotide activation of adenylate cyclase activity. In contrast, toxin treated membranes demonstrated a 10 fold increase in the concentrations of guanine nucleotide required for a half maximal effect in regulating beta-adrenergic receptor affinity for the agonist (+/-) [3H]hydroxybenzylisoproterenol. The data emphasize the bifunctional nature of the guanine nucleotide regulatory protein and suggest that distinct structural domains of the guanine nucleotide regulatory protein may mediate the distinct regulatory effects on adenylate cyclase and receptor affinity for agonists.  相似文献   

18.
"Spare" beta-adrenergic receptors of rat white adipocyte membranes   总被引:1,自引:0,他引:1  
The apparent equilibrium dissociation constants for the interaction of isoproterenol with beta-receptors and adenylate cyclase were determined under the same conditions in rat adipocyte membranes and were compared with the apparent dissociation constant for the interaction of isoproterenol with cyclic AMP accumulation in the adipocyte. From these determinations, it was calculated that the occupancy of less than 4% of the receptor population is required for half-maximal stimulation of adenylate cyclase in membranes and cyclic AMP accumulation in intact cells, provided that receptor-binding and adenylate cyclase assays are performed in the presence of guanine nucleotides. Since guanine nucleotides are also required for adenylate cyclase activation in intact cells, it is concluded that the beta-receptors of rat adipocytes are "spare" receptors.  相似文献   

19.
Activation of adenylyl cyclase by cholera toxin A subunit (CT-A) results from the ADP-ribosylation of the stimulatory guanine nucleotide binding protein (GS alpha). This process requires GTP and an endogenous guanine nucleotide binding protein known as ADP-ribosylation factor (ARF). One membrane (mARF) and two soluble forms (sARF I and sARF II) of ARF have been purified from bovine brain. Because the conditions reported to enhance the binding of guanine nucleotides by ARF differ from those observed to promote optimal activity, we sought to characterize the determinants influencing the functional interaction of guanine nucleotides with ARF. High-affinity GTP binding by sARF II (apparent KD of approximately 70 nM) required Mg2+, DMPC, and sodium cholate. sARF II, in DMPC/cholate, also enhanced CT-A ADP-ribosyltransferase activity (apparent EC50 for GTP of approximately 50 nM), although there was a delay before achievement of a maximal rate of sARF II stimulated toxin activity. The delay was abolished by incubation of sARF II with GTP at 30 degrees C before initiation of the assay. In contrast, a maximal rate of activation of toxin by sARF II, in 0.003% SDS, occurred without delay (apparent EC50 for GTP of approximately 5 microM). High-affinity GTP binding by sARF II was not detectable in SDS. Enhancement of CT-A ADP-ribosyltransferase activity by sARF II, therefore, can occur under conditions in which sARF II exhibits either a relatively low affinity or a relatively high affinity for GTP. The interaction of GTP with ARF under these conditions may reflect ways in which intracellular membrane and cytosolic environments modulate GTP-mediated activation of ARF.  相似文献   

20.
Desensitization of turkey erythrocyte adenylate cyclase by exposure of these cells to the beta-adrenergic agonist isoproterenol leads to a decrease in subsequent adenylate cyclase stimulation by isoproterenol, F-, or Gpp(NH)p without any apparent loss or down regulation of receptors (B.B. Hoffman et al. J. Cyclic Nucl. Res. 5: 363-366, 1979). We now report that the desensitization is associated with a functional "uncoupling" of the beta-adrenergic receptor. This is evidenced by an impaired ability of receptors to form a high affinity, guanine nucleotide sensitive complex with agonist as assessed by computer analysis of radioligand binding data. The changes in adenylate cyclase responsiveness as well as the alterations in receptor affinity for agonists are reproduced by incubation of turkey erythrocytes with the cAMP analog 8-Bromo-adenosine 3':5'- cyclic monophosphate. These findings suggest that one possible mechanism for the development of desensitization in adenylate cyclase systems may be a cAMP mediated alteration of a component(s) of the beta-adrenergic receptor-adenylate cyclase complex which results in impaired receptor-cyclase coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号