首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Previous in vitro studies have shown that group III metabotropic glutamate receptors (mGluRs) regulate synaptic glutamate release. The present study used microdialysis to characterize this regulation in vivo in rat nucleus accumbens. Reverse dialysis of the group III mGluR agonist l-(+)-2-amino-4-phosphonobutyric acid (L-AP4) decreased, whereas the antagonist (R,S)-alpha-methylserine-O-phosphate (MSOP) increased the extracellular level of glutamate. The decrease by L-AP4 or the increase by MSOP was antagonized by co-administration of MSOP or L-AP4, respectively. Activation of mGluR4a by (1S,3R,4S)-1-aminocyclopentane-1,2,4-tricarboxylic acid or mGluR6 by 2-amino-4-(3-hydroxy-5-methylisoxazol-4-yl)butyric acid had no effect on extracellular glutamate. (R,S)-4-Phosphonophenylglycine (PPG), another group III agonist with high affinity for mGluR4/6/8, reduced extracellular glutamate only at high concentrations capable of binding to mGluR7. The increase in extracellular glutamate by MSOP was tetrodotoxin-independent, and resistant to both the L-type and N-type Ca2+ channel blockers. L-AP4 failed to block 30 mm K+-induced vesicular glutamate release. Blockade of glutamate uptake by d,l-threo-beta-benzyloxyaspartate caused a Ca2+-independent elevation in extracellular glutamate that was reversed by L-AP4. Finally, (S)-4-carboxyphenylglycine, an inhibitor of cystine-glutamate antiporters, attenuated the L-AP4-induced reduction in extracellular glutamate. Together, these data indicate that group III mGluRs regulate in vivo extracellular glutamate in the nucleus accumbens by inhibiting non-vesicular glutamate release.  相似文献   

2.
Chemical modification of the bicyclo[3.1.0]hexane ring C-3 position led to the discovery of 3-alkoxy-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid, 3-benzylthio-, and 3-benzylamino-2-amino-6-fluorobicyclo[3.1.0]hexane-2,6-dicarboxylic acid derivatives, metabotropic glutamate receptor 2 (mGluR2) antagonists. In particular, 3-(3,4-dichlorobenzyloxy)-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (15ae), (1R,2S,5R,6R)-2-amino-3-(3,4-dichlorobenzylthio)-6-fluorobicyclo[3.1.0]hexane-2,6-carboxylic acid (15at), and (1R,2S,5R,6R)-2-amino-3-(N-(3,4-dichlorobenzylamino))-6-fluorobicyclo[3.1.0]hexane-2,6-carboxylic (15ba) showed high affinity for the mGluR2 receptor (15ae: K(i) = 2.51 nM, 15at: K(i) = 1.96 nM, and 15ba: K(i) = 3.29 nM) and potent antagonist activity for mGluR2 (15ae; IC50 = 34.21 nM, 15at; IC50 = 13.34 nM, and 15ba; IC50 = 35.96 nM). No significant agonist activity for mGluR2 was observed with 15ae, 15at, or 15ba. This paper reports on the synthesis, in vitro pharmacological profile, and structure-activity relationships (SARs) of 3-substituted-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid.  相似文献   

3.
Takamori K  Hirota S  Chaki S  Tanaka M 《Life sciences》2003,73(13):1721-1728
The present study was designed to investigate the antipsychotic-like effects of selective group II metabotropic glutamate receptor (mGluR) agonists, 5-[2-[4-(6-fluoro-1H-indole-3-yl) piperidin-1-yl]ethyl]-4-(4-fluorophenyl)thiazole-2-carboxylic acid amide (MGS0008) and (1R, 2S, 5S, 6S)-2-amino-6-fluoro-4-oxobicyclo[3.1.0]hexane-2,6-dicarboxylic acid monohydrate (MGS0028) on conditioned avoidance responses in rats. MGS0008 (1, 3 and 10 mg/kg, p.o.) and MGS0028 (0.3, 1 and 3 mg/kg, p.o.) significantly and reduced conditioned avoidance responses in a dose-dependent fashion. Similar effects were seen with LY418426 (0.3, 1 and 3 mg/kg, p.o.), but not with LY354740 (3, 10 and 30 mg/kg, p.o.), both of which are selective agonists for group II mGluR. Since this effect is seen with a wide range of antipsychotics, such as haloperidol and clozapine [Life Sciences 71 (2002) 947], group II mGluR agonists deserve further attention for possible antipsychotic activity.  相似文献   

4.
Previous studies have shown that brief application of group I metabotropic glutamate receptor (mGluR) agonist (S)-3, 5-dihydroxyphenylglycine (DHPG) to hippocampal slices can induce a chemical form of long-term depression (DHPG-LTD) in the hippocampal CA1 region; however, the expression mechanisms of this LTD remain unclear. We show here that the expression of DHPG-LTD can be specifically reversed by application of the broad-spectrum mGluR antagonists, (S)-alpha-methyl-4-carboxyphenylglycine (MCPG) and LY341495, and mGluR5 antagonist, 2-methyl-6-(phenylethyl)pyridine, but not by NMDA receptor antagonist, D-2-amino-5-phosphonopentanoic acid, mGluR1 antagonist, LY367385, group II mGluR antagonist, (2S)-alpha-ethylglutamic acid, or group III mGluR antagonist, (S)-2-amino-2-methyl-4-phosphonobutanic acid (MAP4). In addition, the ability of MCPG to reverse DHPG-LTD was mimicked by the protein tyrosine phosphatase inhibitors, phenylarsine oxide and orthovanadate, but not phospholipase C inhibitor, U73122, protein kinase C inhibitor, bisindolylmaleimide 1, p38 mitogen-activated protein kinase inhibitor, SB203580, or protein phosphatases 1/2 A inhibitor, okadaic acid. Moreover, MCPG reversed the DHPG-LTD without affecting the paired-pulse facilitation. The expression of DHPG-LTD was associated with the reduction of both tyrosine phosphorylation and surface expression of AMPA receptor GluR2 subunits. Together, these results suggest that sustained activation of mGluR5 and in turn triggering a protein tyrosine phosphatase-dependent regulation of postsynaptic expression of AMPA receptors may contribute to the expression of DHPG-LTD.  相似文献   

5.
In the rodent cerebellum, pharmacological activation of group III pre-synaptic metabotropic glutamate receptors (mGluRs) by the broad spectrum agonist l -2-amino-4-phosphonobutyric acid, acutely depresses excitatory synaptic transmission at parallel fiber (PF)-Purkinje cell (PC) synapses. Among the group III mGluR subtypes, cerebellar granule cells express predominantly mGluR4, but also mGluR7 and mGluR8 mRNA. Taking into account that previous functional and pharmacological studies have used group III mGluR broad spectrum agonists that do not differentiate between these various subtypes, their relative contribution to the modulation of glutamatergic transmission at PF-PC synapses remains to be elucidated. In order to clarify this issue, we applied conventional whole-cell patch-clamp recordings and pre-synaptic calcium influx measurements, combined with pharmacological manipulations to rat and mice cerebellar slices. With the use of (1 S ,2 R )-1-amino-2-phosphonomethylcyclopropanecarboxylic acid, a new and selective group III mGluR agonist, N -phenyl-7-(hydroxylimino)cyclopropa[b]-chromen-1a-carboxamide, the specific positive allosteric modulator of mGluR4, ( S )-3,4-dicarboxyphenylglycine, a selective mGluR8 agonist, and mGluR4 knock-out mice, we demonstrate that the inhibitory control of group III mGluRs on excitatory neurotransmission at PF-PC synapses of the rodent cerebellar cortex, is totally because of the activation of pre-synaptic mGluR4 autoreceptors.  相似文献   

6.
7.
A detailed pharmacological characterization of metabotropic glutamate receptors (mGluR) was performed in primary cultures of cerebellar granule cells at 6 days in vitro (DIV). The rank order of agonists induced polyphosphoinositide (PPI) hydrolysis (after correcting for the ionotropic component in the response) was as follows: in terms of efficiency, Glu>quisqualate (quis)=ibotenate (ibo)>(1S,3R)-1-amino-cyclopentane-1,3-dicarboxylic acid (ACPD)>-methyl-amino-l-alanine (BMAA) and in terms of potency, quis>ACPD>Glu>ibo=BMAA. Ionotropic excitatory amino acid (EAA) receptor agonists, such as -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) were relatively inactive (in the presence of Mg2+). Quis and ACPD-induced PPI hydrolysis was unaffected by ionotropic Glu receptor antagonists, but was inhibited, in part by L-2-amino-3-phosphonopropionate (AP3). In contrast, Glu-or ibo- induced PPI hydrolysis was reduced, in part, by both AP3 and NMDA receptor antagonists. Characteristic interactions involving different transmitter receptors were noted. PPI hydrolysis evoked by quis and 1S,3R-ACPD was not additive. In contrast, PPI hydrolysis stimulated by quis/ACPD and carbamylcholine was additive (indicating different receptors/transduction pathways). In the presence of Mg2+, the metabotropic response to quis/AMPA and NMDA was synergistic (this being consistent with AMPA receptor-induced depolarization activating NMDA receptor). On the other hand, in Mg2+-free buffer the effects of quis and NMDA, at concentrations causing maximal PPI hydrolysis, were additive (indicating that PPI hydrolysis was effected by two different mechanisms). Thus, in cerebellar granule cells EAAs elicit PPI hydrolysis by acting at two distinct receptor types: (i) metabotropic Glu receptors (mGluR), with pharmacological characteristics suggesting the expression of a unique mGluR receptor that shows certain similarities to those observed for the mGluR1 subtype (Aramori and Nakanishi, 1992) and (ii) NMDA receptors. The physiological agonist, Glu, is able to stimulate both receptor classes.Abbreviations ACPD (1S,3R)-1-amino-cyclopentane-1,3-dicarboxylic acid - AMPA -amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid - AP3 L-2-amino-3-phosphono-propionate - AP5 D-2-amino-5-phosphonopentenoate - BMAA -methyl-amino-L-alanine - DIV days in vitro - DNOX 6,7-dinitroouinoxoline-2,3-dione - EAA excitatory amino acids - Glu glutamate - InsP inositol monophosphate - mGluR metabotropic glutamate receptors - MK-801 (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]-cyclohept-5,10-imine hydrogen maleate - NMDA N-methyl-D-aspartate - PPI polyphosphoinositide - quis quisqualate  相似文献   

8.
Abstract: Metabotropic glutamate receptors, nitric oxide (NO), and the signal transduction pathways of protein kinase C (PKC) and protein kinase A (PKA) can independently alter ischemic-induced neuronal cell death. We therefore examined whether the protective effects of metabotropic glutamate receptors during anoxia and NO toxicity were mediated through the cellular pathways of PKC or PKA in primary hippocampal neurons. Pretreatment with the metabotropic glutamate receptor agonists (±)-1-aminocyclopentane- trans -1,3-dicarboxylic acid, (1 S ,3 R )-1-aminocyclopentane-1,3-dicarboxylic acid (1 S ,3 R -ACPD), and l (+)-2-amino-4-phosphonobutyric acid ( l -AP4) 1 h before anoxia or NO exposure increased hippocampal neuronal cell survival from ∼30 to 70%. In addition, posttreatment with 1 S ,3 R -ACPD or l -AP4 up to 6 h following an insult attenuated anoxic- or NO-induced neurodegeneration. In contrast, treatment with l -(+)-2-amino-3-phosphonopropionic acid, an antagonist of the metabotropic glutamate receptor, did not significantly alter neuronal survival during anoxia or NO exposure. Protection by the ACPD-sensitive metabotropic receptors, such as the subtypes mGluR1α, mGluR2, and mGluR5, appears to be dependent on the modulation of PKC activity. In contrast, l -AP4-sensitive metabotropic glutamate receptors, such as the subtype mGluR4, may increase neuronal survival through PKA rather than PKC. Thus, activation of specific metabotropic glutamate receptors is protective during anoxia and NO toxicity, but the signal transduction pathways mediating protection differ among the metabotropic glutamate receptor subtypes.  相似文献   

9.
Abstract: In previous studies, we demonstrated that the neuropeptide, N -acetylaspartylglutamate (NAAG), meets the traditional criteria for a neurotransmitter and selectively activates metabotropic glutamate receptor mGluR2 or mGluR3 in cultured cerebellar granule cells and glia. Sequence homology and pharmacological data suggest that these two receptors are highly related structurally and functionally. To define more rigorously the receptor specificity of NAAG, cloned rat cDNAs for mGluR1–6 were transiently or stably transfected into Chinese hamster ovary cells and human embryonic kidney cells and assayed for their second messenger responses to the two endogenous neurotransmitters, glutamate and NAAG, as well as to metabotropic receptor agonists, trans -1-aminocyclopentane-1,3-dicarboxylate ( trans -ACPD) and l -2-amino-4-phosphonobutyrate ( l -AP4). Despite the high degree of relatedness of mGluR2 and mGluR3, NAAG selectively activated the mGluR3 receptor. NAAG activated neither mGluR2 nor mGluR1, mGluR4, mGluR5, or mGluR6. The mGluR agonist, trans -ACPD, activated each of the transfected receptors, whereas l -AP4 activated mGluR4 and mGluR6, consistent with the published selectivity of these agonists. Hybrid cDNA constructs of the extracellular domains of mGluR2 and mGluR3 were independently fused with the transmembrane and cytoplasmic domain of mGluR1a. This latter receptor domain is coupled to phosphoinositol turnover, and its activation increases intracellular calcium. The cells transfected with these chimeric receptors responded to activation by glutamate and trans -ACPD with increases in intracellular calcium. NAAG activated the chimeric receptor that contained the extracellular domain of mGluR3 and did not activate the mGluR2 chimera.  相似文献   

10.
Previous studies show that chronic hyperammonemia impairs learning ability of rats by impairing the glutamate-nitric oxide (NO)-cyclic guanosine mono-phosphate (cGMP) pathway in cerebellum. Three types of glutamate receptors cooperate in modulating the NO-cGMP pathway: metabotropic glutamate receptor 5 (mGluR5), (RS)-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-d-aspartic acid (NMDA) receptors. The aim of this work was to assess whether hyperammonemia alters the modulation of this pathway by mGluR5 and AMPA receptors in cerebellum in vivo. The results support that in control rats: (1) low AMPA concentrations (0.1mM) activate nearly completely Ca(2+)-permeable (glutamate receptor subunit 2 (GluR2)-lacking) AMPA receptors and the NO-cGMP pathway; (2) higher AMPA concentrations (0.3 mM) also activate Ca(2+)-impermeable (GluR2-containing) AMPA receptors, leading to activation of NMDA receptors and of NO-cGMP pathway. Moreover, the data support that chronic hyperammonemia: (1) reduces glutamate release and activation of the glutamate-NO-cGMP pathway by activation of mGluR5; (2) strongly reduces the direct activation by AMPA receptors of the NO-cGMP pathway, likely due to reduced entry of Ca(2+) through GluR2-lacking, high affinity AMPA receptors; (3) strongly increases the indirect activation of the NO-cGMP pathway by high affinity AMPA receptors, likely due to increased entry of Na(+) through GluR2-lacking AMPA receptors and NMDA receptors activation; (4) reduces the indirect activation of the NO-cGMP pathway by low affinity AMPA receptors, likely due to reduced activation of NMDA receptors.  相似文献   

11.
We have investigated the mechanism of inhibition and site of action of the novel human metabotropic glutamate receptor 5 (hmGluR5) antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP), which is structurally unrelated to classical metabotropic glutamate receptor (mGluR) ligands. Schild analysis indicated that MPEP acts in a non-competitive manner. MPEP also inhibited to a large extent constitutive receptor activity in cells transiently overexpressing rat mGluR5, suggesting that MPEP acts as an inverse agonist. To investigate the molecular determinants that govern selective ligand binding, a mutagenesis study was performed using chimeras and single amino acid substitutions of hmGluR1 and hmGluR5. The mutants were tested for binding of the novel mGluR5 radioligand [(3)H]2-methyl-6-(3-methoxyphenyl)ethynyl pyridine (M-MPEP), a close analog of MPEP. Replacement of Ala-810 in transmembrane (TM) VII or Pro-655 and Ser-658 in TMIII with the homologous residues of hmGluR1 abolished radioligand binding. In contrast, the reciprocal hmGluR1 mutant bearing these three residues of hmGluR5 showed high affinity for [(3)H]M-MPEP. Radioligand binding to these mutants was also inhibited by 7-hydroxyiminocyclopropan[b]chromen-1a-carboxylic acid ethyl ester (CPCCOEt), a structurally unrelated non-competitive mGluR1 antagonist previously shown to interact with residues Thr-815 and Ala-818 in TMVII of hmGluR1. These results indicate that MPEP and CPCCOEt bind to overlapping binding pockets in the TM region of group I mGluRs but interact with different non-conserved residues.  相似文献   

12.
3-(3,4-Dichlorobenzyloxy)-2-amino-6-fluorobicyclo[3.1.0]hexane-2,6-dicarboxylic acid 5 (MGS0039) is a highly selective and potent group II metabotropic glutamate receptor (mGluR) antagonist (antagonist activities for mGluR2; IC50=20.0 nM, mGluR3; IC50=24.0 nM) and is detected in both plasma (492 ng/mL) and brain (13.2 ng/g) at oral administration of 10 ng/mL [J. Med. Chem.2004, 47, 4750], but the oral bioavailability of 5 was 10.9%. In order to improve the oral bioavailability of 5, prodrugs of 5 were discovered by esterification of carboxyl group on C6-position of bicyclo[3.1.0]hexane ring. Among these compounds, 6-alkyl esters exhibited approximately 10-fold higher concentrations of 5 in the plasma and brain of rats after oral administration (e.g., ethyl ester of 5; plasma, Cmax=20.7+/-1.3 microM) compared to oral administration of 5 (plasma, Cmax=2.46+/-0.62 microM). 3-(3,4-Dichlorobenzyloxy)-2-amino-6-fluorobicyclo[3.1.0]hexane-2,6-dicarboxylic acid 6-heptyl ester (7ao), a prodrug of MGS0039, showed antidepressant-like effects in rat forced swimming test and mouse tail suspension test following oral administration. Moreover, following oral administration of 7ao in mice, high concentrations of MGS0039 were detected in both the brain and plasma, while 7ao was barely detected. In this paper, we report the synthesis, in vitro metabolic stabilities, and pharmacokinetic profiles of the prodrugs of 5, and the antidepressant-like effects of 7ao.  相似文献   

13.
1-Aminoethyl-3-arylsulfonyl-1H-indoles 1 are 5-HT(6) receptor ligands with modest activity in a 5-HT(6) cyclase assay. Introduction of an additional nitrogen in the indole ring provides 1-aminoethyl-3-arylsulfonyl-1H-pyrrolo[2,3-b]pyridines 2 with both enhanced 5-HT(6) affinity and cyclase activity, many acting as 5-HT(6) agonists. We constrained the basic side chain as part of a ring to make 1-(azacyclyl)-3-arylsulfonyl-1H-pyrrolo[2,3-b]pyridines incorporating a pyrrolidinyl 3 or piperidinyl 4 ring system. Preparation of compounds 3 and 4 required synthesis of the key intermediates, 1-(pyrrolidin-3-yl)-1H-pyrrolo[2,3-b]pyridines 7 and 1-(piperidin-3-yl)-1H-pyrrolo[2,3-b]pyridines 8, respectively. Intermediates 7 were prepared through alkylation of 7-azaindole while the intermediates 8 required an alternate synthesis. The compounds of both series 3 and 4 were shown to have high binding affinities for the 5-HT(6) receptor. The in vitro functional activity at the 5-HT(6) receptor varied depending on various functionalities including the selection of the arylsulfonyl, the substitution on the arylsulfonyl group, the ring size, and the substitution on the basic amine moiety producing either 5-HT(6) receptor agonists or antagonists.  相似文献   

14.
Metabotropic glutamate receptor subtype 7 (mGluR7) is coupled to the inhibitory cyclic AMP cascade and is selectively activated by a glutamate analogue, L-2-amino-4-phosphonobutyrate. Among L-2-amino-4-phosphonobutyrate-sensitive mGluR subtypes, mGluR7 is highly concentrated at the presynaptic terminals and is thought to play an important role in modulation of glutamatergic synaptic transmission by presynaptic inhibition of glutamate release. To gain further insight into the intracellular signaling mechanisms of mGluR7, with the aid of glutathione S-transferase fusion affinity chromatography, we attempted to identify proteins that interact with the intracellular carboxyl terminus of mGluR7. Here, we report that calmodulin (CaM) directly binds to the carboxyl terminus of mGluR7 in a Ca(2+)-dependent manner. The CaM-binding domain is located immediately following the 7th transmembrane segment. We also show that the CaM-binding domain of mGluR7 is phosphorylated by protein kinase C (PKC). This phosphorylation is inhibited by the binding of Ca(2+)/CaM to the receptor. Conversely, the Ca(2+)/CaM binding is prevented by PKC phosphorylation. Collectively, these results suggest that mGluR7 serves to cross-link the cyclic AMP, Ca(2+), and PKC phosphorylation signal transduction cascades.  相似文献   

15.
The second-generation asymmetric synthesis of the trans-tris(homoglutamic) acids reported herein proceeds via Strecker reaction of chiral ketimines, obtained from condensation of racemic 2-ethoxycarbonylmethylcyclopentanone and commercially available (S)- and (R)-1-phenylethylamine, respectively. In the key stereodifferentiating step, the cyanide addition leads to mixtures of diastereomeric alpha-amino nitrile-esters, the composition of which is independent of the reaction temperature and the type of the solvent, respectively. Hydrolysis of the alpha-amino nitrile-esters with concentrated H(2)SO(4) yielded diastereomeric mixtures of secondary alpha-amino amido-esters, which after separation were hydrogenolyzed and hydrolyzed each to the enantiomeric trans-1-amino-2-carboxymethylcyclopentanecarboxylic acids. Their configuration was completely established by NMR methods, CD spectra, and X-ray analysis of the trans-1S,2R-configured secondary alpha-amino amido-ester. In receptor binding assays and functional tests, trans-1S,2R-1-amino-2-carboxymethylcyclopentanecarboxylic acid hydrochloride was found to behave as a selective mGluR(2)-antagonist without relevant binding properties at iGluRs.  相似文献   

16.
It is thought that selective 5-HT(4) receptor agonists-such as 4-amino-5-chloro-2-methoxy-N-[1-(6-oxo-6-phenylhexyl)piperidin-4ylmethyl]benzamide (2)-have the ability to enhance both upper and lower gastrointestinal motility without any significant adverse effects. Modification of 2 was performed. Variation of the piperidin-4ylmethyl moiety of 2 led to a decrease in the binding affinity for the 5-HT(4) receptor. Following conversion of the carbonyl group on the benzoyl part to a hydroxyl or sulfoxide group, the binding affinity for the 5-HT(4) receptor was retained although the effect on defecation was reduced. Many of the 4-amino-5-chloro-2-methoxy-N-(piperidin-4ylmethyl)benzamides that had a ether or sulfide moiety in the side-chain part at the 1-position of the piperidine exhibited high affinity for the 5-HT(4) receptor. Among these, phenylthio 41c and benzylthio derivative 44 were selective 5-HT(4) receptor agonists, and had a similar effect on defecation to compound 2.  相似文献   

17.
Three peptides, B-10148 (Lys-1-Lys0-Arg1-Pro2-Hyp3-Gly4-Igl5-Ser6- DF5F7-Oic8; where Hyp is trans-4-hydroxyproline, Igl is alpha-(2-indanyl)glycine, F5F is 2,3,4,5,6-pentafluorophenylalanine and Oic is (3aS,7aS)-octahydroindole-2-carboxylic acid), B-10206 (DArg0-Arg1-Pro2-Hyp3-Gly4-Igl5-Ser6-DF 5F7-Nc7G8-Arg9; where Nc7G is N-cycloheptylglycine) and B- 10284 (Arg1-Pro2-Pro3-Gly4-Phe5-Thr6-DTic7-Oic8- NH2; where Tic is 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid), were studied in detail by NMR spectroscopy in 60% CD3OH /40% H2O and modeled by a simulated annealing protocol to determine their solution structure. B-10148, an extremely potent BK B1 receptor antagonist with very high BK B2 receptor antagonist activity, despite lacking a C-terminal Arg, displayed an ideal type II beta-turn from Pro2 to Igl5, as well as a salt bridge between the guanidino group of Arg1 and the carboXylate group of Oic8. B-10206, the most potent B2 antagonist, also displayed an ideal type II beta-turn from Pro2 to Igl5 but secondary structure was not observed at the C-terminal end. The third peptide, B-10284, a des-Arg9 analog with a C-terminal amide and a very potent B2 antagonist, had no definite solution structure. The high activity of these peptides emphasizes the importance of the N-terminal beta-turn and the hydrophobic character at the C-terminus in determining the activity of bradykinin antagonists.  相似文献   

18.
We investigated the expression of metabotropic glutamate receptor (mGluR) isoforms in CG-4 rodent oligodendroglial progenitor cells (OPC) and rat brain oligodendrocytes. Our RT-PCR analysis detected mRNAs for mGluR3 and mGluR5 isoforms in OPCs. Although neurons express both mGluR5a and mGluR5b splice variants, only mGluR5a was identified in OPCs. Antibodies to mGluR2/3 and mGluR5 detected the corresponding receptor proteins in immunoblots of OPC membrane fractions. Furthermore, immunocytochemical analysis identified mGluR5 in oligodendrocyte marker O4-positive OPCs. The expression of mGluR5 was also demonstrated in oligodendrocyte marker (O4 and O1) positive cells in white matter of postnatal 4- and 7-day-old rat brain sections using immunofluorescent double labelling and confocal microscopy. The mGluR5 receptor function was assessed in CG-4 OPCs with fura-2 microfluorometry. Application of the mGluR1/5 specific agonist (S)-3,5-dihydroxyphenylglycine (DHPG) induced calcium oscillations, which were inhibited by the selective mGluR5 antagonist 2-methyl-6-(phenylethynyl) pyridine hydrochloride (MPEP). The DHPG induced calcium oscillations required Ca2+ release from intracellular stores. In OPCs the group II mGluR agonist (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG-IV) decreased forskolin-stimulated cAMP synthesis, indicating the presence of functional mGluR3. The newly identified mGluR3 and mGluR5a may be involved in the differentiation of oligodendrocytes, myelination and the development of white matter damage.  相似文献   

19.
Because of its highly unstable nature, TXA2, produced by platelet metabolism of arachidonic acid, does not lend itself to use as a receptor probe for its own receptor. As such, the stable TXA2/PGH2 antagonist, trans-13-azaprostanoic acid (trans-13-APA, 12b), was prepared as the [17, 18 3H] derivative [( 3H] trans-13-APA, 12c) to study this receptor and to better evaluate the mechanism of action of these azaprostanoids. Tritiated trans-13-APA, 12c, was prepared in nearly theoretical specific activity (57 Ci/mmole) from (17Z)-trans-13-azaprost-17-enoic acid (11b) by catalytic tritiation. The unsaturated 11b was prepared by condensation of cis-7-amino-3-heptene (8) with 2-(6-carboxyhexyl) cyclopentanone (9), NaBH4 reduction, chromatography, and hydrolysis of the trans isomer so isolated. The olefins 11a and b were also of biochemical interest because of the unsaturation in the lower side chain. The presence of similar unsaturation in PGH3(4) and TXA3 (3) renders these prostaglandins inactive as proaggregatory agents. Evaluation of the antiaggregatory activity of 11a and b indicated it to be about the same potency in inhibiting human platelet aggregation as the parent cis and trans-13-APAs, suggesting that introduction of a double bond at the 17 position in platelet prostaglandin antagonists is unlikely to result in enhanced antiplatelet activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号