首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Phosphorylation of eIF2α is an important strategy for living organisms to adapt to metabolic and physiological changes that are often associated with external stimuli. GCN2 is one of the well‐studied eIF2α kinases in yeast and mammals, which is responsible for the survival of the organism under amino acid starvation. Despite the downstream reactions being quite divergent, AtGCN2 exhibits a high primary sequence similarity to its yeast and animal counterparts. In this study, we provide experimental evidence to show that AtGCN2 shares similar biochemical properties to the yeast and animal homologues. Our in vitro assays demonstrate the binding of the C‐terminus of AtGCN2 to uncharged tRNA molecules and the enzymatic activities of AtGCN2 on both eIF2α homologues in A. thaliana, thus providing essential information for further understanding the functions of plant general control non‐repressible (GCN) homologues.  相似文献   

3.
In yeast, the interaction of General Control Non‐derepressible 1 (GCN1) with GCN2 enables GCN2 to phosphorylate eIF2α (the alpha subunit of eukaryotic translation initiation factor 2) under a variety of stresses. Here, we cloned AtGCN1, an Arabidopsis homologue of GCN1. We show that AtGCN1 directly interacts with GCN2 and is essential for the phosphorylation of eIF2α under salicylic acid (SA), ultraviolet (UV), cold stress and amino acid deprivation conditions. Two mutant alleles, atgcn1‐1 and atgcn1‐2, which are defective in the phosphorylation of eIF2α, showed increased sensitivity to cold stress, compared with the wild type. Ribosome‐bound RNA profiles showed that the translational state of mRNA was higher in atgcn1‐1 than in the wild type. Our result also showed that cold treatment reduced the tendency of the tor mutant seedlings to produce purple hypocotyls. In addition, the kinase activity of TOR was transiently inhibited when plants were exposed to cold stress, suggesting that the inhibition of TOR is another pathway important for plants to respond to cold stress. In conclusion, our results indicate that the AtGCN1‐mediated phosphorylation of eIF2α, which is required for inhibiting the initiation of protein translation, is essential for cold tolerance in Arabidopsis.  相似文献   

4.
Translational control directed by the eukaryotic translation initiation factor 2 alpha-subunit (eIF2alpha) kinase GCN2 is important for coordinating gene expression programs in response to nutritional deprivation. The GCN2 stress response, conserved from yeast to mammals, is critical for resistance to nutritional deficiencies and for the control of feeding behaviors in rodents. The mouse protein IMPACT has sequence similarities to the yeast YIH1 protein, an inhibitor of GCN2. YIH1 competes with GCN2 for binding to a positive regulator, GCN1. Here, we present evidence that IMPACT is the functional counterpart of YIH1. Overexpression of IMPACT in yeast lowered both basal and amino acid starvation-induced levels of phosphorylated eIF2alpha, as described for YIH1 (31). Overexpression of IMPACT in mouse embryonic fibroblasts inhibited phosphorylation of eIF2alpha by GCN2 under leucine starvation conditions, abolishing expression of its downstream target genes, ATF4 (CREB-2) and CHOP (GADD153). IMPACT bound to the minimal yeast GCN1 segment required for interaction with yeast GCN2 and YIH1 and to native mouse GCN1. At the protein level, IMPACT was detected mainly in the brain. IMPACT was found to be abundant in the majority of hypothalamic neurons. Scattered neurons expressing this protein at higher levels were detected in other regions such as the hippocampus and piriform cortex. The abundance of IMPACT correlated inversely with phosphorylated eIF2alpha levels in different brain areas. These results suggest that IMPACT ensures constant high levels of translation and low levels of ATF4 and CHOP in specific neuronal cells under amino acid starvation conditions.  相似文献   

5.
In response to amino acid starvation, GCN2 phosphorylation of eIF2 leads to repression of general translation and initiation of gene reprogramming that facilitates adaptation to nutrient stress. GCN2 is a multidomain protein with key regulatory domains that directly monitor uncharged tRNAs which accumulate during nutrient limitation, leading to activation of this eIF2 kinase and translational control. A critical feature of regulation of this stress response kinase is its C-terminal domain (CTD). Here, we present high resolution crystal structures of murine and yeast CTDs, which guide a functional analysis of the mammalian GCN2. Despite low sequence identity, both yeast and mammalian CTDs share a core subunit structure and an unusual interdigitated dimeric form, albeit with significant differences. Disruption of the dimeric form of murine CTD led to loss of translational control by GCN2, suggesting that dimerization is critical for function as is true for yeast GCN2. However, although both CTDs bind single- and double-stranded RNA, murine GCN2 does not appear to stably associate with the ribosome, whereas yeast GCN2 does. This finding suggests that there are key regulatory differences between yeast and mammalian CTDs, which is consistent with structural differences.  相似文献   

6.
D S Olsen  B Jordan  D Chen  R C Wek  D R Cavener 《Genetics》1998,149(3):1495-1509
Genomic and cDNA clones homologous to the yeast GCN2 eIF-2alpha kinase (yGCN2) were isolated from Drosophila melanogaster. The identity of the Drosophila GCN2 (dGCN2) gene is supported by the unique combination of sequence encoding a protein kinase catalytic domain and a domain homologous to histidyl-tRNA synthetase and by the ability of dGCN2 to complement a deletion mutant of the yeast GCN2 gene. Complementation of Deltagcn2 in yeast by dGCN2 depends on the presence of the critical regulatory phosphorylation site (serine 51) of eIF-2alpha. dGCN2 is composed of 10 exons encoding a protein of 1589 amino acids. dGCN2 mRNA is expressed throughout Drosophila development and is particularly abundant at the earliest stages of embryogenesis. The dGCN2 gene was cytogenetically and physically mapped to the right arm of the third chromosome at 100C3 in STS Dm2514. The discovery of GCN2 in higher eukaryotes is somewhat unexpected given the marked differences between the amino acid biosynthetic pathways of yeast vs. Drosophila and other higher eukaryotes. Despite these differences, the presence of GCN2 in Drosophila suggests at least partial conservation from yeast to multicellular organisms of the mechanisms responding to amino acid deprivation.  相似文献   

7.
In response to amino acid starvation, the kinase GCN2 in yeast activates amino acid biosynthesis. Two recent studies (Maurin et al., 2005; Hao et al., 2005) reveal that GCN2 in the brain of mice restricts intake of diets lacking essential amino acids.  相似文献   

8.
9.
10.
11.
Sood R  Porter AC  Olsen DA  Cavener DR  Wek RC 《Genetics》2000,154(2):787-801
A family of protein kinases regulates translation in response to different cellular stresses by phosphorylation of the alpha subunit of eukaryotic initiation factor-2 (eIF-2alpha). In yeast, an eIF-2alpha kinase, GCN2, functions in translational control in response to amino acid starvation. It is thought that uncharged tRNA that accumulates during amino acid limitation binds to sequences in GCN2 homologous to histidyl-tRNA synthetase (HisRS) enzymes, leading to enhanced kinase catalytic activity. Given that starvation for amino acids also stimulates phosphorylation of eIF-2alpha in mammalian cells, we searched for and identified a GCN2 homologue in mice. We cloned three different cDNAs encoding mouse GCN2 isoforms, derived from a single gene, that vary in their amino-terminal sequences. Like their yeast counterpart, the mouse GCN2 isoforms contain HisRS-related sequences juxtaposed to the kinase catalytic domain. While GCN2 mRNA was found in all mouse tissues examined, the isoforms appear to be differentially expressed. Mouse GCN2 expressed in yeast was found to inhibit growth by hyperphosphorylation of eIF-2alpha, requiring both the kinase catalytic domain and the HisRS-related sequences. Additionally, lysates prepared from yeast expressing mGCN2 were found to phosphorylate recombinant eIF-2alpha substrate. Mouse GCN2 activity in both the in vivo and in vitro assays required the presence of serine-51, the known regulatory phosphorylation site in eIF-2alpha. Together, our studies identify a new mammalian eIF-2alpha kinase, GCN2, that can mediate translational control.  相似文献   

12.
The yeast gene GCN4 produces an mRNA that has a long 5' 'untranslated' region containing four small open reading frames (ORFs) preceding the protein coding frame. This configuration suppresses the rate by which GCN4 protein is synthesized. However, translational derepression of the GCN4 mRNA occurs when yeast cells are grown under conditions of amino acid limitation. Such translational derepression requires the GCN2 protein kinase and the presence of the 5' most proximal ORF. In this study we show that a functional coupling between the translation of the first ORF and the amount of the GCN2 protein is responsible for the translational derepression of the GCN4 mRNA. Our evidence suggests that this coupling involves an increase in the ability of 40S ribosomal subunits that have translated the first frame to resume scanning and reinitiate translation at a downstream AUG independently of the base sequence in the intervening region.  相似文献   

13.
14.
Interpathway regulation of the TRP4 gene of yeast.   总被引:15,自引:3,他引:12       下载免费PDF全文
  相似文献   

15.
A key point of regulation of protein synthesis and amino acid homoeostasis in eukaryotes is the phosphorylation of the α subunit of eukaryotic translation initiation factor 2 (eIF2α) by protein kinase general control nonderepressible (GCN)-2. In this study, a GCN2-type PCR product (TaGCN2) was amplified from wheat (Triticum aestivum) RNA, while a wheat eIF2α homologue was identified in wheat genome data and found to contain a conserved target site for phosphorylation by GCN2. TaGCN2 overexpression in transgenic wheat resulted in significant decreases in total free amino acid concentration in the grain, with free asparagine concentration in particular being much lower than in controls. There were significant increases in the expression of eIF2α and protein phosphatase PP2A, as well as a nitrate reductase gene and genes encoding phosphoserine phosphatase and dihydrodipicolinate synthase, while the expression of an asparagine synthetase (AS1) gene and genes encoding cystathionine gamma-synthase and sulphur-deficiency-induced-1 all decreased significantly. Sulphur deficiency-induced activation of these genes occurred in wild-type plants but not in TaGCN2 overexpressing lines. Under sulphur deprivation, the expression of genes encoding aspartate kinase/homoserine dehydrogenase and 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase was also lower than in controls. The study demonstrates that TaGCN2 plays an important role in the regulation of genes encoding enzymes of amino acid biosynthesis in wheat and is the first to implicate GCN2-type protein kinases so clearly in sulphur signalling in any organism. It shows that manipulation of TaGCN2 gene expression could be used to reduce free asparagine accumulation in wheat grain and the risk of acrylamide formation in wheat products.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号