首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Escherichia coli topoisomerases I and III (Topo I and Topo III) relax negatively supercoiled DNA and also catenate/decatenate DNA molecules containing single-stranded DNA regions. Although these enzymes share the same mechanism of action and have similar structures, they participate in different cellular processes. In bulk experiments Topo I is more efficient at DNA relaxation, whereas Topo III is more efficient at catenation/decatenation, probably reflecting their differing cellular roles. To examine the differences in the mechanism of these two related type IA topoisomerases, single-molecule relaxation studies were conducted on several DNA substrates: negatively supercoiled DNA, positively supercoiled DNA with a mismatch and positively supercoiled DNA with a bulge. The experiments show differences in the way the two proteins work at the single-molecule level, while also recovering observations from the bulk experiments. Overall, Topo III relaxes DNA efficiently in fast processive runs, but with long pauses before relaxation runs, whereas Topo I relaxes DNA in slow processive runs but with short pauses before runs. The combination of these properties results in Topo I having an overall faster total relaxation rate, even though the relaxation rate during a run for Topo III is much faster.  相似文献   

2.
Human autoantibody to topoisomerase II   总被引:3,自引:0,他引:3  
The rheumatic diseases are characterized by the production of autoantibodies that are usually directed against components of the cell nucleus. In this communication, we describe autoantibodies that recognize DNA topoisomerase II (anti-topoII) present in the serum of a patient with systemic lupus erythematosus. Several lines of evidence indicate that this antibody recognizes topoisomerase II. First, it binds to the native enzyme in soluble extracts prepared from isolated chromosomes and effectively depletes such extracts of active enzyme. Second, the serum binds to topoisomerase II in immunoblots of mitotic chromosomes and chromosome scaffolds. Finally, the antiserum binds strongly to a fusion protein encoded by a cloned cDNA and expressed in Escherichia coli that (based on immunological evidence) represents the carboxy-terminal portion of chicken topoisomerase II. Autoantibodies such as the one described here may provide useful reagents for the study of human topoisomerase II.  相似文献   

3.
Type IIA and type IIB topoisomerases each possess the ability to pass one DNA duplex through another in an ATP-dependent manner. The role of ATP in the strand passage reaction is poorly understood, particularly for the type IIB (topoisomerase VI) family. We have solved the structure of the ATP-binding subunit of topoisomerase VI (topoVI-B) in two states: an unliganded monomer and a nucleotide-bound dimer. We find that topoVI-B is highly structurally homologous to the entire 40-43 kDa ATPase region of type IIA topoisomerases and MutL proteins. Nucleotide binding to topoVI-B leads to dimerization of the protein and causes dramatic conformational changes within each protomer. Our data demonstrate that type IIA and type IIB topoisomerases have descended from a common ancestor and reveal how ATP turnover generates structural signals in the reactions of both type II topoisomerase families. When combined with the structure of the A subunit to create a picture of the intact topoisomerase VI holoenzyme, the ATP-driven motions of topoVI-B reveal a simple mechanism for strand passage by the type IIB topoisomerases.  相似文献   

4.
A simple method for the purification of the major topoisomerase (topoisomerase 1) from chicken erythrocytes is described. Because of the generally repressed state of the chromatin from these nuclei, the heterogeneity of the non-histone proteins is reduced, and it is possible to purify this enzyme from a nuclear extract by a single chromatographic step. The chicken erythrocyte topoisomerase appears to be similar to previously described eukaryotic type I topoisomerases with respect to its physical and enzymological properties. The pattern of intermediate products generated during the action of chicken erythrocyte topoisomerase on a supercoiled closed circular DNA substrate has been examined quantitatively and has been shown to be consistent with a mechanism in which the enzyme closes its substrate DNA molecular after the removal of each superhelical turn and in which dissociation of the enzyme substrate complex may, but does not necessarily, occur after each cycle of the reaction.  相似文献   

5.
Kinetoplastid topoisomerase IB is an unusual bisubunit enzyme where reconstitution of the large (LdTOPIL or L) and small (LdTOPIS or S) subunits shows functional activity. It is yet to be deciphered whether one subunit or both navigate the heterodimer to its cellular DNA targets. Tethering a specific DNA-binding protein to topoisomerase I alters its site specificity. The chimeric constructs UMSBP-LdTOPIL/S or U-L/S (fusion of UMSBP to the N-terminus of L and reconstituted with S) and LdTOPIL/UMSBP-LdTOPIS or L/U-S (fusion of UMSBP to the N-terminus of S and reconstituted with L) exhibit relaxation activity. Only U-L/S shows altered site specificity and enhanced DNA-binding affinity for the universal minicircle sequence (UMS) containing substrate. This proves that L alone serves as the 'molecular steer' for this heterodimer. Reconstituted U-L/S also induces cleavage close to UMS and causes minicircle linearization. The differential properties of the reconstituted chimeras U-L/S and L/U-S reveal the structural and functional asymmetry between the heterodimer. Therefore this study helps in a better understanding of the mechanistic details underlying topoisomerization by this bi-subunit enzyme.  相似文献   

6.
BackgroundEtoposide and doxorubicin, topoisomerase II poisons, are important drugs for the treatment of tumors in the clinic. Topoisomerases contain several free sulfhydryl groups which are important for their activity and are also potential targets for nitric oxide (NO)-induced nitrosation. NO, a physiological signaling molecule nitrosates many cellular proteins, causing altered protein and cellular functions.MethodsHere, we have evaluated the roles of NO/NO-derived species in the activity/stability of topo II both in vitro and in human tumor cells, and in the cytotoxicity of topo II-poisons, etoposide and doxorubicin.ResultsTreatment of purified topo IIα with propylamine propylamine nonoate (PPNO), an NO donor, resulted in inhibition of both the catalytic and relaxation activity in vitro, and decreased etoposide-dependent cleavable complex formation in both human HT-29 colon and MCF-7 breast cancer cells. PPNO treatment also induced significant nitrosation of topo IIα protein in these human tumor cells. These events, taken together, caused a significant resistance to etoposide in both cell lines. However, PPNO had no effect on doxorubicin-induced cleavable complex formation, or doxorubicin cytotoxicity in these cell lines.ConclusionInhibition of topo II function by NO/NO-derived species induces significant resistance to etoposide, without affecting doxorubicin cytotoxicity in human tumor cells.General significanceAs tumors express inducible nitric oxide synthase and generate significant amounts of NO, modulation of topo II functions by NO/NO-derived species could render tumors resistant to certain topo II-poisons in the clinic.  相似文献   

7.
A mutation was constructed in the CAP homology domain of yeast topoisomerase II that resulted in hypersensitivity to the intercalating agent N-[4-(9-acridinylamino)-3-methoxy-phenyl]methanesulfonamide and the fluoroquinolone 6, 8-difluoro-7-(4'-hydroxyphenyl)-1-cyclopropyl-4-quinolone-3-carboxyli c acid, but not to etoposide. This mutation, which changes threonine at position 744 to proline, also confers hypersensitivity to anti-bacterial fluoroquinolones. The purified T744P mutant protein had wild type enzymatic activity in the absence of drugs, and no alteration in drug-independent DNA cleavage. Enhanced DNA cleavage in the presence of N-[4-(9-acridinylamino)-3-methoxy-phenyl]methanesulfonamide and fluoroquinolones was observed, in agreement with the results observed in vivo. DNA cleavage was also seen in the presence of norfloxacin and oxolinic acid, two quinolones that are inactive against eukaryotic topoisomerase II. The hypersensitivity was not associated with heat-stable covalent complexes, as was seen in another drug-hypersensitive mutant. Molecular modeling suggests that the mutation in the CAP homology domain may displace amino acids that play important roles in catalysis by topoisomerase II and may explain the drug-hypersensitive phenotype.  相似文献   

8.
The discovery of new topoisomerase I inhibitors is necessary since most of the antitumor drugs are targeted against type II and only a very few can specifically affect type I. Topoisomerase poisons generate toxic DNA damage by stabilization of the covalent DNA-topoisomerase cleavage complex and some have therapeutic efficacy in human cancer. Two iridoids, aucubin and geniposide, have shown antitumoral activities, but their activity against topoisomerase enzymes has not been tested. Here it was found that both compounds are able to stabilize covalent attachments of the topoisomerase I subunits to DNA at sites of DNA strand breaks, generating cleavage complexes intermediates so being active as poisons of topoisomerase I, but not topoisomerase II. This result points to DNA damage induced by topoisomerase I poisoning as one of the possible mechanisms by which these two iridoids have shown antitumoral activity, increasing interest in their possible use in cancer chemoprevention and therapy.  相似文献   

9.
Inhibition of topoisomerase I by heparin   总被引:2,自引:0,他引:2  
DNA topoisomerase I isolated from mouse mammary cacinoma cells was shown to be inhibited by heparin, the dose giving 50% inhibition (IC50) being 0.20 μg/ml. Other chemically related acid mucopolysaccharides including heparan sulfate, dermatan sulfate etc. were more than 500 times less active than heparin. When the amount of enzyme was doubled relative to the substrate the inhibition was reversed. Addition of heparin to assay mixtures after the initiation of the reaction immediately inhibited the enzyme reaction.  相似文献   

10.
Chloroplast DNA topoisomerase I from cauliflower   总被引:1,自引:0,他引:1  
An ATP-independent DNA topoisomerase has been isolated from chloroplasts of cauliflower leaves (Brassica oleracea var. botrytis) through DEAE-cellulose, AF-blue Toyopearl, and hydroxyapatite column chromatography. The sedimentation coefficient and Stokes radius of this enzyme are 3.6S and 3.6 nm, respectively, and the molecular weight of native enzyme is estimated to be 54,000. This enzyme changes the linking number in steps of one. The enzyme activity is stimulated by MgCl2, and this enzyme shows optimum activity at 30 degrees C in the range of 3 mM MgCl2 + 100 mM KCl-10 mM MgCl2 + 50 mM KCl. The enzyme activity was reduced remarkably by N-ethylmaleimide, indicating that a free sulfhydryl group is important for the activity; heparin and ellipticine also reduced the activity. Both cauliflower chloroplast topoisomerase and spinach chloroplast topoisomerase can relax positive supercoils as well as negative supercoils. From these properties, cauliflower chloroplast topoisomerase can be classified as a eukaryotic type I DNA topoisomerase.  相似文献   

11.
The discovery of new topoisomerase I inhibitors is necessary since most of the antitumor drugs are targeted against type II and only a very few can specifically affect type I. Topoisomerase poisons generate toxic DNA damage by stabilization of the covalent DNA-topoisomerase cleavage complex and some have therapeutic efficacy in human cancer. Two iridoids, aucubin and geniposide, have shown antitumoral activities, but their activity against topoisomerase enzymes has not been tested. Here it was found that both compounds are able to stabilize covalent attachments of the topoisomerase I subunits to DNA at sites of DNA strand breaks, generating cleavage complexes intermediates so being active as poisons of topoisomerase I, but not topoisomerase II. This result points to DNA damage induced by topoisomerase I poisoning as one of the possible mechanisms by which these two iridoids have shown antitumoral activity, increasing interest in their possible use in cancer chemoprevention and therapy.  相似文献   

12.
In this study we report that human placenta is an excellent source of DNA topoisomerase I. The enzyme can be isolated in the fully intact 100 kDa form although lower molecular mass species are also observed. Occasionally, the enzyme can be resolved into two peaks of activity by chromatography on phosphocellulose. As expected, the enzyme promotes marked cleavage of DNA in response to the anticancer drug camptothecin. Because of this property and the ready availability of human placenta, the enzyme should prove to be useful in the development and testing of new anticancer drugs that target topoisomerase I.  相似文献   

13.
Nagarajan R  Kwon K  Nawrot B  Stec WJ  Stivers JT 《Biochemistry》2005,44(34):11476-11485
The reversible nucleophilic substitution reaction catalyzed by the vaccinia virus type IB topoisomerase has been investigated by measuring the equilibrium and rate effects of stereospecific sulfur substitution at the two nonbridging oxygen atoms of the attacked phosphodiester group. An energetic analysis of the combined effects of sulfur substitution and site-directed mutagenesis of active site residues of the enzyme has identified enzyme interactions with each oxygen in the ground state and transition state. We use these findings in combination with previous structural and 5'-bridging sulfur substitution results to deduce the web of enzymatic interactions with the nonbridging oxygens as well as the 5'-hydroxyl leaving group. A key finding is the central role of Arg130, which forms electrostatic interactions with both nonbridging oxygens and the 5'-leaving group.  相似文献   

14.
A class of enzymes, called DNA topoisomerases, is responsible for controlling the topological state of cellular DNA. Among these, type IA topoisomerases form a vast family that is present in all living organisms, including higher eukaryotes, in which they play important roles in genome stability. The known 3D structures of three of these enzymes indicate that they share a common toroidal architecture. We previously showed that the toroidal structure could be split off from the core enzyme of Thermotoga maritima topoisomerase I by limited proteolysis. This structure is produced by the association of two tandemly repeated elementary folds in a head-to-tail orientation. By using a combination of structural and sequence data analysis, we show that the elementary fold of about 150 amino acid residues, referred to as the topofold, is likely to be present in the whole topoisomerase IA family. Within each enzyme, the successive topofolds share two conserved sequence motifs located at the base of the ring, and referred to as the MI and MII motifs. However, the overall sequences of the folds have largely diverged. By contrast, secondary and tertiary structures appear remarkably conserved. We suggest that this twofold repeat has evolved by gene duplication/fusion from an ancestral topofold.  相似文献   

15.
Quinoline alkaloids are abundant in the Rutaceae, and many have exhibited cytotoxic activity. Because structurally related antitumor alkaloids such as camptothecin and fagaronine are known to function as intercalative topoisomerase poisons, it is hypothesized that cytotoxic Stauranthus alkaloids may also serve as intercalative topoisomerase inhibitors. To test this hypothesis theoretically, ten Stauranthus quinoline alkaloids were examined for potential intercalation into DNA using a molecular docking approach. Four of the alkaloids (stauranthine, skimmianine, 3′,6′-dihydroxy-3′,6′-dihydrostauranthine, and trans-3′,4′-dihydroxy-3′,4′-dihydrostauranthine) were able to intercalatively dock consistently into DNA. In order to probe the intermolecular interactions that may be responsible for intercalation of these quinoline alkaloids, density functional calculations have been carried out using both the B3LYP and M06 functionals. M06 calculations indicated favorable π–π interactions between either skimmianine or stauranthine and the guanine–cytosine base pair. Furthermore, the lowest-energy face-to-face orientation of stauranthine with guanine is consistent with favorable dipole–dipole orientations, favorable electrostatic interactions, and favorable frontier molecular orbital interactions. Likewise, the lowest-energy face-to-face orientation of stauranthine with the guanine–cytosine base pair reveals favorable electrostatic interactions as well as frontier molecular orbital interactions. Thus, not only can quinoline alkaloids dock intercalatively into DNA, but the docked orientations are also electronically favorable.   相似文献   

16.
17.
The therapeutic anticancer potential of flavonoids shown by recent research needs a greater understanding of these compounds. They are antioxidants and antimutagenic agents that can inhibit tumor promotion and transformation and can modify the activity of a large number of mammalian enzyme systems, such as human DNA-topoisomerases. Poisons of topoisomerases generate toxic DNA damage by stabilization of the covalent DNA-topoisomerase cleavage complex and some of them have therapeutic efficacy in human cancer. The present investigation has assayed ten flavonoids, isolated in our laboratory, as topoisomerase I poisons obtaining myricetin and myricetin-3-galactoside as two new topoiosomerase I poisons. These two flavonoids, and the plant extract from which they were isolated, were assayed for cytotoxic activity against three human cancer cell lines using the SRB assay. Taking into account our previous research, structural requisites implicated in the topoisomerase poisoning are discussed.  相似文献   

18.
Krogh BO  Shuman S 《Molecular cell》2000,5(6):1035-1041
Type IB topoisomerases and tyrosine recombinases are structurally homologous strand transferases that act through DNA-(3'-phosphotyrosyl)-enzyme intermediates. A constellation of conserved amino acids (Arg-130, Lys-167, Arg-223, and His-265 in vaccinia topoisomerase) catalyzes transesterification of tyrosine to the scissile phosphodiester. We used 5'-bridging phosphorothiolate-modified DNAs to implicate Lys-167 as a general acid catalyst. The lower pKa of the 5'-S leaving group versus 5'-O restored activity to the K167A mutant, whereas there was no positive thio effect for mutants R223A and H265A. The lysine is located atop a flexible hairpin loop, and it shifts into the minor groove upon DNA binding. Coupling of conformational changes in a general acid loop to covalent catalysis of phosphoryl transfer is one of several mechanistic features shared by the topoisomerase/recombinase and protein phosphatase superfamilies.  相似文献   

19.
We have initiated a genetic analysis of the physiologically important enzyme type I DNA topoisomerase in mouse. The exon-intron structures of the 5 part and the 3 part of the active gene, Top-1, were determined and shown to be quite similar to those of the previously determined human gene TOP1. The active mouse gene was mapped to the distal Chromosome (Chr) 2. In addition, the mouse genome contains one truncated processed topoisomerase-I-related pseudogene (retroposon), Top-1ps, on Chr 16. The Top-1ps locus, together with the immunoglobulin-lambda-light-chain locus, defines and additional conserved linkage group common to murine Chr 16 and human Chr 22, the site of the human pseudogene TOP1P2. The mapping data suggest that the pseudogene was established before mammalian radiation. Structural features, shared by the mouse and the human pseudogene, support this possibility.  相似文献   

20.
D S Ray  J C Hines    M Anderson 《Nucleic acids research》1992,20(13):3353-3356
The mitochondrial DNA of the trypanosomatid Crithidia fasciculata consists of thousands of copies of a 2.5 kb minicircle and a small number of 37kb maxicircles catenated into a single enormous network. Treatment of C. fasciculata with the type II DNA topoisomerase inhibitor VP16 produces cleavable complexes of a type II DNA topiosomerase with both minicircles and maxicircles. A combined Southern and Western blot analysis of the cleaved DNA species released from the network by SDS treatment has identified topollmt, the kinetoplast-associated topisomerase, in covalent complexes with linear forms of minicircle and maxicircle DNAs. These results directly implicate topollmt in the topological reactions required for the duplication of the kinetoplast network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号